Open Source User Guide

Open source Wireless-G Router - KWGR614

11 Opening The Router Housing or Putting In Any Customer Software on The Router Will Void
The Warranty On Your Router!!!!

Hardware Specification

Chipsets:
- CPU: Realtek RTL8651B (200MHz), embedded with a 5-port Fast Ethernet switch
- Wireless: Realtek RTL8185L / RTL8225

Total memory:
- Flash: 4MB
- SDRAM: 16MB

Memory usage of the latest router firmware:

- Flash: 2MB used = 1,804KB (router firmware V1.0.1-10.17WW) + 192KB (Bootloader + BoardInfo + POT + Configuration)
- SDRAM: about 8.5MB (without including the dynamic memory allocation)

Module and Software Specification

KWGR614 is running Linux 2.4.26.

The following table lists the functional modules of the KWGR614 router and the source and versions of the different modules.
More information on these functional modules can be obtained directly from the source of the packages.

Module Package Version Location (directory)

NAT/NAPT RomeDriver-Realtek 3.6.3 linux-2.4.x/drivers/net/re865x/rtI865x

RIPV1/RIPv2 Copyright 2005, DNI 1.0.0 user/ripd

DHCP server/client | udhcpd/udhcpc of Busybox 0.9.10 user/busybox/networking/udhcp
V1.00-pre2

DNS Proxy Dnrd 2.17.2 user/dnrd-dnshijack

Dynamic DNS ez-ipupdate 3.0.11b7 user/ez-ipupdate-3.0.11b7

Web Server BOA 0.94 user/boa

UPNP Copyright 2005, DNI 1.0.0 user/upnp

Telstra's Big Pond Bpalogin V2.0 user/bpalogin

Email Smtpclient 1.0.0 user/smtpclient

Schedule Crond of Busybox V1.00-pre2 | 1.0.0 user/busybox/miscutils/crond.c

PPP/PPPoE Pppd 2.3.8 user/pppd

PPTP Client pptp-client 1.3.1 user/pptp-client

Ntpclient Copyright 2005, DNI 1.0.0 user/ntpclient

Miscellaneous Copyright 2005, DNI 1.0.0 user/dniutil, user/init

Wireless driver Copyright Realtek 1.12 linux-2.4.x/drivers/net/wireless/rtI8185

L2TP 12tpd 0.69 user/12tpd

Iptables iptables 1.2.7a user/iptables

Making a Console debug Interface for KWGR614

This section contains instructions on how to make a console interface to a NETGEAR KWGR614 wireless router
for developer’s firmware development and debugging.

KWGR Open Source Guide (Rev 2.0)

Provided below is an example schematic using MAX3232, the RS-232 Line Driver/Receiver from Texas Instruments
(T1), to make a console board.

(Datasheet of the MAX3232 can be found on TI web site at http://focus.ti.com/lit/ds/symlink/max3232.pdf)

DB-8
< DCE-RxD
LE-I 15 R10OUT R1IN éa : MWale connector
4 [5]—GHND I H— R20OUT R2IN [;,H
XD 1
3 0 UTXD I el I - DCE-TxD 1B 5
; +3.3v 10 2007 H—x am— P
[|0 1 2 [A—T 8
1303 — cm LSRN P I 1510 ——
on the i ; ool L +3.$v Tl 5
router board | L1 4oy oo HE : =
- 516 Gnp HEGND L L Tothe
MAXIITICPWE = Imu Consale Terminal

KWGR614 Console Interface

The DB9 (Male) connector is wired as a DCE (think of this as a peripheral serial port), and can be connected
directly to the serial port on a host PC. This gives you access to the built-in serial console on the router (using the
protocol of 38400bps, 8 data bits, none parity, 1 stop bit, without flow control).

Connect the console board to the pin header (J303) on the router board.

c
OR=23 71

il
i

2976264603

341
w2 ®
RENI REDLE

5 t
— c42C ;ﬁ%
U

L -hlE
S [aais
DC2 (WE)

HEHAH I ey e BRI 0¥, Ay
CEHEE DR e he i
2] C o
[] L] BL E] :1-|n =™
uIce o m%ug Ces
o6 1] =0

KWGR Open Source Guide (Rev 2.0)

The pin-out of J303 on the KWGR614 board is as follows:
Pin 1: VDDH (3.3V)

Pin 2: TxD

Pin 3: RxD

Pin 4: GND (Ground)

There are 3" party vendors who provide compatible console boards, such us the AD233AK/AD233BK RS232
adapter kits at:

http://www.compsysl.com/workbench/On top of the Bench/Max233 Adapter/max233 adapter.html

Make sure the adapter board is connected correctly to the corresponding pins of J303 on the router board.

KWGR Open Source Guide (Rev 2.0)

Source Code and Executable

The following section of the document highlights the steps and procedures that are required to download the source code,
install the toolchain, compile and link the existing source code and develop the user applications for the KWGR614 Router.
Suse Linux 10.1 was used for development throughout this guide.

Note: The KWGR614 firmware had been built successfully on the following Linux OS platforms

- Redhat 9.0/8.x
- Fedora 5
- SUSE Linux 10.1

Download the complete archive from Netgear OSC web site
(http://kbserver.netgear.com/kb_web_files/open_src.asp) and unpack
KWGR614 V1.0.1_10.17WW_gpl_package.zip

Note: V1.0.1_10.17 is the firmware version number. WW denotes Worldwide version. Other versions are available
e.g NA for North America. Apply the correct file name where appropriate, if you download a different version.

unzip KWGR614 _V1.0.1_10.17WW_gpl_package.zip

Unzip will result in three files:

KWGR614 README.txt (The Opensource User Guide)
KWGR614 V1.0.1_10.17WW_src.tar.bz2
toolchain_mips_20050831.tar.bz2

Unpack the Source code.
tar -xvf KWGR614_V1.0.1_10.17WW_src.tar.bz2

This will create a sub directory KWGR614 _xxx/.
xxx ->V1.0.1_10.17WW (xxx denotes the version number)

The Directory has a number of useful documents that we recommend to read before proceeding.

Useful Documents
- Ivendors/Documentation/KWGR614 README.txt
- /SOURCE
- /README
- /Documentation/Adding-User-Apps-HOWTO
- /Documentation/Addid-Platforms-HOWTO

Install the Tool chain in the root Directory
#cd/
mkdir uclibc
cd uclibc
tar jxvf toolchain_mips_20050831.tar.bz2
mv toolchain_mips.pv.0831 toolchain_mips

Note: Root user permissions may be required to create the uclibc directory and install the toolchain into the root directory of
the filesystem.

5.

Compile

Change working directory to KWGR614_xxx/

a. Type "make menuconfig”, and customize your kernel config options.
- Target Platform Selection --->

[*] Customize Kernel Settings (NEW)
- Exit

KWGR Open Source Guide (Rev 2.0)

- Exit
- Save configuration? yes
- Exit
- Save configuration? yes

Note: If you are building runtime image for the first time, be sure to save the configuration
when leaving "make menuconfig”, even if no change is made to default settings.

b. Type "make dep"

c. (Optional) If you need to customize busybox, goto KWGR614 xxx/user/busybox/, and type "make menuconfig" to
select user level application you need. Then go back to KWGR614 xxx/, and type "make dep" again. This would
update all dependencies.

d. Type "make"
This would build the kernel, user apps, and create image file run.bix under KWGR614_xxx/images/
directory.

After compiling and linking the existing source code already provided, you can now upload the

KWGR614 xxx/images/run.bix file directly to the router after connecting the router to your PC and using the “Router
firmware Upgrade” page on the Router Web GUI.

Custom Applications on OpenSource Router

To develop any custom applications on this router, please follow the following steps

Version String

Set your custom version string in the file user/dni/nvram_realtek.c by defining OS_VERSION. Be certain to remove any
duplicate definition.

user/dni/nvram realtek.c

#define OS_VERSION “V1.01.01 Custom”

The country suffix can be removed from the version string by redefining EXTENSION.

user/dni/nvram realtek.c

#if 1

#ifdef EXTENSION
#undef EXTENSION
#endi f

#define EXTENSION “”
#endif

New NVRAM Parameters

Define the structure of the parameter.

KWGR Open Source Guide (Rev 2.0)

user/boa/src/rtl865x/board.h

#define MAX_QUESTION_LENGTH 64
typedef struct exampleParam_s

char question[MAX_QUESTION_LENGTH];
int answer;
} exampleParam_t;

Add the new parameter to the main parameter structure to include it in the configuration set.

user/boa/src/rtl865x/board.h

typedef struct romeCfgParam_s

{

exampleParam_t exampleParam;
} romeCfgParam_t;

Create get/set functions for the parameter.

user/dniutil/nvram realtek.c

char *

nvram_get_example_question (char *name)
DPRINTF(C'nvram_get(\"%s\"")\n", name);
sprintf(str, "%s'", pRomeCfgParam->exampleParam.question);
return (str);

}

int

nvram_set_example_question(char *name, char *value)

{
DPRINTF("'nvram_set(\"%s\", \"%s\'")\n", name, value);
strncpy(pRomeCfgParam->exampleParam.question, value, \

sizeof(pRomeCfgParam->exampleParam.question));

return 1;

}

char *

nvram_get example_answer (char *name)

{
DPRINTF(*'nvram_get(\"%s\")\n", name);
sprintf(str, "%d", pRomeCfgParam->exampleParam.answer);
return (str);

}

int

nvram_set_example_question(char *name, char *value)

{
DPRINTF('nvram_set(\"%s\", \"%s\")\n", name, value);
pRomeCfgParam->exampleParam.answer = atoi(value);
return 1;

¥

Add the get/set handlers to the NVRAM handler table.

KWGR Open Source Guide (Rev 2.0)

user/dniutil/nvram_realtek.c

struct ej_nvram_handler nvram_handlers[] =

{
{"example_qguestion', nvram_get_example_question, nvram_set_example_question},
{"example_answer", nvram_get example_answer, nvram_set_example_answer},
{ NULL, NULL, NULL 3},

};

Declare an instance of the parameter for runtime memory use.

user/boa/src/dni/board.c

exampleParam_t ramExampleParam; //nvram example

Define default values for the parameter.

user/boa/src/dni/board.c

// nvram example
exampleParam_t exampleParamDefaul t[1] =

{
{
42

}:

"What is the meaning of life, the universe, and everything?",

Define the initialization function.

user/boa/src/dni/board.c

uint32 example_init(void)
{
/* read cfg from cfgmgr */
iT (cfgmgr_read(CFGMGR_TABID_EXAMPLE, \
(void*)&(pRomeCfgParam->exampleParam), \
sizeof(struct exampleParam_t))!=0)

{
printf('example_init: call cfgmgr_read fail\n');
/* take proper actions */
return NOT_OK;

}

//printf(Cexample_init\n™);

return OK;

} /* end example_init */

Add the function to system initialization.

user/boa/src/dni/board.c

KWGR Open Source Guide (Rev 2.0)

uint32 syslnit(void)
{

/* init nvram example */
example_init();

} /* ena éyélnit */

Add an ID to the configuration management table and to the control table.

user/boa/src/rtl865x/rtl board.h

enum _board_cfgmgr_tabld_e {

CFGMGR_TABID_EXAMPLE,
CFGMGR_TABID_MAX
};

user/boa/src/dni/board.c

{

{CFGMGR_TABID_MAX, NULL, O}
}:

static _board_cfgmgr_ctrl_t _board_cfgmgr_ctriTbl [CFGMGR_TABID_MAX+1] =

{CFGMGR_TABID_EXAMPLE, exampleParamDefault, (sizeof(exampleParamDefault))},

Create a save function for the parameter.

user/boa/src/dni/board.c

int example_cfg_save(void)
{
cfgmgr_write(CFGMGR_TABID_EXAMPLE, \
(void*)&(pRomeCfgParam->exampleParam),\
sizeof(exampleParam_t));
cfgmgr_task(Q);
return 1;
}

Add the parameter to the NVRAM commit function.

user/boa/src/dni/board.c

int nvram_commit(void)
{
cfgmgr_write(CFGMGR_TABID_EXAMPLE, \
(void*)&(pRomeCfgParam->exampleParam), \
sizeof(exampleParam_t));
cfgmgr_task();
return 1;
}

Clean and rebuild userspace after any changes to board.h.

At the shell prompt.

work> cd user; make clean; cd ..; make

KWGR Open Source Guide (Rev 2.0)

Web Page Integration

The boa web server is used. Custom web pages are integrated at:
user/boa/src/www_WW/

Create the main page in the above directory. Use <% nvram_get(“variable name”); %> to insert the value of a NVRAM
variable.

user/boa/src/www_WW/example.html

<html>

<head>

<meta http-equiv=""content-type" content="text/html;charset=1S0-8859-1"">
<META http-equiv="Pragma® CONTENT="no-cache">

<META HTTP-EQUIV=""Cache-Control' CONTENT='"no-cache">

<title>Router Customization Example</title>

<link rel="stylesheet" href="/forml.css" type=""text/css">

<script language="javascript" type=""text/javascript'>

<I-- hide script from old browsers
function loadhelp(fname)
{

if(top-helpframe != null) {
top.helpframe.location.href="help/help"+fname+"_html"
}

3

//-->

</script>

</head>

<body bgcolor="#ffffff" leftmargin="0" topmargin="0" marginwidth="0" marginheight="0"
onload=""loadhelp("_example®);">

Q: <% nvram_get(“example_question™); %>

A: <% nvram_get(“example_answer’); %>

</body>

</html>

Create the help file in the help directory. Name the file the same as the main page with a “help_" prefix.

user/boa/src/www_WW/help/help_example.html

<html>

<head>

<META name="'description' content="KWGR614'>

<META http-equiv=""Content-Type" content="text/html; charset=iso-8859-1">
<META http-equiv="Pragma” content="no-cache'>

<META HTTP-equiv=""Cache-Control' content="no-cache">

<title>Help</title>
<link rel="stylesheet” href="help.css">
</head>

<body bgcolor="#0099cc" >

<hl>Example Help</h1>

<p>This is an example web page showing how to get a parameter from nvram.
</body>
</html>

Add a link to the admin page menu by editing the contents file and including a reference to the new web page.

user/boa/src/www_WW/contentsl.html

KWGR Open Source Guide (Rev 2.0)

<table>

<tr>
<td valign=""top'>

</td>
<td>
Example
</td>
</tr>

Device Recovery procedure

Lastly, if the uploaded firmware crashes the router, follow the steps highlighted below for device recovery.

(1) Power off the unit
(2) Press and hold the RESET button at the rear panel
(3) Power on to reboot the unit
(4) Monitor the Test LED, and keep holding the RESET button until the Test LED changes from blinking to steady ON
(which means the boot loader has entered the TFTP recovery mode)
(5) Connect the PC (configured with static IP address 192.168.1.x) to the LAN port of the unit.
(6) Transmit the working firmware image file to the unit (the firmware can be downloaded from Netgear support website):
* For Windows PC, enter the DOS command:
tftp -1 192.168.1.1 PUT KWGR614_XXX.bix
* For a Linux PC, use the command:
tftp -m binary 192.168.1.1 -c put KWGR614_XXX.bix
where the “192.168.1.1" is the unit's LAN IP address and “KWGR614_XXX.bix" is the firmware image file to
transmit.
(7) Monitor the Test LED. When it starts blinking, the recovery procedure is complete
(8) Power cycle to reboot KWGR614
(*Repeat the above steps if the procedure is interrupted or failed)

KWGR Open Source Guide (Rev 2.0)

