Model FVS328 ProSafe VPN Firewall with Dial Back-up Reference Manual

NETGEAR

NETGEAR, Inc. 4500 Great America Parkway Santa Clara, CA 95054 USA Phone 1-888-NETGEAR

202-10031-01 May 2004

May 2004, 202-10031-01

© 2004 by NETGEAR, Inc. All rights reserved. FullManual.

Trademarks

NETGEAR and Auto Uplink are trademarks or registered trademarks of NETGEAR, Inc.

Microsoft, Windows, and Windows NT are registered trademarks of Microsoft Corporation.

Other brand and product names are registered trademarks or trademarks of their respective holders. Portions of this document are copyright Intoto, Inc.

Statement of Conditions

In the interest of improving internal design, operational function, and/or reliability, NETGEAR reserves the right to make changes to the products described in this document without notice.

NETGEAR does not assume any liability that may occur due to the use or application of the product(s) or circuit layout(s) described herein.

EN 55 022 Declaration of Conformance

This is to certify that the FVS328 ProSafe VPN Firewall with Dial Back-up is shielded against the generation of radio interference in accordance with the application of Council Directive 89/336/EEC, Article 4a. Conformity is declared by the application of EN 55 022 Class B (CISPR 22).

Certificate of the Manufacturer/Importer

It is hereby certified that the FVS328 ProSafe VPN Firewall with Dial Back-up has been suppressed in accordance with the conditions set out in the BMPT-AmtsblVfg 243/1991 and Vfg 46/1992. The operation of some equipment (for example, test transmitters) in accordance with the regulations may, however, be subject to certain restrictions. Please refer to the notes in the operating instructions.

The Federal Office for Telecommunications Approvals has been notified of the placing of this equipment on the market and has been granted the right to test the series for compliance with the regulations.

Bestätigung des Herstellers/Importeurs

Es wird hiermit bestätigt, daß dasFVS328 ProSafe VPN Firewall with Dial Back-up gemäß der im BMPT-AmtsblVfg 243/1991 und Vfg 46/1992 aufgeführten Bestimmungen entstört ist. Das vorschriftsmäßige Betreiben einiger Geräte (z.B. Testsender) kann jedoch gewissen Beschränkungen unterliegen. Lesen Sie dazu bitte die Anmerkungen in der Betriebsanleitung.

Das Bundesamt für Zulassungen in der Telekommunikation wurde davon unterrichtet, daß dieses Gerät auf den Markt gebracht wurde und es ist berechtigt, die Serie auf die Erfüllung der Vorschriften hin zu überprüfen.

Voluntary Control Council for Interference (VCCI) Statement

This equipment is in the second category (information equipment to be used in a residential area or an adjacent area thereto), and conforms to the standards set by the Voluntary Control Council for Interference by Data Processing Equipment and Electronic Office Machines, aimed at preventing radio interference in such residential areas.

When used near a radio or TV receiver, it may become the cause of radio interference.

Read instructions for correct handling.

Technical Support

Refer to the Support Information Card that shipped with your FVS328 ProSafe VPN Firewall with Dial Back-up.

World Wide Web

NETGEAR maintains a World Wide Web home page that you can access at the universal resource locator (URL) *http://www.netgear.com.* A direct connection to the Internet and a Web browser such as Internet Explorer or Netscape are required.

Contents

Chapter 1 About This Manual

Audience	1-1
Scope	1-1
Typographical Conventions	1-2
Special Message Formats	1-2
How to Use this Manual	
How to Print this Manual	1-4
panter 2	

Chapter 2 Introduction

About the FVS328	2-1
Key Features	2-1
Full Routing on Both the Broadband and Serial Ports	2-1
Virtual Private Networking	2-2
A Powerful, True Firewall	2-2
Content Filtering	2-3
Configurable Auto Uplink™ Ethernet Connection	2-3
Protocol Support	2-3
Easy Installation and Management	2-4
What's in the Box?	2-5
The Firewall's Front Panel	2-5
The Firewall's Rear Panel	2-7

Chapter 3

Connecting the FVS328 to the Internet

What You Will Need Before You Begin	
LAN Hardware Requirements	3-1
LAN Configuration Requirements	
Internet Configuration Requirements	
Where Do I Get the Internet Configuration Parameters?	

Worksheet for Recording Your Internet Connection Information	3-3
Connecting the FVS328 to Your LAN	3-4
How to Connect the FVS328 to Your LAN	3-4
Configuring a Wizard-Detected Login Account	3-8
Configuring a Wizard-Detected Dynamic IP Account	3-9
Configuring a Wizard-Detected Fixed IP (Static) Account	3-10
How to Configure the Serial Port for an Internet Connection	3-10
Testing Your Internet Connection	3-13
Manually Configuring Your Internet Connection	3-14
How to Manually Configure the Primary Internet Connection	3-15

Chapter 4 Serial Port Configuration

Configuring a Serial Port Modem	
Basic Requirements for Serial Port Mode	m Configuration4-2
How to Configure a Serial Port Modem	
Configuring Auto-Rollover	
Basic Requirements for Auto-Rollover	
How to Configure Auto-Rollover	4-3
Configuring Dial-in on the Serial Port	
Basic Requirements for Dial-in	
How to Configure Dial-in	
Configuring LAN-to-LAN Settings	
Basic Requirements for LAN-to-LAN Con	nections4-6
How to Configure LAN-to-LAN Connectio	ons4-6

Chapter 5

WAN and LAN Configuration

5-1
5-2
5-3
5-4
5-4
5-5
5-5
5-5
5-6

How to Set the MTU Size	5-6
Configuring Dynamic DNS	5-6
How to Configure Dynamic DNS	5-7
Using Static Routes	5-7
Static Route Example	5-7
How to Configure Static Routes	5-8
Chapter 6	
Protecting Your Network	
Protecting Access to Your FVS328 Firewall	6-1
How to Change the Built-In Password	6-1
How to Change the Administrator Login Timeout	6-2
Configuring Basic Firewall Services	6-2
Using the Block Sites Menu to Screen Content	6-3
Services and Rules Regulate Inbound and Outbound Traffic	6-4
Defining a Service	6-5
Using Inbound/Outbound Rules to Block or Allow Services	6-6
Examples of Using Services and Rules to Regulate Traffic	6-8
Inbound Rules (Port Forwarding)	6-8
Example: Port Forwarding to a Local Public Web Server	6-9
Example: Port Forwarding for Videoconferencing	6-9
Example: Port Forwarding for VPN Tunnels when NAT is Off.	6-10
Outbound Rules (Service Blocking or Port Filtering)	6-11
Outbound Rule Example: Blocking Instant Messaging	6-12
Other Rules Considerations	6-12
Order of Precedence for Rules	6-12
Rules Menu Options	6-13
Setting Times and Scheduling Firewall Services	6-13
How to Set Your Time Zone	6-14
How to Schedule Firewall Services	6-15
Chapter 7	
Virtual Private Networking	
Overview of FVS328 Policy-Based VPN Configuration	7-1
Using Policies to Manage VPN Traffic	7-1
Using Automatic Key Management	7-2

VPN Policy Configuration for Auto Key Negotiation	7-6
VPN Policy Configuration for Manual Key Exchange	7-9
Using Digital Certificates for IKE Auto-Policy Authentication	7-14
Certificate Revocation List (CRL)	7-14
How to Use the VPN Wizard to Configure a VPN Tunnel	7-15
Walk-Through of Configuration Scenarios	7-17
VPNC Scenario 1: Gateway-to-Gateway with Preshared Secrets	7-18
FVS328 Scenario 1: How to Configure the IKE and VPN Policies	7-20
How to Check VPN Connections	7-24
FVS328 Scenario 2: Authenticating with RSA Certificates	7-25

Chapter 8 Managing Your Network

Network Management	8-1
How to Configure Remote Management	8-1
Viewing Router Status and Usage Statistics	8-3
Viewing Attached Devices	8-6
Viewing, Selecting, and Saving Logged Information	8-7
Changing the Include in Log Settings	8-9
Enabling the Syslog Feature	8-9
Enabling Security Event E-mail Notification	8-10
Backing Up, Restoring, or Erasing Your Settings	
How to Back Up the FVS328 Configuration to a File	
How to Restore a Configuration from a File	8-12
How to Erase the Configuration	8-13
Running Diagnostic Utilities and Rebooting the Router	8-13
Upgrading the Router's Firmware	8-14
How to Upgrade the Router	8-15
Chapter 9 Troubleshooting	
Basic Functions	9-1
Power LED Not On	
Test LED Never Turns On or Test LED Stays On	9-2
Local or Internet Port Link LEDs Not On	

Troubleshooting the Web Configuration Interface	9-3
Troubleshooting the ISP Connection	9-4

Troubleshooting a TCP/IP Network Using a Ping Utility	9-5
How to Test the LAN Path to Your Firewall	9-6
How to Test the Path from Your PC to a Remote Device	9-6
Restoring the Default Configuration and Password	9-7
How to Use the Default Reset Button	9-7
Problems with Date and Time	9-8

Appendix A Technical Specifications

Appendix B Firewall Log Formats

Action List	B-1
Field List	B-1
Outbound Log	B-1
Inbound Log	B-2
Other IP Traffic	B-2
Router Operation	B-3
Other Connections and Traffic to this Router	B-4
DoS Attack/Scan	B-4
Access Block Site	B-6
All Web Sites and News Groups Visited	B-6
System Admin Sessions	B-6
Policy Administration LOG	B-7

Appendix C

Networks, Routing, and Firewall Basics

Related Publications	C-1
Basic Router Concepts	C-1
What is a Router?	C-1
Routing Information Protocol	C-2
IP Addresses and the Internet	C-2
Netmask	C-4
Subnet Addressing	C-4
Private IP Addresses	C-7
Single IP Address Operation Using NAT	C-7
MAC Addresses and Address Resolution Protocol	C-9
Related Documents	C-9

Domain Name Server	C-9
IP Configuration by DHCP	C-10
Internet Security and Firewalls	C-10
What is a Firewall?	C-11
Stateful Packet Inspection	C-11
Denial of Service Attack	C-11
Ethernet Cabling	C-12
Uplink Switches and Crossover Cables	C-12
Cable Quality	C-13
Appendix D Preparing Your Network	
Preparing Your Computers for TCP/IP Networking	D-1
Configuring Windows 95, 98, and Me for TCP/IP Networking	D-2
Install or Verify Windows Networking Components	D-2
Enabling DHCP to Automatically Configure TCP/IP Settings	D-4
Selecting Windows' Internet Access Method	D-4
Verifying TCP/IP Properties	D-5
Configuring Windows NT, 2000 or XP for IP Networking	D-5
Installing or Verifying Windows Networking Components	D-5
Verifying TCP/IP Properties	D-6
Configuring the Macintosh for TCP/IP Networking	D-6
MacOS 8.6 or 9.x	D-6
MacOS X	D-7
Verifying TCP/IP Properties for Macintosh Computers	D-8
Verifying the Readiness of Your Internet Account	D-9
Are Login Protocols Used?	D-9
What Is Your Configuration Information?	D-9
Obtaining ISP Configuration Information for Windows Computers	D-10
Obtaining ISP Configuration Information for Macintosh Computers	D-11
Restarting the Network	D-12
Appendix E Virtual Private Networking	
What is a VPN?	E-1
What is IPSec and How Does It Work?	E-2

IPSec Security Features	

IPSec Components	E-2
Encapsulating Security Payload (ESP)	E-3
Authentication Header (AH)	E-4
IKE Security Association	E-4
Mode	E-5
Key Management	E-6
Understand the Process Before You Begin	E-6
VPN Process Overview	E-7
Network Interfaces and Addresses	E-7
Interface Addressing	E-7
Firewalls	E-8
Setting Up a VPN Tunnel Between Gateways	E-8
VPNC IKE Security Parameters	E-10
VPNC IKE Phase I Parameters	E-10
VPNC IKE Phase II Parameters	E-11
Testing and Troubleshooting	E-11
Additional Reading	E-11
Appendix F	
NETGEAR VPN Configuration FVS318 or FVM318 to FVS328	
Configuration Profile	F-1
Step-By-Step Configuration of FVS318 or FVM318 Gateway A	F-2
Step-By-Step Configuration of FVS328 Gateway B	F-5
Test the VPN Connection	F-9
Appendix G	
NETGEAR VPN Configuration FVS318 or FVM318 with FQDN to FVS328	
Configuration Profile	G-1
Using DDNS and Fully Qualified Domain Names (FQDN)	G-2
Step-By-Step Configuration of FVS318 or FVM318 Gateway A	G-3
Step-By-Step Configuration of FVS328 Gateway B	G-7
Test the VPN Connection	G-11
Appendix H NETGEAR VPN Client to NETGEAR the FVS328	
Profile: Traveling User or Telecommuter at Home	

Step-By-Step Configuration of FVS328 Gateway	H-2
Step-By-Step Configuration of the Netgear VPN Client B	H-7
Testing the VPN Connection	H-14
From the Client PC to the FVS328	H-14
From the FVS328 to the Client PC	H-15
Monitoring the PC VPN Connection	H-15
Viewing the FVS328 VPN Status and Log Information	H-16
Glossary	

Index

Chapter 1 About This Manual

This chapter introduces the NETGEAR FVS328 ProSafe VPN Firewall with Dial Back-up manual.

Audience

This reference manual assumes that the reader has basic to intermediate computer and Internet skills. However, basic computer network, Internet, firewall, and VPN technology tutorial information is provided in the Appendices and on the NETGEAR Web site.

Scope

This manual is written for the FVS328 Firewall according to these specifications.:

Table 1-1.Manual Specifications

Product Version	FVS328 ProSafe VPN Firewall with Dial Back-up
Firmware Version Number	Verson 1.0 Release 09
Manual Part Number	202-10031-01
Manual Publication Date	May 2004

Note: Product updates are available on the NETGEAR Web site at *http://kbserver.netgear.com/products/FVS328.asp*.

Typographical Conventions

This guide uses the following typographical conventions:

Table 1-2.	Typographical conventions
	Typographical conventions

italics	Emphasis.
bold times roman	User input.
[Enter]	Named keys in text are shown enclosed in square brackets. The notation [Enter] is used for the Enter key and the Return key.
Small Caps	DOS file and directory names.

Special Message Formats

This guide uses the following formats to highlight special messages:

Note: This format is used to highlight information of importance or special interest.

How to Use this Manual

This manual includes both PDF and HTML versions. Use the topics below to identify how to take advantage of these document formats when you need to view or print information from this manual.

Figure Preface 1-1: HTML version of this manual

1. Left pane. Use the left pane to view the Contents, Index, Search, and Favorites tabs.

To view the HTML version of the manual, you must have a version 4 or later browser with JavaScript enabled.

2. Toolbar buttons. Use the toolbar buttons across the top to navigate, print pages, and more.

The *Show in Contents* button locates the current topic in the Contents tab.

Previous/Next buttons display the previous or next topic.

- **PDF** The *PDF* button links to a PDF version of the full manual.
 - The *Print* button prints the current topic. Using this button when a step-by-step procedure is displayed will send the entire procedure to your printer—you do not have to worry about specifying the correct range of pages.
- 3. **Right pane**. Use the right pane to view the contents of the manual. Also, each page of the manual includes a **PDF of This Chapter** link at the top right which links to a PDF file containing just the currently selected chapter of the manual.

How to Print this Manual

To print this manual you can choose one of the following several options, according to your needs.

- **Printing a "How To" Sequence of Steps in the HTML View**. Use the *Print* button on the upper right side of the toolbar to print the currently displayed topic. Using this button when a step-by-step procedure is displayed will send the entire procedure to your printer—you do not have to worry about specifying the correct range of pages.
- **Printing a Chapter**. Use the **PDF of This Chapter** link at the top right of any page.
 - Click the "PDF of This Chapter" link at the top right of any page in the chapter you want to print. A new browser window opens showing the PDF version of the chapter you were viewing.
 - Click the print icon in the upper left of the window.
 - **Tip**: If your printer supports printing two pages on a single sheet of paper, you can save paper and printer ink by selecting this feature.
- **Printing the Full Manual**. Use the PDF button in the toolbar at the top right of the browser window.
 - Click the PDF button. A new browser window opens showing the PDF version of the chapter you were viewing.
 - Click the print icon in the upper left side of the window.
 - **Tip**: If your printer supports printing two pages on a single sheet of paper, you can save paper and printer ink by selecting this feature.

Chapter 2 Introduction

This chapter describes the features of the NETGEAR FVS328 ProSafe VPN Firewall with Dial Back-up. The FVS328 Firewall provides connection for multiple computers to the Internet through an external broadband access device such as a cable modem or DSL modem, and supports IPSec-based secure tunnels to IPSec-compatible VPN servers. The 8-port FVS328 with auto fail-over connectivity through the serial port provides highly reliable Internet access for up to 253 users.

About the FVS328

The FVS328 is a complete security solution that protects your network from attacks and intrusions and enables secure communications using Virtual Private Networks (VPN). Unlike simple Internet sharing routers that rely on Network Address Translation (NAT) for security, the FVS328 uses Stateful Packet Inspection for Denial of Service (DoS) attack protection and intrusion detection. The 8-port FVS328 provides highly reliable Internet access for up to 253 users with up to 50 concurrent VPN tunnels.

Key Features

The FVS328 features are highlighted below.

Full Routing on Both the Broadband and Serial Ports

You can install, configure, and operate the FVS328 to take full advantage of a variety of routing options on both the serial and broadband WAN ports, including:

- Internet access via either the serial or broadband port.
- Auto fail-over connectivity through an analog or ISDN modem connected to the serial port If the broadband Internet connection fails, after a waiting for an amount of time you specify, the FVS328 can automatically establish a backup ISDN or dial-up Internet connection via the serial port on the firewall.

- Remote Access Server (RAS) allows you to log in remotely through the serial port to access a server on your LAN, other LAN resources, or the Internet based on a user name and password you define.
- LAN-to-LAN access between two FVS328 firewalls through the serial port with the option of enabling auto-failover Internet access across the serial LAN-to-LAN connection.

Virtual Private Networking

The FVS328 Firewall provides a secure encrypted connection between your local network and remote networks or clients. Its VPN features include:

- Support for up to 50 simultaneous VPN connections.
- Support for industry standard VPN protocols. The FVS328 ProSafe VPN Firewall with Dial Back-up supports standard keying methods (Manual or IKE), standard authentication methods (MD5 and SHA-1), and standard encryption methods (DES, 3DES). It is compatible with many other VPN products.
- Support for up to 168 bit encryption (3DES) for maximum security.
- Support for VPN Main Mode, Aggressive mode, or Manual Keying.
- Support for Fully Qualified Domain Name (FQDN) configuration when the Dynamic DNS feature is enabled with one of the supported service providers.

A Powerful, True Firewall

Unlike simple Internet sharing NAT routers, the FVS328 is a true firewall, using stateful packet inspection to defend against hacker attacks. Its firewall features include:

- DoS protection Automatically detects and thwarts DoS attacks such as Ping of Death, SYN Flood, LAND Attack and IP Spoofing.
- Blocks unwanted traffic from the Internet to your LAN.
- Blocks access from your LAN to Internet locations or services that you specify as off-limits.
- Logs security incidents

The FVS328 will log security events such as blocked incoming traffic, port scans, attacks, and administrator logins. You can configure the firewall to e-mail the log to you at specified intervals. You can also configure the firewall to send immediate alert messages to your e-mail address or e-mail pager whenever a significant event occurs.

Content Filtering

With its content filtering feature, the FVS328 prevents objectionable content from reaching your computers. The firewall allows you to control access to Internet content by screening for keywords within Web addresses. You can configure the firewall to log and report attempts to access objectionable Internet sites.

Configurable Auto Uplink[™] Ethernet Connection

With its internal 8-port 10/100 switch, the FVS328 can connect to either a 10 Mbps standard Ethernet network or a 100 Mbps Fast Ethernet network. Both the local LAN and the Internet WAN interfaces are 10/100 Mbps, autosensing, and capable of full-duplex or half-duplex operation.

The firewall incorporates Auto Uplink[™] technology. Each local Ethernet port will automatically sense whether the Ethernet cable plugged into the port should have a 'normal' connection such as to a PC or an 'uplink' connection such as to a switch or hub. That port will then configure itself to the correct configuration. This feature also eliminates the need to worry about crossover cables, as Auto Uplink will accommodate either type of cable to make the right connection.

Protocol Support

The FVS328 supports the Transmission Control Protocol/Internet Protocol (TCP/IP) and Routing Information Protocol (RIP). Appendix C, "Networks, Routing, and Firewall Basics" provides further information on TCP/IP. Supported protocols include:

- The Ability to Enable or Disable IP Address Sharing by NAT The FVS328 allows several networked computers to share an Internet account using only a single IP address, which may be statically or dynamically assigned by your Internet service provider (ISP). This technique, known as NAT, allows the use of an inexpensive single-user ISP account. This feature can also be turned off completely for using the FVS328 in settings where you want to manage the IP address scheme of your organization.
- Automatic Configuration of Attached computers by DHCP The FVS328 dynamically assigns network configuration information, including IP, gateway, and domain name server (DNS) addresses, to attached computers using Dynamic Host Configuration Protocol (DHCP). This feature greatly simplifies configuration of computers on your local network.

• DNS Proxy

When DHCP is enabled and no DNS addresses are specified, the firewall provides its own address as a DNS server to the attached computers. The firewall obtains actual DNS addresses from the ISP during connection setup and forwards DNS requests from the LAN.

- PPP over Ethernet (PPPoE) PPPoE is a protocol for connecting remote hosts to the Internet over a DSL connection by simulating a dial-up connection. This feature eliminates the need to run a login program such as EnterNet or WinPOET on your computer.
- Point-to-Point Tunneling Protocol PPTP login support for European ISPs and BigPond login for Telstra cable in Australia.
- Dynamic DNS

Dynamic DNS services allow remote users to find your network using a domain name when your IP address is not permanently assigned. The firewall contains a client that can connect to many popular Dynamic DNS services to register your dynamic IP address. See "Configuring Dynamic DNS" on page 5-6.

Easy Installation and Management

You can install, configure, and operate the FVS328 within minutes after connecting it to the network. The following features simplify installation and management tasks:

Browser-based management

Browser-based configuration allows you to easily configure your firewall from almost any type of personal computer, such as Windows, Macintosh, or Linux. A user-friendly Setup Wizard is provided and online help documentation is built into the browser-based Web Management Interface.

• Smart Wizard

The firewall automatically senses the type of Internet connection, asking you only for the information required for your type of ISP account.

• Remote management

The firewall allows you to login to the Web Management Interface from a remote location via the Internet using secure SLL protocol. For security, you can limit remote management access to a specified remote IP address or range of addresses, and you can choose a nonstandard port number.

• Diagnostic functions

The firewall incorporates built-in diagnostic functions such as Ping, DNS lookup, and remote reboot. These functions allow you to test Internet connectivity and reboot the firewall. You can use these diagnostic functions directly from the FVS328 when your are connected on the LAN or when you are connected over the Internet via the remote management function.

- Visual monitoring The firewall's front panel LEDs provide an easy way to monitor its status and activity.
- Flash EPROM for firmware upgrades

Note: Product updates are available on the NETGEAR Web site at *http://kbserver.netgear.com/products/FVS328.asp*.

• Regional support, including ISPs like Telstra DSL and BigPond or Deutsche Telekom.

What's in the Box?

The product package should contain the following items:

- FVS328 ProSafe VPN Firewall with Dial Back-up
- AC power adapter
- FVS328 Resource CD (230-10041-02), including:
 - This manual
 - Application notes, tools, and other helpful information
- Warranty and registration card
- Support information card

If any of the parts are incorrect, missing, or damaged, contact your NETGEAR dealer. Keep the carton, including the original packing materials, in case you need to return the product for repair.

The Firewall's Front Panel

The front panel of the FVS328 contains status LEDs. You can use some of the LEDs to verify connections. Table 2-1 lists and describes each LED on the front panel of the firewall.

Figure 2-1: FVS328 Front Panel

These LEDs are green when lit, except for the TEST LED, which is amber. These LEDs are green when lit, except for the TEST LED, which is amber.

Table 2-1:LED Descriptions

Label	Activity	Description
POWER	On	Power is supplied to the firewall.
TEST	On Off	The system is initializing. The system is ready and running.
MODEM	On/Blinking	The port detected a link with the Internet WAN connection or Remote Access Server. Blinking indicates data transmission.
INTERNET		
100	On/Blinking	The Internet port is operating at 100 Mbps.
LINK/ACT (Activity)	On/Blinking	The port detected a link with the Internet WAN connection and is operating at 10 Mbps. Blinking indicates data transmission.
LOCAL		
100	On/Blinking	The Local port is operating at 100 Mbps.
LINK/ACT (Link/Activity)	On/Blinking	The Local port has detected a link with a LAN connection and is operating at 10 Mbps. Blinking indicates data transmission.

The Firewall's Rear Panel

The rear panel of the FVS328 contains the connections identified below.

Figure 2-2: FVS328 Rear Panel

Viewed from left to right, the rear panel contains the following elements:

- DB-9 serial port for modem connection
- Reset/Factory Default push button: push to reset; push and hold for 20 seconds to reset to factory default settings
- Eight Local Ethernet RJ-45 ports for connecting the firewall to local computers
- Internet WAN Ethernet RJ-45 port for connecting the firewall to a cable or DSL modem
- 12V DC 1.2A power adapter input

Chapter 3 Connecting the FVS328 to the Internet

This chapter describes how to set up the firewall on your Local Area Network (LAN) and connect to the Internet. You can perform basic configuration of your FVS328 ProSafe VPN Firewall with Dial Back-up using the Setup Wizard, or manually configure your Internet connection.

What You Will Need Before You Begin

You need to prepare these three things before you can connect your firewall to the Internet:

- 1. A computer properly connected to the firewall as explained below.
- 2. Active Internet service such as that provided by a DSL or Cable modem account.
- 3. The Internet Service Provider (ISP) configuration information for your account.

LAN Hardware Requirements

The FVS328 Firewall connects to your LAN via twisted-pair Ethernet cables.

To use the FVS328 Firewall on your network, each computer must have an installed Ethernet Network Interface Card (NIC) and an Ethernet cable. If the computer will connect to your network at 100 Mbps, you must use a Category 5 (CAT5) cable such as the one provided with your firewall.

The broadband modem must provide a standard 10 Mbps 10BASE-T or 100 Mbps 100BASE-T Ethernet interface.

LAN Configuration Requirements

For the initial connection to the Internet and configuration of your firewall, you will need to connect a computer to the firewall which is set to automatically get its TCP/IP configuration from the firewall via DHCP. The computer you use must have a Web browser such as Internet Explorer v5 or greater or Netscape Communicator v4.7 or greater.

Note: Please refer to Appendix D, "Preparing Your Network" for assistance with DHCP configuration.

Internet Configuration Requirements

Depending on how your ISP or IT group set up your Internet access, you will need one or more of these configuration parameters to connect your firewall to the Internet:

- Host and Domain Names
- ISP Login Name and Password
- ISP Domain Name Server (DNS) Addresses
- Fixed or Static IP Address

Where Do I Get the Internet Configuration Parameters?

There are several ways you can gather the required Internet connection information.

- Your ISP should have provided you with all the information needed to connect to the Internet. If you cannot locate this information, you can ask your ISP to provide it or you can try one of the options below.
- If you have a computer already connected using the active Internet access account, you can gather the configuration information from that computer.
 - For Windows 95/98/Me, open the Network control panel, select the TCP/IP entry for the Ethernet adapter, and click Properties.
 - For Windows 2000/XP, open the Local Area Network Connection, select the TCP/IP entry for the Ethernet adapter, and click Properties.
 - For Macintosh computers, open the TCP/IP or Network control panel.
- You may also refer to the FVS328 *Resource CD* for the NETGEAR Router ISP Guide which provides Internet connection information for many ISPs.

Once you locate your Internet configuration parameters, you may want to record them on the page below according to the instructions in "Worksheet for Recording Your Internet Connection Information" on page 3-3.

Worksheet for Recording Your Internet Connection Information

Print this page. Fill in the configuration parameters from your Internet Service Provider (ISP).

ISP Login Name: The login name and password are case sensitive and must be entered exactly as given by your ISP. Some ISPs use your full e-mail address as the login name. The Service Name is not required by all ISPs. If you connect using a login name and password, then fill in the following:

Login Name: _____ Password: _____

Service Name: _____

Fixed or Static IP Address: If you have a static IP address, record the following information. For example, 169.254.141.148 could be a valid IP address.

Fixed or Static Internet IP Address: _____.

Subnet Mask: _____.

Gateway IP Address: _____.___.

ISP DNS Server Addresses: If you were given DNS server addresses, fill in the following:

Primary DNS Server IP Address: _____.

Secondary DNS Server IP Address: _____.

Host and Domain Names: Some ISPs use a specific host or domain name like **CCA7324-A** or **home**. If you haven't been given host or domain names, you can use the following examples as a guide:

- If your main e-mail account with your ISP is **aaa@yyy.com**, then use **aaa** as your host name. Your ISP might call this your account, user, host, computer, or system name.
- If your ISP's mail server is **mail.xxx.yyy.com**, then use **xxx.yyy.com** as the domain name.

ISP Host Name: _____ ISP Domain Name: _____

For Serial Port Internet Access: If you use a dial-up account, record the following:

	Account/User Name:	Password:	
--	--------------------	-----------	--

Telephone number: ______ Alternative number: _____

Connecting the FVS328 to Your LAN

This section provides instructions for connecting the FVS328 ProSafe VPN Firewall with Dial Back-up to your Local Area Network (LAN).

Note: The Resource CD included with your firewall contains an animated Installation Assistant to help you through this procedure.

How to Connect the FVS328 to Your LAN

There are three steps to connecting your firewall:

- Connect the firewall to your network.
- Log in to the firewall.
- Connect to the Internet.

Follow the steps below to connect your firewall to your network.

1. CONNECT THE FIREWALL BETWEEN YOUR PC & MODEM

- a. Turn off your computer.
- b. Turn off your broadband modem.
- c. Connect a Cat 5 Ethernet cable from the Internet port of the FVS328 to the broadband modem.
- d. Connect the Cat 5 Ethernet cable which came with the firewall from your computer to a Local port on the router.

Note: The FVS328 Firewall incorporates Auto Uplink[™] technology. Each Ethernet port will automatically sense whether the cable plugged into the port should have a 'normal' connection (e.g. connecting to a PC) or an 'uplink' connection (e.g. connecting to a switch or hub). That port will then configure itself to the correct configuration. This feature also eliminates the need to worry about crossover cables, as Auto Uplink will accommodate either type of cable to make the right connection.

- e. Securely insert one end of the Ethernet cable that came with your firewall into a Local port on the router such as Local port 6 (**C**), and the other end into the Ethernet port of your computer (**D**).
- 2. RESTART YOUR NETWORK IN THE CORRECT SEQUENCE

Warning: Failure to restart your network in the correct sequence could prevent you from connecting to the Internet.

- a. First, turn on the broadband modem and wait 2 minutes.
- b. Now, turn on your firewall.
- c. Last, turn on your computer.

Note: If software usually logs you in to the Internet, *do not* run that software or cancel it if it starts automatically.

Figure 3-1: FVS328 status lights

Check the status lights and verify the following:

- *Power*: The power light goes on when your turn the firewall on.
- *Test*: The Test light turns on, blinks, then goes off solid after less than a minute.
- *Internet*: The Internet light on the firewall is lit. If the Internet light is not lit, make sure the Ethernet cable is securely attached to the firewall Internet port and the powered on modem.
- *Local*: A Local light on the router is lit. If no Local lights are lit, check that the Ethernet cable connecting the powered on computer to the router is securely attached at both ends.

3. LOG IN TO THE FIREWALL

- a. From your PC, launch your Internet browser.
- b. Connect to the firewall by typing http://192.168.0.1 in the address field of Internet Explorer or Netscape[®] Navigator.

♦ http://192.168.0.1	
----------------------	--

c. For security reasons, the router has its own user name and password. When prompted, enter **admin** for the router user name and **password** for the router password, both in lower case letters.

Note: The router user name and password are not the same as any user name or password you may use to log in to your Internet connection.

A login window like the one shown below opens:

? >	Please type yo	our user name and password.
∜ ≚	Site:	192.168.0.1
	Realm	
	<u>U</u> ser Name	admin
	Password	жжа
	\Box Save this p	password in your password list
		OK Cancel

Figure 3-2: Login window

d. After logging in to the router, you will see the Internet connection Smart Wizard on the settings main page.

4. RUN THE SMART WIZARD TO CONNECT TO THE INTERNET

Figure 3-3: Setup Wizard

- a. You are now connected to the router. If you do not see the menu above, click the Setup Wizard link on the upper left of the main menu.
- b. Choose NAT or Classical Routing. NAT automatically assigns private IP addresses (192.168.0.x) to LAN connected devices. Classical routing lets you directly manage the IP addresses the FVS328 uses. Classical routing should be selected only by experienced users.
- c. Click Next and follow the steps in the Setup Wizard for inputting the configuration parameters from your ISP to connect to the Internet.

Note: If you choose not to use the Setup Wizard, you can manually configure your Internet connection settings by following the procedure "Manually Configuring Your Internet Connection" on page 3-14.

Unless your ISP automatically assigns your configuration automatically via DHCP, you will need the configuration parameters from your ISP as you recorded them previously in "Worksheet for Recording Your Internet Connection Information" on page 3-3

- d. When the firewall successfully detects an active Internet service, the firewall's Internet LED goes on. The Setup Wizard reports which connection type it discovered, and displays the appropriate configuration menu. If the Setup Wizard finds no connection, you will be prompted to check the physical connection between your firewall and the cable or DSL line.
- e. The Setup Wizard will report the type of connection it finds. The options are:
 - Connections that require a login using protocols such as PPPoE, Telstra BigPond, or PPTP broadband Internet connections.

- Connections that use dynamic IP address assignment.
- Connections that use fixed IP address assignment.

The procedures for filling in the configuration menu for each type of connection follow below.

Configuring a Wizard-Detected Login Account

If the Setup Wizard determines that your Internet service account uses a login protocol such as PPP over Ethernet (PPPoE), you will be directed to the correct setup menu.

- 1. Enter your Account Name (may also be called Host Name) and Domain Name. These parameters may be necessary to access your ISP's services such as mail or news servers. If you leave the Domain Name field blank, the firewall will attempt to learn the domain automatically from the ISP. If this is not successful, you may need to enter it manually.
- 2. Enter the PPPoE login user name and password provided by your ISP. These fields are case sensitive. If you want to change the login timeout, enter a new value in minutes.

Note: You will no longer need to launch the ISP's login program on your computer in order to access the Internet. When you start an Internet application, the firewall will automatically log you in.

- 3. Enable or disable NAT (Network Address Translation). NAT allows all LAN computers to gain Internet access via this Router, by sharing this Router's WAN IP address. In most situations, NAT is essential for Internet access via this Router. You should only disable NAT if you are sure you do not require it. When NAT is disabled, only standard routing is performed by this Router.
- 4. Perform a DNS Lookup. A DNS (Domain Name Server) converts the Internet name (e.g. www.netgear.com) to an IP address. If you need the IP address of a Web, FTP, Mail or other Server on the Internet, you can do a DNS lookup to find the IP address.

Domain Name Server (DNS) Address: If you know that your ISP does not automatically transmit DNS addresses to the firewall during login, select "Use these DNS servers" and enter the IP address of your ISP's Primary DNS Server. If a Secondary DNS Server address is available, enter it also.

If you enter an address here, after you finish configuring the firewall, reboot your computers so that the settings take effect.

5. Enter the Router's MAC Address. Each computer or router on your network has a unique 32-bit local Ethernet address. This is also referred to as the computer's MAC (Media Access Control) address. Usually, select Use default address.

If your ISP requires MAC authentication, then select either Use this Computer's MAC address to have the router use the MAC address of the computer you are now using, or Use This MAC Address to manually type in the MAC address that your ISP expects.

- 6. Click Apply to save your settings.
- 7. Click the Test button to test your Internet connection. If the NETGEAR Web site does not appear within one minute, refer to Chapter 9, Troubleshooting.

Configuring a Wizard-Detected Dynamic IP Account

If the Setup Wizard determines that your Internet service account uses Dynamic IP assignment, you will be directed to the correct setup menu.

- 1. Enter your Account Name (may also be called Host Name) and Domain Name. These parameters may be necessary to access your ISP's services such as mail or news servers. If you leave the Domain Name field blank, the firewall will attempt to learn the domain automatically from the ISP. If this is not successful, you may need to enter it manually.
- 2. If you know that your ISP does not automatically transmit DNS addresses to the firewall during login, select "Use these DNS servers" and enter the IP address of your ISP's Primary DNS Server. If a Secondary DNS Server address is available, enter it also.

A DNS server is a host on the Internet that translates Internet names (such as www.netgear.com) to numeric IP addresses. Typically your ISP transfers the IP address of one or two DNS servers to your firewall during login. If the ISP does not transfer an address, you must obtain it from the ISP and enter it manually here. If you enter an address here, you should reboot your computers after configuring the firewall.

3. The Router's MAC Address is the Ethernet MAC address that will be used by the firewall on the Internet port.

If your ISP allows access from only one specific computer's Ethernet MAC address, select "Use this MAC address." The firewall will then capture and use the MAC address of the computer that you are now using. You must be using the one computer that is allowed by the ISP. Otherwise, you can type in a MAC address.

Note: Some ISPs will register the Ethernet MAC address of the network interface card in your computer when your account is first opened. They will then only accept traffic from the MAC address of that computer. This feature allows your firewall to masquerade as that computer by using its MAC address.

4. Click Apply to save your settings.

5. Click the Test button to test your Internet connection. If the NETGEAR Web site does not appear within one minute, refer to Chapter 9, Troubleshooting.

Configuring a Wizard-Detected Fixed IP (Static) Account

If the Setup Wizard determines that your Internet service account uses Fixed IP assignment, you will be directed to the correct setup menu.

- 1. Enter your assigned IP Address, Subnet Mask, and the IP Address of your ISP's gateway router. This information should have been provided to you by your ISP. You will need the configuration parameters from your ISP you recorded in "Worksheet for Recording Your Internet Connection Information" on page 3-3.
- 2. Enter the IP address of your ISP's Primary DNS Server. If a Secondary DNS Server address is available, enter it also.

DNS servers are required to perform the function of translating an Internet name such as www.netgear.com to a numeric IP address. For a fixed IP address configuration, you must obtain DNS server addresses from your ISP and enter them manually here. You should reboot your computers after configuring the firewall for these settings to take effect.

- 3. Click Apply to save the settings.
- 4. Click the Test button to test your Internet connection. If the NETGEAR Web site does not appear within one minute, refer to Chapter 9, Troubleshooting.

How to Configure the Serial Port for an Internet Connection

Use the procedure below to configure an Internet connection via the serial port of your firewall.

Follow the steps below to configure a serial port Internet connection on your firewall.

1. Connect the Firewall to your ISDN or dial-up modem

- a. Turn off your modem and connect the cable from the serial port of the FVS328 to the modem.
- b. Turn on the modem and wait about 30 seconds for the lights to stop blinking.
- 2. Configure the Serial Port of the Firewall.
 - a. Use a browser to log in to the firewall at http://192.168.0.1 with its default User Name of **admin** and default Password of **password**, or using whatever Password you have set up.

b. From the Setup Basic Settings menu, click Serial Port.

What type of Internet	Connection do you have ?	
O Broadband - No lo		
O Broadband with L	ogin (username, password)	
Serial Port (Moder	m or ISDN)	
Dial-up Account		
Account/User Name		guest
Password:		
Telephone		
Alternative Telephone		
Connect as requir	red	,
Disconnect after l	dle Time of 5 min	
Internet IP Address:		
 Get Dynamically F 	rom ISP	
O Use Static IP Address		0.0.0.0
DNS IP Address:		
Get Automatically	From ISP	
O Use These DNS S	Servers	
Primary DNS		
Secondary DNS		
Modem:		
Serial Line Speed:		115200 💙 bp
Modem Type	Standard Modem	~

Figure 3-4: Serial Internet Connection configuration menu

- c. Fill in the ISDN or analog ISP Internet configuration parameters as appropriate:
 - For a Dial-up Account, enter the Account information. Check "Connect as required" to enable the firewall to automatically dial the number. To enable Idle Time disconnect, check the box and enter a time in minutes.
 - To configure the Internet IP settings, fill in the address parameters your ISP provided.
- d. Configure the Modem parameters.

Note: You can validate modem string settings by first connecting the modem directly to a PC, establishing a connection to your ISP, and then copying the modem string settings from the PC configuration and pasting them into the FVS328 Modem Properties Initial String field. For more information on this procedure, please refer to the support area of the NETGEAR web site.

- Select the Serial Line Speed. This is the maximum speed the modem will attempt to use. For ISDN permanent connections, the speeds are typically 64000 or 128000 bps. For dial-up modems, 56000 bps would be a typical setting.
- Select the Modem Type.
 - For ISDN, select "Permanent connection (leased line)."
 - For dial-up, select your modem from the list. "Standard Modem" should work in most cases.
 - If your modem is not on the list, select "User Defined" and enter the Modem Properties.

Note: If you are not using modem from the pre-defined list but are using the "User Defined" Modem Type, you must first use the Serial Port menu Modem link to fill in the Modem Properties settings for your modem.

e. Click **Apply** to save your settings.

3. Connect to the Internet to test your configuration.

- a. If you have a broadband connection, disconnect it.
- b. From a workstation, open a browser and test your serial port Internet connection.

Note: The response time of your serial port Internet connection will be slower than a broadband Internet connection.
Testing Your Internet Connection

After completing the Internet connection configuration, your can test your Internet connection. Log in to the firewall, then, from the Setup Basic Settings link, click the Test button. If the NETGEAR Web site does not appear within one minute, refer to Chapter 9, Troubleshooting.

Your firewall is now configured to provide Internet access for your network. Your firewall automatically connects to the Internet when one of your computers requires access. It is not necessary to run a dialer or login application such as Dial-Up Networking or Enternet to connect, log in, or disconnect. These functions are performed by the firewall as needed.

To access the Internet from any computer connected to your firewall, launch a browser such as Microsoft Internet Explorer or Netscape Navigator. You should see the firewall's Internet LED blink, indicating communication to the ISP. The browser should begin to display a Web page.

The following chapters describe how to configure the advanced features of your firewall, and how to troubleshoot problems that may occur.

Manually Configuring Your Internet Connection

You can manually configure your firewall using the menu below, or you can allow the Setup Wizard to determine your configuration as described in the previous section.

Basic Settings		Basic Settings			
What type of Internet Connection Broadband - No login Broadband with Login (userna Serial Port (Modem or ISDN)		What type of Internet Connection do you have ? Broadband - No login Broadband with Login (username, password) Serial Port (Modem or ISDN)			
Account Name (If Required) Domain Name (If Required)		Internet Service Provider Name Account Name Domain Name	Other (PPPoE)		
NAT (Network Address Translatio	n)	Login [guest		
Internet IP Address Get Dynamically From ISP 		Idle Timeout	5 Minutes		
○ Use Static IP Address IP Address IP Subnet Mask Gateway IP Address	10 .1 .0 .117 255 255 .254 .0 10 .1 .13	Domain Name Server (DNS) Addre Get Automatically From ISP Use These DNS Servers Primary DNS Secondary DNS	255 		
Domain Name Server (DNS) Addre Get Automatically From ISP Use These DNS Servers Primary DNS Secondary DNS		Router's MAC Address Use Default Address Use This Computer's MAC Use This MAC Address 	00:09:5b:2a:a9:c5		
Router's MAC Address To Use Default Address Use This Computer's MAC Use This MAC Address	00:09:5b:2a:a9:c5	(Apply) Can	cel Test		

Figure 3-5: Browser-based configuration Basic Settings menu

How to Manually Configure the Primary Internet Connection

Use these steps to manually configure the primary Internet connection in the Basic Settings menu.

1. Select your Internet connection type (broadband with or without login, or serial).

Note: If you are a Telstra BigPond broadband customer, or if you are in an area such as Austria that uses broadband PPTP, login is required. If so, select BigPond or PPTP from the Internet Service Type drop down box.

- 2. Enter your Account Name (may also be called Host Name) and Domain Name. These parameters may be necessary to access your ISP's services such as mail or news servers.
- 3. If needed, enter the PPPoE login user name and password provided by your ISP. These fields are case sensitive. To change the login timeout, enter a new value in minutes.

You will no longer need to run the ISP's login program on your PC in order to access the Internet. When you start an Internet application, your firewall automatically logs you in.

4. If you want to disable NAT, select the Disable radio button. Before disabling NAT, back up your current configuration settings.

Note: Disabling NAT will reboot the router and reset all the FVS328 configuration settings to the factory default. Disable NAT only if you plan to install the FVS328 in a setting where you will be manually administering the IP address space on the LAN side of the router.

- 5. Internet IP Address: If your ISP assigned you a permanent, fixed IP address for your PC, select "Use static IP address." Enter the IP address your ISP assigned. Also enter the netmask and the Gateway IP address. The Gateway is the ISP's router to which your firewall will connect.
- 6. Domain Name Server (DNS) Address: If your ISP does not automatically transmit DNS addresses to the firewall during login, select "Use these DNS servers" and enter the IP address of your ISP's Primary DNS Server. If a Secondary DNS Server address is available, enter it.

Note: A DNS server is a host on the Internet that translates Internet names (such as www.netgear.com) to numeric IP addresses. Typically your ISP transfers the IP address of one or two DNS servers to your firewall during login. If the ISP does not transfer an address, you must obtain it from the ISP and enter it manually here. If you enter an address here, you should reboot your PCs after configuring the firewall.

- 7. Router's MAC Address: This section determines the Ethernet MAC address that will be used by the firewall on the Internet port. Some ISPs will register the Ethernet MAC address of the network interface card in your PC when your account is first opened. They will then only accept traffic from the MAC address of that PC. This feature allows your firewall to masquerade as that PC by "cloning" its MAC address. To change the MAC address, select "Use this Computer's MAC address." The firewall will then capture and use the MAC address of the PC that you are now using. You must be using the one PC that is allowed by the ISP. Or, select "Use this MAC address" and enter it.
- 8. Click **Apply** to save your settings.
- 9. Click **Test** to test your Internet connection. If the NETGEAR Web site does not appear within one minute, refer to Chapter 9, Troubleshooting.

Chapter 4 Serial Port Configuration

This chapter describes how to configure the serial port options of your FVS328 ProSafe VPN Firewall with Dial Back-up. The FVS328 serial port lets you share the broadband connection of another FVS328, share resources between two LANs, and take advantage of the routing functions on the broadband (WAN), LAN, and serial network interfaces.

Note: If you configure the serial port of the FVS328 as the primary Internet connection, you will not be able to configure the other serial port options. For instructions on configuring the serial port as the primary Internet connection, please see "How to Configure the Serial Port for an Internet Connection" on page 3-10.

The FVS328 provides these serial port configuration options:

• Modem

Use this option to configure the serial modem settings for any of the features below.

• Auto-Rollover

Use this option to provide a backup connection for your broadband service. If the broadband service you configured in the Basic Settings menu fails, the FVS328 will automatically connect to the Internet through the serial port. However, you will then be accessing the Internet at a slower speed than you would through your broadband service.

• Dial-in

Dial-in lets a single remote computer connect to the FVS328 through the serial port to gain access to LAN resources or a remote access server.

• LAN-to-LAN

LAN-to-LAN enables direct communications between two FVS328 firewalls to:

- Share resources on the two LANs.
- Let users on one FVS328 share the Internet connection of the other FVS328.
- Let users on one FVS328 connect to the Internet through the second FVS328 in case the broadband connection of the first FVS328 fails.

The procedures for these configuration options are presented below.

Configuring a Serial Port Modem

You can configure a serial port modem for any of the features described above.

Be sure you have prepared the basic requirements listed below, then follow the 'how to' procedure.

Basic Requirements for Serial Port Modem Configuration

Configuring a serial port modem requires these elements:

- 1. A serial analog or ISDN modem.
- 2. A serial modem cable with a DB9 connector.
- 3. An active phone or ISDN line.

How to Configure a Serial Port Modem

Follow the steps below to configure a serial port modem.

1. From the main menu, click **Modem** in the Serial Port section.

Serial Port I	lodem	
Serial Line Spee	d:	115200 💌 bps
Modem Type	Standard Modem	*
		Modem Properties
	Apply Cancel	

Figure 4-1: Serial Port Modem configuration menu

2. Select the Serial Line Speed.

This is the maximum speed the modem will attempt to use. For ISDN permanent connections, the speeds are typically 64000 or 128000 bps. For dial-up modems, 56000 bps would be a typical setting.

- For ISDN, select "Permanent connection (leased line)."
- For dial-up, "Standard Modem" should work in most cases. Otherwise, select your modem from the list.

— If your modem is not on the list, select "User Defined" and enter the Modem Properties.

If you are using the "User Defined" selection and configuring your own modem stings, fill in the Modem Properties settings.

Note: You can validate modem string settings by first connecting the modem directly to a PC, establishing a connection to your ISP, and then copying the modem string settings from the PC configuration and pasting them into the FR328S Modem Properties Initial String field. For more information on this procedure, please refer to the support area of the NETGEAR web site.

3. Click **Apply** to save your settings.

Configuring Auto-Rollover

You can configure the serial port of the FVS328 to provide an auto-rollover backup connection for your broadband service.

Be sure you have prepared the basic requirements listed below, then follow the 'how to' procedure.

Basic Requirements for Auto-Rollover

Auto-Rollover requires these elements:

- 1. A broadband connection to the FVS328.
- 2. An ISDN or analog phone line with an active ISDN or dial-up ISP account
- 3. A serial modem properly configured and attached to the DB9 connector on the serial port.
- 4. The Auto-Rollover settings configured and applied to the FVS328.

How to Configure Auto-Rollover

Follow the steps below to configure a serial port auto-rollover connection.

- 1. Configure a serial port modem according to the instructions above.
- 2. From the main menu, click **Auto-rollover** in the Serial Port section.

Serial Port Internet Access	
🗹 Enable Auto-Rollover (Use serial por	t if Broadband connection fails.)
Broadband failure detection: 💿 Pin	g ISP DNS
O Pin	g public IP 0 . 0 . 0 . 0
Auto-Rollover wait time 1 min	
Dial-up Internet Account	
Account/User Name	guest
Password:	
Telephone	
Alternative Telephone	
Connect as required	
Disconnect after Idle Time of 5 r	min
Internet IP Address:	
Oet Dynamically From ISP	
O Use Static IP Address	0.0.0
DNS IP Address:	
Get Automatically From ISP	
O Use These DNS Servers	
Primary DNS	
Secondary DNS	

Figure 4-2: Auto-Rollover configuration menu

- 3. Configure the Auto-Rollover settings.
- 4. Click **Apply** for the changes to take effect.

Configuring Dial-in on the Serial Port

Dial-in lets a single remote computer connect to the FVS328 through the serial port to gain access to LAN resources or a remote access server.

Be sure you have prepared the basic requirements listed below, then follow the 'how to' procedure.

Basic Requirements for Dial-in

Dial-in requires these elements:

- 1. A broadband connection to the FVS328.
- 2. An analog phone line.
- 3. A serial modem properly configured and attached to the DB9 connector on the serial port.
- 4. The Dial-in settings configured and applied to the FVS328.

How to Configure Dial-in

Follow the steps below to configure a serial port dial-in connection.

- 1. Configure a serial port modem according to the instructions above.
- 2. From the Serial Port section of the main menu, click **Dial-in**.

	ttings		
🛛 Enab	le Dial-in		
Dial-i	n PPP Authent	ication	PAP
ial-in Us #	Name	Enabled	Call Back

Figure 4-3: Serial Port Dial-in settings screen

- 3. Configure the Dial-in settings.
- 4. Click **Apply** for the changes to take effect.

Configuring LAN-to-LAN Settings

LAN-to-LAN enables direct communications between two FVS328 firewalls.

Figure 4-4: LAN-to-LAN network configuration

Basic Requirements for LAN-to-LAN Connections

Serial port LAN-to-LAN configurations require these elements:

- 1. An ISDN or analog phone line with an active ISDN or dial-up ISP account.
- 2. A serial modem properly configured and attached to the DB9 connector on the serial port.
- 3. A broadband connection to one FVS328 for LAN-to-LAN auto-rollover Internet access.
- 4. The LAN-to-LAN settings configured and applied to the two FVS328 firewalls.

How to Configure LAN-to-LAN Connections

Follow the steps below to configure a serial port LAN-to-LAN connection.

- 1. Configure a serial port modem according to the instructions above.
- 2. From the main menu, click LAN-to-LAN in the Serial Port section.

Enable Serial Port LAN-to-LAN function				
Remote Gateway LAN IP address	0	. 0	. 0	.0
Network Mask	0	. 0	.0	. 0
Disconnect after Idle Time of 0	minutes			
Use LAN-to-LAN connection for Intern	net access i	f Inter	net Po	ort fail
12				-
Incoming Connection				
Enable Incoming connection				
Login Name				
Login Name Login Password				
		N	ONE	
Login Password Authentication		N	ONE	
Login Password Authentication 		N	IONE	
Login Password Authentication		N	IONE	
Login Password Authentication Outgoing Connection I Enable Outgoing connection		N	IONE	1
Login Password Authentication 		N	IONE	8

Figure 4-5: LAN-to-LAN configuration menu

3. Configure the LAN-to-LAN settings.

Note: The LAN subnet address of each FVS328 must be different.

4. Click **Apply** for the changes to take effect.

Chapter 5 WAN and LAN Configuration

This chapter describes how to configure the WAN and LAN settings of your FVS328 ProSafe VPN Firewall with Dial Back-up.

Configuring LAN IP Settings

The LAN IP Setup menu allows configuration of LAN IP services such as DHCP and RIP. These features can be found under the Advanced heading in the Main Menu of the browser interface.

The firewall is shipped preconfigured to use private IP addresses on the LAN side, and to act as a DHCP server. The firewall's default LAN IP configuration is:

- LAN IP addresses—192.168.0.1
- Subnet mask—255.255.255.0

These addresses are part of the IETF-designated private address range for use in private networks, and should be suitable in most applications. If your network has a requirement to use a different IP addressing scheme, you can make those changes.

The LAN TCP/IP Setup parameters are:

- IP Address This is the LAN IP address of the firewall.
- IP Subnet Mask

This is the LAN Subnet Mask of the firewall. Combined with the IP address, the IP Subnet Mask allows a device to know which other addresses are local to it, and which must be reached through a gateway or router.

• RIP Direction

RIP (Router Information Protocol) allows a router to exchange routing information with other routers. The RIP Direction selection controls how the firewall sends and receives RIP packets. Both is the default.

- When set to Both or Out Only, the firewall will broadcast its routing table periodically.
- When set to Both or In Only, it will incorporate the RIP information that it receives.

- When set to None, it will not send any RIP packets and will ignore any RIP packets received.
- RIP Version

This controls the format and the broadcasting method of the RIP packets that the router sends. It recognizes both formats when receiving. By default, this is set for RIP-1.

- RIP-1 is universally supported. RIP-1 is probably adequate for most networks, unless you
 have an unusual network setup.
- RIP-2 carries more information. Both RIP-2B and RIP-2M send the routing data in RIP-2 format.
 - RIP-2B uses subnet broadcasting.
 - RIP-2M uses multicasting.

Note: If you change the LAN IP address of the firewall while connected through the browser, you will be disconnected. You must then open a new connection to the new IP address and log in again.

Using the Router as a DHCP Server

By default, the firewall will function as a DHCP (Dynamic Host Configuration Protocol) server, allowing it to assign IP, DNS server, and default gateway addresses to all computers connected to the router's LAN. The assigned default gateway address is the LAN address of the firewall. IP addresses will be assigned to the attached PCs from a pool of addresses specified in this menu. Each pool address is tested before it is assigned to avoid duplicate addresses on the LAN.

For most applications, the default DHCP and TCP/IP settings of the firewall are satisfactory. See "IP Configuration by DHCP" on page C-10 for an explanation of DHCP and information about how to assign IP addresses for your network.

If another device on your network will be the DHCP server, or if you will manually configure the network settings of all of your computers, clear the 'Use router as DHCP server' check box. Otherwise, leave it checked.

Specify the pool of IP addresses to be assigned by setting the Starting IP Address and Ending IP Address. These addresses should be part of the same IP address subnet as the firewall's LAN IP address. Using the default addressing scheme, you should define a range between 192.168.0.2 and 192.168.0.253, although you may wish to save part of the range for devices with fixed addresses.

The firewall will deliver the following parameters to any LAN device that requests DHCP:

- An IP Address from the range you have defined
- Subnet Mask
- Gateway IP Address is the firewall's LAN IP address
- Primary DNS Server, if you entered a Primary DNS address in the Basic Settings menu; otherwise, the firewall's LAN IP address
- Secondary DNS Server, if you entered a Secondary DNS address in the Basic Settings menu

How to Configure LAN TCP/IP Setup Settings

- 1. Log in to the firewall at its default LAN address of *http://192.168.0.1* with its default user name of **admin**, default password of **password**, or using whatever password and LAN address you have chosen for the firewall.
- 2. From the Main Menu, under Advanced, click the LAN IP Setup link to view the menu, shown below.

LAN TCP/IP Setup	
IP Address	192 . 168 . 0 . 1
IP Subnet Mask	255 . 255 . 255 . 0
RIP Direction	None
RIP Version Image: Starting IP Address	
✓ Use router as DHCP Starting IP Address	server
✓ Use router as DHCP	server
✓ Use router as DHCP Starting IP Address Ending IP Address	server
✓ Use router as DHCP Starting IP Address	server

Figure 5-1: LAN IP Setup Menu

- 3. Enter the LAN TCP/IP and DHCP parameters.
- 4. Click Apply to save your changes.

How to Configure Reserved IP Addresses

When you specify a reserved IP address for a PC on the LAN, that PC will always receive the same IP address each time it accesses the firewall's DHCP server. Reserved IP addresses should be assigned to servers that require permanent IP settings.

To reserve an IP address:

- 1. Click the Add button.
- 2. In the IP Address box, type the IP address to assign to the PC or server. Choose an IP address from the router's LAN subnet, such as 192.168.0.X.
- 3. Type the MAC Address of the PC or server.

Note: If the PC is already present on your network, you can copy its MAC address from the Attached Devices menu and paste it here.

4. Click Apply to enter the reserved address into the table.

Note: The reserved address will not be assigned until the next time the PC contacts the router's DHCP server. Reboot the PC or access its IP configuration and force a DHCP release and renew.

To edit or delete a reserved address entry:

- 1. Click the button next to the reserved address you want to edit or delete.
- 2. Click Edit or Delete.

Configuring WAN Settings

The WAN Setup menu allows configuration of WAN services such as automatic connection, DMZ server, enabling diagnostic PING tests on the WAN interface, setting the MTU size, and the WAN port speed,. These features can be found under the Advanced WAN Setup heading in the Main Menu of the browser interface.

These features are discussed below.

Connecting Automatically, as Required

Normally, this option should be Enabled, so that an Internet connection will be made automatically, whenever Internet-bound traffic is detected. However, if this causes high connection costs, you can disable this setting.

If disabled, you must connect manually, using the sub-screen accessed from the Connection Status button on the Status screen.

Setting Up a Default DMZ Server

The default DMZ server feature is helpful when using some online games and videoconferencing applications that are incompatible with NAT. The firewall is programmed to recognize some of these applications and to work properly with them, but there are other applications that may not function well. In some cases, one local PC can run the application properly if that PC's IP address is entered as the default DMZ server.

Note: For security, you should avoid using the default DMZ server feature. When a computer is designated as the default DMZ server, it loses much of the protection of the firewall, and is exposed to many exploits from the Internet. If compromised, the computer can be used to attack your network.

Incoming traffic from the Internet is normally discarded by the firewall unless the traffic is a response to one of your local computers or a service that you have configured in the Ports menu. Instead of discarding this traffic, you can have it forwarded to one computer on your network. This computer is called the Default DMZ Server.

How to Assign a Default DMZ Server

- 1. Click Default DMZ Server check box.
- 2. Type the IP address for that server.
- 3. Click Apply.

Responding to Ping on Internet WAN Port

If you want the firewall to respond to a 'ping' from the Internet, click the 'Respond to Ping on Internet WAN Port' check box. This should only be used as a diagnostic tool, since it allows your firewall to be discovered. Don't check this box unless you have a specific reason to do so.

How to Set the MTU Size

The normal MTU (Maximum Transmit Unit) value for most Ethernet networks is 1500 bytes or 1492 Bytes for PPPoE connections. For some ISPs you may need to reduce the MTU. But this is rarely required, and should not be done unless you are sure it is necessary for your ISP connection. Any packets sent through the firewall that are larger than the configured MTU size will be repackaged into smaller packets to meet the MTU requirement.

To change the MTU size:

- 1. Under MTU Size, select Custom.
- 2. Enter a new size between 64 and 1500.
- 3. Click Apply to save the new configuration.

Configuring Dynamic DNS

If your network has a permanently assigned IP address, you can register a domain name and have that name linked with your IP address by public Domain Name Servers (DNS). However, if your Internet account uses a dynamically assigned IP address, you will not know in advance what your IP address will be, and the address can change frequently. In this case, you can use a commercial dynamic DNS service, which will allow you to register your domain to their IP address, and will forward traffic directed to your domain to your frequently-changing IP address.

The firewall contains a client that can connect to a dynamic DNS service provider. To use this feature, you must select a service provider and obtain an account with them. After you have configured your account information in the firewall, whenever your ISP-assigned IP address changes, your firewall will automatically contact your dynamic DNS service provider, log in to your account, and register your new IP address.

How to Configure Dynamic DNS

- 1. Log in to the firewall at its default LAN address of *http://192.168.0.1* with its default user name of **admin**, default password of **password**, or using whatever password and LAN address you have chosen for the firewall.
- 2. From the Main Menu of the browser interface, under Advanced, click Dynamic DNS.
- Click the radio button for the dynamic DNS service you will use. Access the Web site of the dynamic DNS service providers whose, and register for an account. For example, for TZO.com, go to www.TZO.com.
- 4. Click Apply to save your configuration.
- 5. Click Status to see the login in progress.

Note: If your ISP assigns a private WAN IP address such as 192.168.x.x or 10.x.x.x, the dynamic DNS service will not work because private addresses will not be routed on the Internet.

Using Static Routes

Static Routes provide additional routing information to your firewall. Under normal circumstances, the firewall has adequate routing information after it has been configured for Internet access, and you do not need to configure additional static routes. You must configure static routes only for unusual cases such as multiple routers or multiple IP subnets located on your network.

Static Route Example

As an example of when a static route is needed, consider the following case:

- Your primary Internet access is through a cable modem to an ISP.
- You have an ISDN router on your home network for connecting to the company where you are employed. This router's address on your LAN is 192.168.0.100.
- Your company's network is 134.177.0.0.

When you first configured your firewall, two implicit static routes were created. A default route was created with your ISP as the gateway, and a second static route was created to your local network for all 192.168.0.x addresses. With this configuration, if you attempt to access a device on the 134.177.0.0 network, your firewall will forward your request to the ISP. The ISP forwards your request to the company where you are employed, and the request will likely be denied by the company's firewall.

In this case you must define a static route, telling your firewall that 134.177.0.0 should be accessed through the ISDN router at 192.168.0.100. The static route would look like Figure 5-3.

In this example:

- The Destination IP Address and IP Subnet Mask fields specify that this static route applies to all 134.177.x.x addresses.
- The Gateway IP Address fields specifies that all traffic for these addresses should be forwarded to the ISDN router at 192.168.0.100.
- A Metric value of 1 will work since the ISDN router is on the LAN. This represents the number of routers between your network and the destination. This is a direct connection so it is set to 1.
- Private is selected only as a precautionary security measure in case RIP is activated.

How to Configure Static Routes

- 1. Log in to the firewall at its default LAN address of *http://192.168.0.1* with its default user name of **admin**, default password of **password**, or using whatever password and LAN address you have chosen for the firewall.
- 2. From the Main Menu of the browser interface, under Advanced, click on Static Routes to view the Static Routes menu, shown in Figure 5-2.

-	0.22		- Doroth			
#	Name	Destination	Gateway	Metric	Active	Private

Figure 5-2: Static Routes Table

3. To add or edit a Static Route:

a. Click the Edit button to open the Edit Menu, shown below.

Route Name	isdn_router		
✓ Active	🗹 Private		
Destination IP Address	134 177	0	0
IP Subnet Mask	255 255	0	0
Gateway IP Address	192 168	0	100
Metric	1		

Figure 5-3: Static Route Entry and Edit Menu

- b. Type a route name for this static route in the Route Name box under the table. This is for identification purpose only.
- c. Select Active to make this route effective.
- d. Select Private if you want to limit access to the LAN only. The static route will not be reported in RIP.
- e. Type the Destination IP Address of the final destination.
- f. Type the IP Subnet Mask for this destination.If the destination is a single host, type 255.255.255.255.
- g. Type the Gateway IP Address, which must be a router on the same LAN segment as the firewall.
- h. Type a number between 1 and 15 as the Metric value.
 This represents the number of routers between your network and the destination. Usually, a setting of 2 or 3 works, but if this is a direct connection, set it to 1.
- 4. Click Apply to have the static route entered into the table.

Chapter 6 Protecting Your Network

This chapter describes how to use the basic firewall features of the FVS328 ProSafe VPN Firewall with Dial Back-up to protect your network.

Protecting Access to Your FVS328 Firewall

For security reasons, the firewall has its own user name and password. Also, after a period of inactivity for a set length of time, the administrator login will automatically disconnect. You can use the procedures below to change the firewall's password and the amount of time for the administrator's login timeout.

Note: The user name and password are not the same as any user name or password your may use to log in to your Internet connection.

NETGEAR recommends that you change this password to a more secure password. The ideal password should contain no dictionary words from any language, and should be a mixture of both upper and lower case letters, numbers, and symbols. Your password can be up to 30 characters.

How to Change the Built-In Password

- Log in to the firewall at its default LAN address of http://192.168.0.1 with its default User Name of admin, default password of password, or using whatever password and LAN address you have chosen for the firewall.
- 2. From the main menu of the browser interface, under the Maintenance heading, select Set Password to bring up the menu shown below.

Set Password	
Old Password	
Set Password	
Repeat New Password	

Figure 6-1: Set Password menu

- 3. To change the password, first enter the old password, then enter the new password twice.
- 4. Click Apply to save your changes.

Note: After changing the password, you will be required to log in again to continue the configuration. If you have backed up the firewall settings previously, you should do a new backup so that the saved settings file includes the new password.

How to Change the Administrator Login Timeout

For security, the administrator's login to the firewall configuration will time out after a period of inactivity. To change the login timeout period:

- 1. In the Set Password menu, type a number in 'Administrator login times out' field. The suggested default value is 5 minutes.
- 2. Click Apply to save your changes or click Cancel to keep the current period.

Configuring Basic Firewall Services

Basic firewall services you can configure include access blocking and scheduling of firewall security. These topics are presented below.

Using the Block Sites Menu to Screen Content

The FVS328 allows you to restrict access based on the following categories:

- Use of a proxy server
- Type of file (Java, ActiveX, Cookie)
- Web addresses
- Web address keywords

These options are discussed below.

The Keyword Blocking menu is shown here.

Turn Proxy filtering o	on
Turn Java filtering or	n
Turn ActiveX filtering	on
Turn Cookies filterin	ng on
Add Keyword	hese keywords or domain names
· · · · · · · · · · · · · · · · · · ·	hese keywords or domain name:

Figure 6-2: Block Sites menu

To enable filtering, click the checkbox next to the type of filtering you want to enable. The filtering choices are:

• Proxy: blocks use of a proxy server

- Java: blocks use of Java applets
- ActiveX: blocks use of ActiveX components (OCX files) used by IE on Windows
- Cookies: blocks all cookies

To enable keyword blocking, check "Turn keyword blocking on", then click Apply.

To add a keyword or domain, type it in the Keyword box, click Add Keyword, then click Apply.

To delete a keyword or domain, select it from the list, click Delete Keyword, then click Apply.

Keyword application examples:

- If the keyword "XXX" is specified, the URL <http://www.badstuff.com/xxx.html> is blocked, as is the newsgroup alt.pictures.XXX.
- If the keyword ".com" is specified, only Web sites with other domain suffixes (such as .edu or .gov) can be viewed.
- If you want to block all Internet browsing access, enter the keyword ".".

Up to 255 entries are supported in the Keyword list.

To specify a Trusted User, enter that computer's IP address in the Trusted User box and click Apply. You may specify one Trusted User, which is a computer that will be exempt from blocking and logging. Since the Trusted User will be identified by an IP address, you should configure that computer with a fixed or reserved IP address.

Services and Rules Regulate Inbound and Outbound Traffic

The FVS328 ProSafe VPN Firewall with Dial Back-up firewall lets you regulate what ports are available to the various TCP/IP protocols. Follow these two steps to configure inbound or outbound traffic:

- 1. Define a Service
- 2. Set up an Inbound or Outbound Rule that uses the Service

These steps are discussed below.

Defining a Service

Services are functions performed by server computers at the request of client computers. For example, Web servers serve Web pages, time servers serve time and date information, and game hosts serve data about other players' moves. When a computer on the Internet sends a request for service to a server computer, the requested service is identified by a service or port number. This number appears as the destination port number in the transmitted IP packets. For example, a packet that is sent with destination port number 80 is an HTTP (Web server) request.

The service numbers for many common protocols are defined by the Internet Engineering Task Force (IETF) and published in RFC1700, "Assigned Numbers." Service numbers for other applications are typically chosen from the range 1024 to 65535 by the authors of the application.

Although the FVS328 already holds a list of many service port numbers, you are not limited to these choices. Use the Services menu to add additional services and applications to the list for use in defining firewall rules. The Services menu shows a list of services that you have defined.

To define a new service, first you must determine which port number or range of numbers is used by the application. This information can usually be determined by contacting the publisher of the application or from user groups of newsgroups. When you have the port number information, go the Services menu and click on the Add Custom Service button. The Add Services menu will appear.

To add a service,

- 1. Enter a descriptive name for the service so that you will remember what it is.
- 2. Select whether the service uses TCP or UDP as its transport protocol. If you can't determine which is used, select both.
- 3. Enter the lowest port number used by the service.
- Enter the highest port number used by the service.
 If the service only uses a single port number, enter the same number in both fields.
- 5. Click Apply.

The new service will now appear in the Services menu, and in the Service name selection box in the Rules menu.

Using Inbound/Outbound Rules to Block or Allow Services

Firewall rules are used to block or allow specific traffic passing through from one side of the firewall to the other. Inbound rules (WAN to LAN) restrict access by outsiders to private resources, selectively allowing only specific outside users to access specific resources. Outbound rules (LAN to WAN) determine what outside resources local users can have access to.

A firewall has two default rules, one for inbound traffic and one for outbound. The default rules of the FVS328 are:

- Inbound: Block all access from outside except responses to requests from the LAN side.
- Outbound: Allow all access from the LAN side to the outside.

These default rules are shown in the Rules table of the Rules menu in Figure 6-3:

Rule	es							
Outbo	ound Ser	vices						
	#	Enable	Service Name	Actio	n	LAN Users	WAN Servers	Log
0	1	~	netmeeting	ALLOW al	ways	Any	Any	Never
	Default	Yes	Any	ALLOW alw	/ays 🔽	Any	Any	Never
Inbou	nd Servi	ces	Add	Edit Mo	ve C)elete		
	#	Enable	Service Name	Action	LAN Sen	ver IP addre	ss WAN Users	Log
0	1		IPSec	ALLOW always	192.	168.0.100	Any	Never
	Default	Yes	Any	BLOCK always			Any	Never
			Add	Edit Mo	ve C)elete		
V C V B	nable VP Irop fragr Iock TCP Iock UDF	nented II flood ? flood	hrough (IPSec, P packets d packets	PPTP, L2TP)				
			(Apply Ca	ancel			

Figure 6-3: Rules menu

You can define additional rules that will specify exceptions to the default rules. By adding custom rules, you can block or allow access based on the service or application, source or destination IP addresses, and time of day. You can also choose to log traffic that matches or does not match the rule you have defined.

To create a new rule, click the Add button.

To edit an existing rule, select its button on the left side of the table and click Edit.

To delete an existing rule, select its button on the left side of the table and click Delete.

To move an existing rule to a different position in the table, select its button on the left side of the table and click Move. At the script prompt, enter the number of the desired new position and click OK.

An example of the menu for defining or editing a rule is shown in Figure 6-4. The parameters are:

- Service. From this list, select the application or service to be allowed or blocked. The list already displays many common services, but you are not limited to these choices. Use the Services menu to add any additional services or applications that do not already appear.
- Action. Choose how you would like this type of traffic to be handled. You can block or allow always, or you can choose to block or allow according to the schedule you have defined in the Schedule menu.
- Source Address. Specify traffic originating on the LAN (outbound) or the WAN (inbound), and choose whether you would like the traffic to be restricted by source IP address. You can select Any, a Single address, or a Range. If you select a range of addresses, enter the range in the start and finish boxes. If you select a single address, enter it in the start box.
- Destination Address. The Destination Address will be assumed to be from the opposite (LAN or WAN) of the Source Address. As with the Source Address, you can select Any, a Single address, or a Range unless NAT is enabled and the destination is the LAN. In that case, you must enter a Single LAN address in the start box.
- Log. You can select whether the traffic will be logged. The choices are:
 - Never no log entries will be made for this service.
 - Match traffic of this type which matches the parameters and action will be logged.

Examples of Using Services and Rules to Regulate Traffic

Use the examples to see how you combine Services and Rules to regulate how the TCP/IP protocols are used on your firewall to enable either blocking or allowing specific Internet traffic on your firewall.

Inbound Rules (Port Forwarding)

Because the FVS328 uses Network Address Translation (NAT), your network presents only one IP address to the Internet, and outside users cannot directly address any of your local computers. However, by defining an inbound rule, also known as port forwarding, you can make a local server (for example, a Web server or game server) visible and available to the Internet. The rule tells the router to direct inbound traffic for a particular service to one local server based on the destination port number. This is also known as port forwarding.

Note: Some home broadband accounts do not allow you to run any server processes (such as a Web or FTP server). Your ISP may check for servers and suspend your account if it discovers active servers at your location. If you are unsure, refer to the Acceptable Use Policy of your ISP.

Follow these guidelines when setting up port forwarding inbound rules:

- If your external IP address is assigned dynamically by your ISP, the IP address may change periodically as the DHCP lease expires. Consider using the Dynamic DNS feature in the Advanced menus so that external users can always find your network.
- If the IP address of the local server computer is assigned by DHCP, it may change when the computer is rebooted. To avoid this, use the Reserved IP address feature in the LAN IP menu to keep the computer's IP address constant.
- Local computers must access the local server using the local LAN address of the computer. Attempts by local computers to access the server using the external WAN IP address will fail.

Remember that allowing inbound services opens holes in your FVS328 Firewall. Only enable those ports that are necessary for your network. Following are two application examples of inbound rules:

Example: Port Forwarding to a Local Public Web Server

If you host a public Web server on your local network, you can define a rule to allow inbound Web (HTTP) requests from any outside IP address to the IP address of your Web server any time of day.

Service	HTTP(TCP:8	80)		
Action A	LLOW always			
Send to LAN Server	192	. 168	.0	. 99
WAN Users		Any		
	start: 🛛	.0	.0	.0
	finish: 0	.0	.0	.0
Log			Nev	er

Figure 6-4: Rule example: A Local Public Web Server

This rule is shown in Figure 6-4.

Example: Port Forwarding for Videoconferencing

If you want to allow incoming videoconferencing to be initiated from a restricted range of outside IP addresses, such as from a branch office, you can create an inbound rule. In the example shown in Figure 6-5, CU-SeeMe is a predefined service and its connections are allowed only from a

specified range of external IP addresses. In this case, we have also specified logging of any incoming CU-SeeMe requests that do not match the allowed parameters.

Service	CU-SEEME(TCP/UDP:7648)
Action	ALLOW always
Send to LAN Server	192 . 168 . 0 . 11
WAN Users	Address Range
	start: 134 . 177 . 88 . 1
	finish: 134 . 177 . 88 . 254
Log	Not Match

Figure 6-5: Rule example: Videoconference from Restricted Addresses

Example: Port Forwarding for VPN Tunnels when NAT is Off

If you want to allow incoming VPN IPSec tunnels to be initiated from outside IP addresses anywhere on the Internet when NAT is off, first create a service and then an inbound rule.

Services	
Service Definiti	on
Name:	IPSec
Туре:	UDP 🖌
Start Port:	500
Finish Port:	500
Back	pply Cancel

Figure 6-6: Service example: port forwarding for VPN when NAT is Off

In the example shown in Figure 6-6, UDP port 500 connections are defined as the IPSec service.

Service	IPSec(UDP:50	10)	~
Action	ALLOW always		*
Send to LAN Se	erver	Any	*
WAN Users		Any	*
	start: 0	.0.0	0
	finish: 0	.0.0	0
Log		Never	~

Figure 6-7: Inbound rule example: VPN IPSec when NAT is off

In the example shown in Figure 6-7, VPN IPSec connections are allowed any internal LAN IP address.

Outbound Rules (Service Blocking or Port Filtering)

The FVS328 allows you to block the use of certain Internet services by computers on your network. This is called service blocking or port filtering. You can define an outbound rule to block Internet access from a local computer based on:

- IP address of the local computer (source address)
- IP address of the Internet site being contacted (destination address)
- Time of day
- Type of service being requested (service port number)

Outbound Rule Example: Blocking Instant Messaging

If you want to block Instant Messenger usage by employees during working hours, you can create an outbound rule to block that application from any internal IP address to any external address according to the schedule that you have created in the Schedule menu. You can also have the router log any attempt to use Instant Messenger during that blocked period.

Service	AIM(TCP:51	90)			¥
Action	BLOCK by sched	ule,othe	erwise a	allow	•
LAN users		Any	/		¥
	start: 0	. 0	. 0	.0	
	finish: 0	.0	.0	.0	j
WAN Users		Any	1		•
	start: 🛛	.0	.0	. 0	
	finish: 0	.0	.0	.0	
Log			Mato	:h	•

Figure 6-8: Rule example: Blocking Instant Messenger

Other Rules Considerations

The order of precedence of rules is determined by the position of the rule on a list of many rules. Also, there are optional Rules settings you can configure. These topics are presented here.

Order of Precedence for Rules

As you define new rules, they are added to the tables in the Rules menu. For any traffic attempting to pass through the firewall, the packet information is subjected to the rules in the order of the entries in the Rules Table, beginning at the top and proceeding to the default rules at the bottom. In some cases, the order of precedence of two or more rules may be important in determining the disposition of a packet. The Move button allows you to relocate a defined rule to a new position in the table.

Rules Menu Options

Options	
🗹 Enable VPN Passthrough (IPSec, PPTP, L2TP)	
🗹 Drop fragmented IP packets	
Block TCP flood	
Block UDP flood	
Block non-standard packets	

Use the Options checkboxes to enable the following:

• Enable VPN Passthrough (IPSec, PPTP, L2TP)

If LAN users need to use VPN (Virtual Private Networking) software on their computer, and connect to remote sites or servers, enable this checkbox. This will allow the VPN protocols (IPSec, PPTP, L2TP) to be used. If this checkbox is not checked, these protocols are blocked.

• Drop fragmented IP packets

If checked, all fragmented IP packets will be dropped (discarded). Normally, this should NOT be checked.

• Block TCP flood

If checked, when a TCP flood attack is detected, the port used will be closed, and no traffic will be able to use that port.

• Block UDP flood

If checked, when a UDP flood attack is detected, all traffic from that IP address will be blocked.

• Block non-standard packets

If checked, only known packet types will be accepted; other packets will be blocked. The known packet types are TCP, UDP, ICMP, ESP, and GRE. Note that these are packet types, not protocols.

Setting Times and Scheduling Firewall Services

The FVS328 Firewall uses the Network Time Protocol (NTP) to obtain the current time and date from one of several Network Time Servers on the Internet. In order to localize the time for your log entries, you must select your Time Zone from the list.

How to Set Your Time Zone

In order to localize the time for your log entries, you must specify your Time Zone:

- Log in to the firewall at its default LAN address of http://192.168.0.1 with its default User Name of admin, default password of password, or using whatever password and LAN address you have chosen for the firewall.
- 2. Click Schedule on the Security menu to display menu shown below.

Schedule
Use this schedule for rules
ays:
Every Day
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
ime of day: (use 24-hour clock)
All Day
tart Time 0 hour 0 minute
nd Time 0 hour 0 minute
ime Zone
(GMT-08:00) Pacific Time (US Canada) 🛛 🛛 😽
Adjust for daylight savings time
Use this NTP Server 0.0.0.0
Current time: Tues, 2003-08-26 13:04:12
Apply Cancel

Figure 6-9: Schedule Services menu

3. Select your Time Zone. Use this setting for the blocking schedule according to your local time zone and for time-stamping log entries. At power-up, the clock is set to Saturday 01/01/2001 00:00:00.

Check the Daylight Savings Time box if your time zone is currently in daylight savings time.
Note: If your region uses Daylight Savings Time, you must manually check Adjust for Daylight Savings Time on the first day of Daylight Savings Time, and uncheck it at the end. Enabling Daylight Savings Time will cause one hour to be added to the standard time.

- 4. Choose your NTP server. The firewall uses Netgear NTP servers by default. If you would prefer to use a particular NTP server as the primary server, enter its IP address under Use this NTP Server. The fixed NTP query interval is 2 hours.
- 5. Click **Apply** to save your settings.

How to Schedule Firewall Services

If you enabled services blocking in the Block Services menu or Port forwarding in the Ports menu, you can set up a schedule for when blocking occurs or when access isn't restricted.

- Log in to the firewall at its default LAN address of http://192.168.0.1 with its default User Name of admin, default password of password, or using whatever Password and LAN address you have chosen for the firewall.
- 2. Click **Schedule** on the Security menu to display the **Schedule** Services menu.
- 3. To block Internet services based on a schedule, select Every Day or select one or more days. If you want to limit access completely for the selected days, select All Day. Otherwise, to limit access during certain times for the selected days, enter Start Blocking and End Blocking times.

Note: Enter the values as 24-hour time. For example, 10:30 am would be 10 hours and 30 minutes and 10:30 pm would be 22 hours and 30 minutes.

4. Click **Apply** to save your changes.

Chapter 7 Virtual Private Networking

This chapter describes how to use the virtual private networking (VPN) features of the FVS328 Firewall. VPN tunnels provide secure, encrypted communications between your local network and a remote network or computer.

Overview of FVS328 Policy-Based VPN Configuration

The FVS328 uses state-of-the-art firewall and security technology to facilitate controlled and actively monitored VPN connectivity. Since the FVS328 strictly conforms to Internet Engineering Task Force (IETF) standards, it is interoperable with devices from major network equipment vendors.

Figure 7-1: Secure access through FVS328 VPN routers

Using Policies to Manage VPN Traffic

You create policy definitions to manage VPN traffic on the FVS328. There are two kinds of policies:

- **IKE Policies**: Define the authentication scheme and automatically generate the encryption keys. As an alternative option, to further automate the process, you can create an Internet Key Exchange (IKE) policy which uses a trusted certificate authority to provide the authentication while the IKE policy still handles the encryption.
- **VPN Policies**: Apply the IKE policy to specific traffic which requires a VPN tunnel. Or, you can create a VPN policy which does not use an IKE policy but in which you manually enter all the authentication and key parameters.

Since the VPN Auto policies require IKE policies, you must define the IKE policy first. The FVS328 also allows you to manually input the authentication scheme and encryption key values. VPN Manual policies manage the keys according to settings you select and do not use IKE policies.

In order to establish secure communication over the Internet with the remote site you need to configure matching VPN parameters on both the local and remote sites. The outbound VPN parameters on one end must match to the inbound VPN parameters on other end, and vice versa.

When the network traffic enters into the FVS328 from the LAN network interface, if there is no VPN policy found for a type of network traffic, then that traffic passes through without any change. However, if the traffic is selected by a VPN policy, then the Internet Protocol security IPSec authentication and encryption rules will be applied to it as defined in the VPN policy.

By default, a new VPN policy is added with the least priority, that is, at the end of the VPN policy table. You can change the priority by selecting the VPN policy from the policy table and clicking Move.

Using Automatic Key Management

The most common configuration scenarios will use IKE policies to automatically manage the authentication and encryption keys. Based on the IKE policy, some parameters for the VPN tunnel are generated automatically. The IKE protocols perform negotiations between the two VPN endpoints to automatically generate required parameters.

Some organizations will use an IKE policy with a Certificate Authority (CA) to perform authentication. Typically, CA authentication is used in large organizations which maintain their own internal CA server. This requires that each VPN gateway have a certificate and trust certificate root from the CA. Using CAs reduces the amount of data entry required on each VPN endpoint.

IKE Policies' Automatic Key and Authentication Management

Click the IKE Policies link from the VPN section of the main menu, and then click the Add button of the IKE Policies screen to display the IKE Policy Configuration menu shown in Figure 7-2.

Policy Table # Name Mode Local ID Rem	IKE Policy Configur	ation
Add Edit Move	General Policy Name Direction/Type Exchange Mode	Initiator
	Local Local Identity Type Local Identity Data	WAN IP Address
	Remote Remote Identity Type Remote Identity Data	Remote WAN IP
	IKE SA Parameters Encryption Algorithm Authentication Algorithm Authentication Method	3DES V MD5 V O Pre-shared Key
	Diffie-Hellman (DH) Group SA Life Time	RSA Signature (requires Certificate) Group 1 (768 Bit) 180 (secs)

Figure 7-2: IKE - Policy Configuration Menu

The IKE Policy Configuration fields are defined in the following table.

Field	Description
General	These settings identify this policy and determine its major characteristics.
Policy Name	The descriptive name of the IKE policy. Each policy should have a unique policy name. This name is not supplied to the remote VPN endpoint. It is only used to help you identify IKE policies.
Direction/Type	 This setting is used when determining if the IKE policy matches the current traffic. The drop-down menu includes the following: Initiator – Outgoing connections are allowed, but incoming are blocked. Responder – Incoming connections are allowed, but outgoing are blocked. Both Directions – Both outgoing and incoming connections are allowed. Remote Access – This is to allow only incoming client connections, where the IP address of the remote client is unknown.
	If Remote Access is selected, the "Exchange Mode" MUST be "Aggressive," and the 'Identities' below (both Local and Remote) MUST be "Name." On the matching VPN Policy, the IP address of the remote VPN endpoint should be set to 0.0.0.0.
Exchange Mode	 Main Mode or Aggressive Mode. This setting must match the setting used on the remote VPN endpoint. Main Mode is slower but more secure. Aggressive Mode is faster but less secure.
Local	These parameters apply to the Local FVS328 firewall.
Local Identity Type	 Use this field to identify the local FVS328. You can choose one of the following four options from the drop-down list: By its Internet (WAN) port IP address. By its Fully Qualified Domain Name (FQDN) – your domain name. By a Fully Qualified User Name – your name, E-mail address, or other ID. By DER ASN.1 DN – the binary Distinguished Encoding Rules (DER) encoding of your ASN.1 X.500 Distinguished Name.
Local Identity Data	This field lets you identify the local FVS328 by name.
Remote	These parameters apply to the target remote FVS328 firewall, VPN gateway, or VPN client.

 Table 7-1.
 IKE Policy Configuration Fields

Field	Description
Remote Identity Type	 Use this field to identify the remote FVS328. You can choose one of the following four options from the drop-down list: By its Internet (WAN) port IP address. By its Fully Qualified Domain Name (FQDN) – your domain name. By a Fully Qualified User Name – your name, E-mail address, or other ID. By DER ASN.1 DN – the binary DER encoding of your ASN.1 X.500 Distinguished Name.
Remote Identity Data	This field lets you identify the target remote FVS328 by name.
IKE SA Parameters	These parameters determine the properties of the IKE Security Association.
Encryption Algorithm	Choose the encryption algorithm for this IKE policy: • DES • 3DES is more secure and is the default
Authentication Algorithm	If you enable Authentication Headers (AH), this menu lets you select from these authentication algorithms: • MD5 — the default • SHA-1 – more secure
Authentication Method	You can select Pre-Shared Key or RSA Signature.
Pre-Shared Key	Specify the key according to the requirements of the Authentication Algorithm you selected.For MD5, the key length should be 16 bytes.For SHA-1, the key length should be 20 bytes.
RSA Signature	RSA Signature requires a certificate.
Diffie-Hellman (DH) Group	The Diffie-Hellman groups are MODP Oakley Groups 1 and 2. The DH Group setting determines the size of the key used in the key exchange. This must match the value used on the remote VPN gateway or client. Select Group 1 (768 bit) or Group 2 (1024 bit).
SA Life Time	The amount of time in seconds before the Security Association expires; over an hour (3600) is common.

Table 7-1. IKE Policy Configuration Fields

VPN Policy Configuration for Auto Key Negotiation

An already defined IKE policy is required for VPN - Auto Policy configuration. From the VPN Policies section of the main menu, you can navigate to the VPN - Auto Policy configuration menu.

VPN Policies		
Policy Table # Enable Type Local Remove	ote AH ESP	
Edit Move Delete Apply Cancel Add Auto Policy Add Manual	VPN - Auto Policy General Policy Name IKE policy Remote VPN Endpoint SA Life Time	FVS318 Address Type: IP Address Address Data: 300 (Seconds) 0 (Kybtes) PFS Key Group: Group 1 (768 Bit)
	Traffic Selector Local IP Remote IP	- Select-
	ESP Configuration Enable Encryption Enable Authenticatio NETBIOS Enable	In Authentication Algorithm: MD5 Encryption Algorithm: DES In Authentication Algorithm: MD5 Back Apply Cancel

Figure 7-3: VPN - Auto Policy Menu

The VPN Auto Policy fields are defined in the following table.

Field	Description
General	These settings identify this policy and determine its major characteristics.
Policy Name	The descriptive name of the VPN policy. Each policy should have a unique policy name. This name is not supplied to the remote VPN endpoint. It is only used to help you identify VPN policies.
IKE Policy	The existing IKE policies are presented in a drop-down list. Note: Create the IKE policy BEFORE creating a VPN - Auto policy.
Remote VPN Endpoint	The address used to locate the remote VPN firewall or client to which you want to connect. The remote VPN endpoint must have this FVS328's Local Identity Data entered as its "Remote VPN Endpoint": • By its IP Address. • By its Fully Qualified Domain Name (FQDN) – your domain name.
SA Life Time	 The duration of the Security Association before it expires. Seconds - the amount of time before the SA expires. Over an hour is common (3600). Kbytes - the amount of traffic before the SA expires. One of these can be set without setting the other.
IPSec PFS	If enabled, security is enhanced by ensuring that the key is changed at regular intervals. Also, even if one key is broken, subsequent keys are no easier to break. Each key has no relationship to the previous key.
PFS Key Group	If PFS is enabled, this setting determines the DH group bit size used in the key exchange. This must match the value used on the remote gateway. Select Group 1 (768 bit) or Group 2 (1024 bit).
Traffic Selector	These settings determine if and when a VPN tunnel will be established. If network traffic meets <i>all</i> criteria, then a VPN tunnel will be created.

 Table 7-1.
 VPN Auto Policy Configuration Fields

Field	Description
Local IP	 The drop-down menu allows you to configure the source IP address of the outbound network traffic for which this VPN policy will provide security. Usually, this address will be from your network address space. The choices are: ANY for all valid IP addresses in the Internet address space Note: Choosing ANY sends <i>all</i> traffic through the tunnel, which will eliminate activities such as Web access. Single IP Addresse Range of IP Addresses Subnet Address
Remote IP	 The drop-down menu allows you to configure the destination IP address of the outbound network traffic for which this VPN policy will provide security. Usually, this address will be from the remote site's corporate network address space. The choices are: ANY for all valid IP addresses in the Internet address space Note: Choosing ANY sends <i>all</i> traffic to the WAN through the tunnel, preventing for example, remote management or response to ping. Single IP Addresses Range of IP Addresses Subnet Address
Authenticating Header (AH) Configuration	AH specifies the authentication protocol for the VPN header. These settings must match the remote VPN endpoint.
Enable Authentication	Use this check box to enable or disable AH for this VPN policy.
Authentication Algorithm	If you enable AH, then select the authentication algorithm: MD5 – the default, or SHA1 - more secure
Encapsulated Security Payload (ESP) Configuration	ESP provides security for the payload (data) sent through the VPN tunnel. Generally, you will want to enable both Encryption and Authentication. Two ESP modes are available: Plain ESP encryption or ESP encryption with authentication These settings must match the remote VPN endpoint.
Enable Encryption	Use this check box to enable or disable ESP Encryption.
Encryption Algorithm	If you enable ESP encryption, then select the encryption algorithm: DES – the default, or 3DES - more secure
Enable Authentication	Use this check box to enable or disable ESP transform for this VPN policy.

Field	Description
Authentication Algorithm	If you enable AH, then use this menu to select which authentication algorithm will be employed. The choices are: MD5 – the default, or SHA1 – more secure
NetBIOS Enable	Check this if you want NetBIOS traffic to be forwarded over the VPN tunnel. The NetBIOS protocol is used by Microsoft Networking for such features as Network Neighborhood.

Table 7-1.VPN Auto Policy Configuration Fields

VPN Policy Configuration for Manual Key Exchange

With Manual Key Management, you will not use an IKE policy. You must manually type in all the required key information. Click the VPN Policies link from the VPN section of the main menu to display the menu shown below.

olicy Table							
#	Enable	Name	Туре	Local	Remote	AH	ESP
		A	ply	Cancel)		

General	
Policy Name	
Remote VPN Endpoint	Address Type: IP Address 💙
	Address Data:
Traffic Selector	
Local IP	-Select-
	Start IP address: 0 . 0 . 0 . 0
	Finish IP address: 0 . 0 . 0 . 0
	Subnet Mask: 0.0.0.0
Remote IP	-Select-
	Start IP address: 0 .0 .0 .0
	Finish IP address: 0 . 0 . 0 . 0
	Subnet Mask: 0 . 0 . 0 . 0
AH Configuration	
SPI - Incoming	(Hex, 3 - 8 Characters)
SPI - Outgoing	(Hex, 3 - 8 Characters)
Enable Authentication	Authentication Algorithm: MD5 🛛 💌
	Key-In:
	Key-Out
	(MD5 - 16 chars; SHA-1 - 20 chars)
ESP Configuration	
SPI - Incoming	(Hex, 3 - 8 Characters)
SPI - Outgoing	(Hex, 3 - 8 Characters)
Enable Encryption	Encryption Algorithm: DES 💌
	Key-In:
	Key - Out:
	(DES - 8 chars; 3DES - 24 chars)
Enable Authentication	Authentication Algorithm: MD5 💌
	Key-In:
	Key - Out: (MD5 - 16 chars; SHA-1 - 20 chars)
NETBIOS Enable	
Ba	ck Apply Cancel

Figure 7-4: VPN - Manual Policy Menu

The VPN Manual Policy fields are defined in the following table.

Field	Description
General	These settings identify this policy and determine its major characteristics.
Policy Name	The name of the VPN policy. Each policy should have a unique policy name. This name is not supplied to the remote VPN Endpoint. It is used to help you identify VPN policies.
Remote VPN Endpoint	The WAN Internet IP address or Fully Qualified Domain Name of the remote VPN firewall or client to which you want to connect. The remote VPN endpoint must have this FVS328's WAN Internet IP address entered as its "Remote VPN Endpoint."
Traffic Selector	These settings determine if and when a VPN tunnel will be established. If network traffic meets <i>all</i> criteria, then a VPN tunnel will be created.
Local IP	 The drop-down menu allows you to configure the source IP address of the outbound network traffic for which this VPN policy will provide security. Usually, this address will be from your network address space. The choices are: ANY for all valid IP addresses in the Internet address space Note: Choosing ANY sends <i>all</i> traffic through the tunnel, which will eliminate activities such as Web access. Single IP Address Range of IP Addresses Subnet Address
Remote IP	 The drop-down menu allows you to configure the destination IP address of the outbound network traffic for which this VPN policy will provide security. Usually, this address will be from the remote site's corporate network address space. The choices are: ANY for all valid IP addresses in the Internet address space Note: Choosing ANY sends <i>all</i> traffic to the WAN through the tunnel, preventing for example, remote management or response to ping. Single IP Address Range of IP Addresses Subnet Address

Table 7-1.VPN Manual Policy Configuration Fields

Field	Description
Authenticating Header (AH) Configuration	AH specifies the authentication protocol for the VPN header. These settings must match the remote VPN endpoint. Note: The Incoming settings must match the Outgoing settings on the remote
	VPN endpoint, and the Outgoing settings must match the Incoming settings on the remote VPN endpoint.
SPI - Incoming	Enter a Hex value (3 - 8 chars). Any value is acceptable, provided the remote VPN endpoint has the same value in its "Outgoing SPI" field.
SPI - Outgoing	Enter a Hex value (3 - 8 chars). Any value is acceptable, provided the remote VPN endpoint has the same value in its "Incoming SPI" field.
Enable Authentication	Use this check box to enable or disable AH. Authentication is often not used, so you can leave the check box unselected.
Authentication Algorithm	 If you enable AH, then select the authentication algorithm: MD5 – the default SHA1 – more secure Enter the keys in the fields provided. For MD5, the keys should be 16 characters. For SHA-1, the keys should be 20 characters.
Key - In	 Enter the keys. For MD5, the keys should be 16 characters. For SHA-1, the keys should be 20 characters. Any value is acceptable, provided the remote VPN endpoint has the same value in its Authentication Algorithm "Key - Out" field.
Key - Out	 Enter the keys in the fields provided. For MD5, the keys should be 16 characters. For SHA-1, the keys should be 20 characters. Any value is acceptable, provided the remote VPN endpoint has the same value in its Authentication Algorithm "Key - In" field.
Encapsulated Security Payload (ESP) Configuration	 ESP provides security for the payload (data) sent through the VPN tunnel. Generally, you will want to enable both encryption and authentication. when you use ESP. Two ESP modes are available: Plain ESP encryption ESP encryption with authentication These settings must match the remote VPN endpoint.
SPI - Incoming	Enter a Hex value (3 - 8 chars). Any value is acceptable, provided the remote VPN endpoint has the same value in its "Outgoing SPI" field.

Table 7-1. VPN Manual Policy Configuration Fields

Field	Description
SPI - Outgoing	Enter a Hex value (3 - 8 chars). Any value is acceptable, provided the remote VPN endpoint has the same value in its "Incoming SPI" field.
Enable Encryption	Use this check box to enable or disable ESP Encryption.
Encryption Algorithm	If you enable ESP Encryption, then select the Encryption Algorithm: • DES - the default • 3DES -more secure
Key - In	 Enter the key in the fields provided. For DES, the key should be 8 characters. For 3DES, the key should be 24 characters. Any value is acceptable, provided the remote VPN endpoint has the same value in its Encryption Algorithm "Key - Out" field.
Key - Out	 Enter the key in the fields provided. For DES, the key should be 8 characters. For 3DES, the key should be 24 characters. Any value is acceptable, provided the remote VPN endpoint has the same value in its Encryption Algorithm "Key - In" field.
Enable Authentication	Use this check box to enable or disable ESP authentication for this VPN policy.
Authentication Algorithm	If you enable authentication, then use this menu to select the algorithm: • MD5 – the default • SHA1 – more secure
Key - In	 Enter the key. For MD5, the key should be 16 characters. For SHA-1, the key should be 20 characters. Any value is acceptable, provided the remote VPN endpoint has the same value in its Authentication Algorithm "Key - Out" field.
Key - Out	 Enter the key in the fields provided. For MD5, the key should be 16 characters. For SHA-1, the key should be 20 characters. Any value is acceptable, provided the remote VPN endpoint has the same value in its Authentication Algorithm "Key - In" field.
NetBIOS Enable	Check this if you want NetBIOS traffic to be forwarded over the VPN tunnel. The NetBIOS protocol is used by Microsoft Networking for such features as Network Neighborhood.

Using Digital Certificates for IKE Auto-Policy Authentication

Digital certificates are character strings generated using encryption and authentication schemes which cannot be duplicated by anyone without access to the different values used in the production of the string. They are issued by Certification Authorities (CAs) to authenticate a person or a workstation uniquely. The CAs are authorized to issue these certificates by Policy Certification Authorities (PCAs), who are in turn certified by the Internet Policy Registration Authority (IPRA). The FVS328 is able to use certificates to authenticate users at the endpoints during the IKE key exchange process.

The certificates can be obtained from a certificate server an organization might maintain internally or from the established public CAs. The certificates are produced by providing the particulars of the user being identified to the CA. The information provided may include the user's name, e-mail ID, domain name, etc.

A CA is part of a trust chain. A CA has a public key which is signed. The combination of the signed public key and the private key enables the CA process to eliminate 'man in the middle' security threats. A 'self' certificate has your public key and the name of your CA, and relies on the CA's certificate to authenticate. Each CA has its own certificate. The certificates of a CA are added to the FVS328 and can then be used to form IKE policies for the user. Once a CA certificate is added to the FVS328 and a certificate is created for a user, the corresponding IKE policy is added to the FVS328. Whenever the user tries to send traffic through the FVS328, the certificates are used in place of pre-shared keys during initial key exchange as the authentication and key generation mechanism. Once the keys are established and the tunnel is set up the connection proceeds according to the VPN policy.

Certificate Revocation List (CRL)

Each Certification Authority (CA) maintains a list of the revoked certificates. The list of these revoked certificates is known as the Certificate Revocation List (CRL).

Whenever an IKE policy receives the certificate from a peer, it checks for this certificate in the CRL on the FVS328 obtained from the corresponding CA. If the certificate is not present in the CRL it means that the certificate is not revoked. IKE can then use this certificate for authentication. If the certificate is present in the CRL it means that the certificate is revoked, and the IKE will not authenticate the client.

You must manually update the FVS328 CRL regularly in order for the CA-based authentication process to remain valid.

How to Use the VPN Wizard to Configure a VPN Tunnel

Note: If you have turned NAT off, before configuring VPN IPSec tunnels you must first open UDP port 500 for inbound traffic as explained in "Example: Port Forwarding for VPN Tunnels when NAT is Off" on page 6-10.

Follow this procedure to configure a VPN tunnel using the VPN Wizard.

Note: The LAN IP address ranges of each VPN endpoint must be different. The connection will fail if both are using the NETGEAR default address range of 192.168.0.x.

1. Log in to the FVS318 on LAN A at its default LAN address of *http://192.168.0.1* with its default user name of **admin** and password of **password**. Click the VPN Wizard link in the main menu to display this screen. Click **Next** to proceed.

VPN Wizard
The Wizard sets most parameters to defaults as proposed by the VPN Consortium(VPNC), and assumes a pre-shared key, greatly simplifies setup.
After creating the policies through VPN Wizard, you can always update the parameters through "VPN Settings" link on the left menu.
Next

Figure 7-5: VPN Wizard Start Screen

2. Fill in the Connection Name, pre-shared key, and select the type of target end point, and click **Next** to proceed.

VPN Wizard	
Step 1 of 3: Connection Name and Re	emote IP Type
What is the new Connection Name?	
What is the pre-shared key?	
This VPN tunnel will connect to.	A remote VPN Gateway
	A remote VPN client
	Back Next Cancel

Figure 7-6: Connection Name and Remote IP Type

3. Fill in the IP Address or FQDN for the target VPN endpoint WAN connection and click Next.

VPN Wizard	
Step 2 of 3: Remote IP and Pre-	shared Key
What is the remote WAN static IF address or Internet name?	
	Back Next Cancel

Figure 7-7: Remote IP

4. Identify the IP addresses at the target endpoint which can use this tunnel, and click Next.

VPN Wizard				
Step 3 of 3: Secure Co	onnection	Remote	Accessi	bility
What is the remote LA	N IP subr	net?		
IP Address:	. 0	. 0	. 0	
Subnet Mask: [. 0	. 0	. 0	
		0.000		
	(Back	Next	Cancel

Figure 7-8: Secure Connection Remote Accessibility

The Summary screen below displays.

Please verify your inputs:	
Connection Name:	test
Remote VPN Endpoint:	10.10.10.10
Remote Client Access:	By Subnet
Remote IP:	192.168.100.0/255.255.255.0
Local WAN ID:	Either static IP or FQDN
Local Client Access:	By Subnet
Local IP:	192.168.0.0 / 255.255.255.0
You can click here to view the	VPNC-recommended parameters.

Figure 7-9: VPN Wizard Summary

To view the VPNC recommended authentication and encryption Phase 1 and Phase 2 settings the VPN Wizard used, click the "**here**" link.

5. Click **Done** to complete the configuration procedure. The VPN Settings menu displays showing that the new tunnel is enabled

To view or modify the tunnel settings, select the radio button next to the tunnel entry and click Edit.

Walk-Through of Configuration Scenarios

There are a variety of configurations you might implement with the FVS328. The scenarios listed below illustrate typical configurations you might use in your organization.

In order to help make it easier to set up an IPsec system, the following two scenarios are provided. These scenarios were developed by the VPN Consortium (*http://www.vpnc.org*). The goal is to make it easier to get the systems from different vendors to interoperate. NETGEAR is providing you with both of these scenarios in the following two formats:

- VPN Consortium Scenarios without any product implementation details
- VPN Consortium Scenarios based on the FVS328 user interface

The purpose of providing these two versions of the same scenarios is to help you determine where the two vendors use different vocabulary. Seeing the examples presented in these different ways will reveal how systems from different vendors do the same thing. See Appendix E, "Virtual Private Networking" for a full discussion of VPN and the configuration templates NETGEAR developed for publishing multi-vendor VPN integration configuration case studies.

Note: See Appendix F, "NETGEAR VPN Configuration FVS318 or FVM318 to FVS328 for a detailed procedure for configuring VPN communications between a NETGEAR FVS318 and a FVS328. NETGEAR publishes additional interoperability scenarios with various gateway and client software products. Look on the NETGEAR Web site at *www.netgear.com/support/main.asp* for more details.

VPNC Scenario 1: Gateway-to-Gateway with Preshared Secrets

The following is a typical gateway-to-gateway VPN that uses a preshared secret for authentication.

Figure 7-10: VPN Consortium Scenario 1

Gateway A connects the internal LAN 10.5.6.0/24 to the Internet. Gateway A's LAN interface has the address 10.5.6.1, and its WAN (Internet) interface has the address 14.15.16.17.

Gateway B connects the internal LAN 172.23.9.0/24 to the Internet. Gateway B's WAN (Internet) interface has the address 22.23.24.25. Gateway B's LAN interface address, 172.23.9.1, can be used for testing IPsec but is not needed for configuring Gateway A.

Note: The /24 after the IP address refers to the full range of IP addresses. For example, 10.5.6.0/24 refers to IP address 10.5.6.0 with the netmask 255.255.255.0.

The IKE Phase 1 parameters used in Scenario 1 are:

- Main mode
- TripleDES
- SHA-1
- MODP group 2 (1024 bits)
- pre-shared secret of "hr5xb84l6aa9r6"
- SA lifetime of 28800 seconds (eight hours) with no kbytes rekeying

The IKE Phase 2 parameters used in Scenario 1 are:

- TripleDES
- SHA-1
- ESP tunnel mode
- MODP group 2 (1024 bits)
- Perfect forward secrecy for rekeying
- SA lifetime of 3600 seconds (one hour) with no kbytes rekeying
- Selectors for all IP protocols, all ports, between 10.5.6.0/24 and 172.23.9.0/24, using IPv4 subnets

FVS328 Scenario 1: How to Configure the IKE and VPN Policies

Note: This scenario assumes all ports are open on the FVS328. You can verify this by reviewing the security settings as seen in the "Using Inbound/Outbound Rules to Block or Allow Services" on page 6-6.

Use this scenario illustration and configuration screens as a model to build your configuration.

Figure 7-11: LAN to LAN VPN access from an FVS328 to an FVS328

1. Log in to the FVS328 labeled Gateway A as in the illustration.

Log in to the firewall at its default LAN address of *http://192.168.0.1* with its default user name of **admin** and default password of **password**, or using whatever Password and LAN address you have chosen for the firewall.

2. Configure the WAN (Internet) and LAN IP addresses of the FVS328.

a. From the main menu Setup section, click the Basic Settings link.

NAT (Network Address Translation)		
	Enable O Disable	
Internet IP Address	WAN IP	
 Get Dynamically From ISP 	addresses	
O Use Static IP Address		
IP Address	ISP provides	
IP Subnet Mask	these address	
Gateway IP Address		,e9
Domain Name Server (DNS) Address		
 Get Automatically From ISP 		
O Use These DNS Servers		
Primary DNS		
Secondary DNS		

Figure 7-12: FVS328 Internet IP Address menu

- b. Select whether enable or disable NAT (Network Address Translation). NAT allows all LAN computers to gain Internet access via this Router, by sharing this Router's WAN IP address. In most situations, NAT is essential for Internet access via this Router. You should only disable NAT if you are sure you do not require it. When NAT is disabled, only standard routing is performed by this Router.
- c. Configure the WAN Internet Address according to the settings in Figure 7-11 above and click Apply to save your settings. For more information on configuring the WAN IP settings in the Basic Setup topics, please see "Manually Configuring Your Internet Connection" on page 3-14.
- d. From the main menu Advanced section, click the LAN IP Setup link.

LAN IP Setup				
LAN TCP/IP Setup				
IP Address	10	. 5	. 6	. 1
IP Subnet Mask	255	. 255	. 255	. 0
RIP Direction			No	ne 🔽
RIP Version			Disa	abled 🔽
✓ Use router as DHCP serve Starting IP Address Ending IP Address	10	. 5 . 5	. 6	. 2
Reserved IP Table				
# IP Address Ma	ac Address	1	Device	Name
Add Ed	lit Delete			
Apply	Cancel	1		

e. Configure the LAN IP address according to the settings in Figure 7-11 above and click Apply to save your settings. For more information on LAN TCP/IP setup topics, please see "How to Configure LAN TCP/IP Setup Settings" on page 5-3.

Note: After you click Apply to change the LAN IP address settings, your workstation will be disconnected from the FVS328. You will have to log on with *http://10.5.6.1* which is now the address you use to connect to the built-in Web-based configuration manager of the FVS328.

- 3. Set up the IKE Policy illustrated below on the FVS328.
 - a. From the main menu VPN section, click the IKE Policies link, and then click the Add button to display the screen below.

General			
Policy Name	Scenario_1		
Direction/Type	Both Directions 💌		
Exchange Mode	Main Mode 🛛 👻		
Local			
Local Identity	Local IP address		
	O Name:		
Remote			
Remote Identity	Remote IP address		
	O Name:		
IKE SA Parameters			
Encryption Algorithm	3DES 💙		
Authentication Algorithm	SHA-1 💌		
Authentication Method	 Pre-shared Key 		
Welliou	hr5xb8416aa9r6		
	🔘 RSA Signature		
Diffie-Hellman (DH) Group	Group 2 (1024 Bit) 💌		
SA Life Time	28800 (secs)		

Figure 7-13: Scenario 1 IKE Policy

b. Configure the IKE Policy according to the settings in the illustration above and click Apply to save your settings. For more information on IKE Policy topics, please see "IKE Policies' Automatic Key and Authentication Management" on page 7-3.

- 4. Set up the FVS328 VPN -Auto Policy illustrated below.
 - a. From the main menu VPN section, click the VPN Policies link, and then click the Add Auto Policy button.

VPN - Auto Policy					
General					
Policy Name					
IKE policy	FVS318 💌				
Remote VPN Endpoint	Address Type: IP Address 👻				
	Address Data:				
SA Life Time	300 (Seconds) 0 (Kybtes)				
IPSec PFS	PFS Key Group: Group 1 (768 Bit)				
Traffic Selector					
Local IP	-Select-				
	Start IP address: 0 .0 .0 .0				
	Finish IP address: 0 . 0 . 0 . 0				
	Subnet Mask: 0 .0 .0 .0				
Remote IP	-Select-				
	Start IP address: 0 . 0 . 0 . 0				
	Finish IP address: 0 . 0 . 0 . 0				
	Subnet Mask: 0.0.0.0				
AH Configuration	n Authentication Algorithm: MD5 🔽				
ESP Configuration					
Enable Encryption	Encryption Algorithm: DES 💌				
Enable Authentication	ⁿ Authentication Algorithm: MD5 🛛 👻				
NETBIOS Enable					
В	ack Apply Cancel				

Figure 7-14: Scenario 1 VPN - Auto Policy

b. Configure the IKE Policy according to the settings in the illustration above and click Apply to save your settings. For more information on IKE Policy topics, please see "IKE Policies' Automatic Key and Authentication Management" on page 7-3. 5. After applying these changes, you will see a table entry like the one below.

VPN	Polio	cies						
Policy	Table #	Enable	Name	Туре	Local	Remote	AH	ESP
۲	1		scenario1a	Auto	10.5.6.0/255.255.255.0	172.23.9.0/255.255.255.0	Disabled	ESP
					Edit Move Del Apply Cancel	ete		
			Ad	d Auto	Policy Add M	anual Policy		

Figure 7-15: VPN Policies table

Now all traffic from the range of LAN IP addresses specified on FVS328 A and FVS328 B will flow over a secure VPN tunnel.

How to Check VPN Connections

You can test connectivity and view VPN status information on the FVS328.

- 1. To test connectivity between the Gateway A FVS328 LAN and the Gateway B LAN, follow these steps:
 - a. Using our example, from a computer attached to the FVS328 on LAN A, on a Windows computer click the Start button on the taskbar and then click Run.
 - b. Type ping -t 172.23.9.1, and then click OK.
 - c. This will cause a continuous ping to be sent to the LAN interface of Gateway B. After between several seconds and two minutes, the ping response should change from "timed out" to "reply."
 - d. At this point the connection is established.

- 2. To test connectivity between the FVS328 Gateway A and Gateway B WAN ports, follow these steps:
 - a. Using our example, log in to the FVS328 on LAN A, go to the main menu Maintenance section and click the Diagnostics link.
 - b. To test connectivity to the WAN port of Gateway B, enter 22.23.24.25, and then click Ping.
 - c. This will cause a ping to be sent to the WAN interface of Gateway B. After between several seconds and two minutes, the ping response should change from "timed out" to "reply." You may have to run this test several times before you get the "reply" message back from the target FVS328.
 - d. At this point the connection is established.

Note: If you want to ping the FVS328 as a test of network connectivity, be sure the FVS328 is configured to respond to a ping on the Internet WAN port. However, to preserve a high degree of security, you should turn off this feature when you are finished with testing.

- 3. To view the FVS328 event log and status of Security Associations, follow these steps:
 - a. Go to the FVS328 main menu VPN section and click the VPN Status link.
 - b. The log screen will display a history of the VPN connections, and the IPSec SA and IKE SA tables will report the status and data transmission statistics of the VPN tunnels for each policy.

FVS328 Scenario 2: Authenticating with RSA Certificates

The following is a typical gateway-to-gateway VPN that uses Public Key Infrastructure X.509 (PKIX) certificates for authentication. The network setup is identical to the one given in Scenario 1. The IKE Phase 1 and Phase 2 parameters are identical to the ones given in Scenario 1, with the exception that the identification is done with signatures authenticated by PKIX certificates.

Note: Before completing this configuration scenario, make sure the correct Time Zone is set on the FVS328. For instructions on this topic, please see, "How to Set Your Time Zone" on page 6-14.

1. Obtain a root certificate.

a. Obtain the root certificate (which includes the CA's public key) from a Certificate Authority (CA).

Note: The procedure for obtaining certificates differs between a CA like Verisign and a CA such as a Windows 2000 certificate server, which an organization operates for providing certificates for its members. For example, an administrator of a Windows 2000 certificate server might provide it to you via e-mail.

b. Save the certificate as a text file called *trust.txt*.

2. Install the trusted CA certificate for the Trusted Root CA.

- a. Log in to the FVS328.
- b. From the main menu VPN section, click the CAs link.
- c. Click Add to add a CA.
- d. Click Browse to locate the *trust.txt* file.
- e. Click Upload.

Irusted Certificates (Certificate of CAs)					
0	#	CA Identity (Subject Name)	Issuer Name	Expiry Time	
0	1	/O=VPNC/OU=Conformance testing root 1	/O=VPNC/OU=Conformance testing root 1	Jan 11 00:34:20 2011 GMT	
۲	2 I/C=FI/O=SSH Communications Security/OU=Web test/CN=Test CA1 I/C=FI/O=SSH Communications Security/OU=Web test/CN=Test CA1 Dec 31 23:59:59 200				

Figure 7-16: Certificate Authorities table

You will now see a screen such as the one above showing that the Certificate Authority is now registered with the FVS328.

3. Create a certificate request for the FVS328.

a. From the main menu VPN section, click the Certificates link.

b. Click the Generate Request button to display the screen illustrated in Figure 7-17 below.

Required	
Name	FVS328
Subject	
Hash Algorithm	SHA1 💌
Signature Algorithm	RSA 🛩
Signature Key Length	1024 🛩
Optional	
IP Address	
Domain Name	
E-mail Address	

Figure 7-17: Generate Self Certificate Request menu

- c. Fill in the fields on the Add Self Certificate screen.
 - Required
 - Name. Enter a name to identify this certificate.
 - Subject. This is the name other organizations will see as the holder (owner) of this certificate. This should be your registered business name or official company name. Generally, all certificates should have the same value in the Subject field.
 - Hash Algorithm. Select the desired option: MD5 or SHA1.
 - Signature Algorithm: RSA.
 - Signature Key Length. Select the desired option: 512, 1024, or 2048.
 - Optional
 - IP Address. If you have a fixed IP address on your WAN (Internet) port, you can enter it here. Otherwise, you should leave this blank.
 - Domain Name. If you have a domain name, you can enter it here. Otherwise, you should leave this blank.
 - E-mail Address. You can enter your e-mail address here.

d. Click the Next button to continue. The FVS328 generates a Self Certificate Request as shown below.

Figure 7-18: Self Certificate Request data

4. Transmit the Self Certificate Request data to the Trusted Root CA.

- a. Highlight the text in the Data to supply to CA area, copy it, and paste it into a text file.
- b. Give the certificate request data to the CA. In the case of a Windows 2000 internal CA, you might simply e-mail it to the CA administrator. The procedures of a CA like Verisign and a CA such as a Windows 2000 certificate server administrator will differ. Follow the procedures of your CA.
- c. When you have finished gathering the Self Certificate Request data, click the Done button. You will return to the Certificates screen where your pending "FVS328" Self Certificate Request will be listed, as illustrated in Figure 7-19 below.

	#	Name	Subject Name	Issuer Name	Expiry Time
0 1 Ne		Netgea	r FQDN: netgear.com	/O=VPNC/OU=Conformance testing root 1	Mar 26 22:53:29 2011 GMT
elf (Cei		Requests		
elf (Cei		Requests ame		itatus

Figure 7-19: Self Certificate Requests table

5. Receive the certificate back from the Trusted Root CA and save it as a text file.

Note: In the case of a Windows 2000 internal CA, the CA administrator might simply email it to back to you. Follow the procedures of your CA. Save the certificate you get back from the CA as a text file called *final.txt*.

6. Upload the new certificate.

- a. From the main menu VPN section, click the Certificates link.
- b. Click the radio button of the Self Certificate Request you want to upload.
- c. Click the Upload Certificate button.
- d. Browse to the location of the file you saved in step 5 above, which contains the certificate from the CA.
- e. Click the Upload button.

f. You will now see the "FVS328" entry in the Active Self Certificates table and the pending "FVS328" Self Certificate Request is gone, as illustrated below.

ctive	e Self Cert	ificates		
1	# Name	Subject Name	Issuer Name Expiry Time	
1 Netgear FQDN: netgear.com /0=VPNC/0U=Conformance testing root 1 Mar 26 22:			Mar 26 22:53:29 2011 GM	
0	2 FVS32	/CN=test	/C=FI/O=SSH Communications Security/OU=Web test/CN=Test CA 1	Dec 1 00:00:00 2003 GMT
ielf C	ertificate	Requests		
ielf C	ertificate #	Requests Name	Status	

Figure 7-20: Self Certificates table

- 7. Associate the new certificate and the Trusted Root CA certificate on the FVS328.
 - a. Create a new IKE policy called **Scenario_2** with all the same properties of **Scenario_1** (see "Scenario 1 IKE Policy" on page 7-22) except now use the RSA Signature instead of the shared key.

IKE SA Parameters	-		
Encryption Algorithm	3DES	~	
Authentication Algorithm	SHA-1 💌		
Authentication Method	O Pre-s	hared Key	
		Signature (requires Certificate)	
Diffie-Hellman (DH) Group	Group 2 (1024 Bit) 👻		
SA Life Time	2000	(secs)	

Figure 7-21: IKE policy using RSA Signature

b. Create a new VPN Auto Policy called **scenario2a** with all the same properties as **scenario1a** except that it uses the IKE policy called Scenario_2.

Now, the traffic from devices within the range of the LAN subnet addresses on FVS328 Gateway A and Gateway B will be authenticated using the certificates and generated keys rather than via a shared key.

8. Set up Certificate Revocation List (CRL) checking.

a. Get a copy of the CRL from the CA and save it as a text file.

Note: The procedure for obtaining a CRL differs from a CA like Verisign and a CA such as a Windows 2000 certificate server, which an organization operates for providing certificates for its members. Follow the procedures of your CA.

- b. From the main menu VPN section, click the CRL link.
- c. Click Add to add a CRL.
- d. Click Browse to locate the CRL file.
- e. Click Upload.

Now expired or revoked certificates will not be allowed to use the VPN tunnels managed by IKE policies which use this CA.

Note: You must update the CRLs regularly in order to maintain the validity of the certificate-based VPN policies.

Chapter 8 Managing Your Network

This chapter describes how to perform network management tasks with your FVS328 ProSafe VPN Firewall with Dial Back-up.

Network Management

The FVS328 provides remote management access and a variety of status and usage information which is discussed below.

How to Configure Remote Management

Using the Remote Management page, you can allow a user or users on the Internet to configure, upgrade and check the status of your FVS328 Firewall.

Note: Be sure to change the router's default password to a very secure password. The ideal password should contain no dictionary words from any language, and should be a mixture of letters (both upper and lower case), numbers, and symbols. Your password can be up to 30 characters.

- 1. Log in to the firewall at its default LAN address of *http://192.168.0.1* with its default user name of **admin**, default password of **password**, or using whatever password and LAN address you have chosen for the firewall.
- 2. In the Advanced section on the left navigator, select Remote Management.
- 3. Select the Turn Remote Management On check box.
- 4. Specify what external addresses will be allowed to access the firewall's remote management.

Note: For security reasons, restrict access to as few external IP addresses as practical.

- a. To allow access from any IP address on the Internet, select Everyone.
- b. To allow access from a range of IP addresses on the Internet, select IP address range. Enter a beginning and ending IP address to define the allowed range.

- c. To allow access from a single IP address on the Internet, select Only this PC. Enter the IP address that will be allowed access.
- 5. Specify the Port Number that will be used for accessing the management interface.

Web browser access normally uses the standard HTTP service port 80. For greater security, you can change the remote management Web interface to a custom port by entering that number in the box provided. Choose a number between 1024 and 65535, but do not use the number of any common service port. The default is 8080, which is a common alternate for HTTP.

- 6. The IP Address to connect to this device is used to manage this router via the Internet. You need its public IP Address, as seen from the Internet. This public IP Address is allocated by your ISP, and is shown here. But if your ISP account uses a Dynamic IP Address, the address can change each time you connect to your ISP. There are 2 solutions to this problem:
 - a. Have your ISP allocate you a Fixed IP address.
 - b. Use the DDNS (Dynamic DNS) feature so you can connect using a domain name, rather than an IP address.
- 7. Click Apply to have your changes take effect.

When accessing your router from the Internet, the Secure Sockets Layer (SSL) will be enabled. You will enter *https://* and type your router's WAN IP address into your browser's Address (in IE) or Location (in Netscape) box, followed by a colon (:) and the custom port number. For example, if your external address is 134.177.0.123 and you use port number 8080, enter in your browser:

https://134.177.0.123:8080

Note: When you remotely connect to the FVS328 with a browser via SSL, you may get a message regarding the SSL certificate. If you are using a Windows computer with Internet Explorer 5.5 or higher, simply click Yes to accept the certificate.

Tip: If you are using a dynamic DNS service such as TZO, you can always identify the IP address of your FVS328 by running TRACERT from the Windows Start menu Run option. For example, **tracert yourFVS328.mynetgear.net** and you will see the IP address your ISP has currently assigned to the FVS328.
Viewing Router Status and Usage Statistics

From the Main Menu, under Maintenance, select Router Status to view the screen in Figure 8-1.

System Name	FVS 328
Firmware Version	Version 1 Release 00
LAN Port	
MAC Address	00:09:5b:2a:a9:c4
IP Address	192.168.0.1
DHCP	OFF
IP Subnet Mask	255.255.255.0
WAN Port	
MAC Address	00:09:5b:2a:a9:c5
IP Address	10.1.0.117
DHCP	Dynamic
IP Subnet Mask	255.255.254.0
Domain Name Server	10.1.1.7 10.1.1.6

Figure 8-1: Router Status screen

The Router Status menu provides a limited amount of status and usage information. From the Main Menu of the browser interface, under Maintenance, select Router Status to view the status screen, shown in Figure 8-1.

This screen shows the following parameters:

Field	Description
System Name	This field displays the Host Name assigned to the firewall in the Basic Settings menu.
Firmware Version	This field displays the firewall firmware version.
LAN Port	These parameters apply to the Local (WAN) port of the firewall.
MAC Address	This field displays the Ethernet MAC address being used by the Local (LAN) port of the firewall.
IP Address	This field displays the IP address being used by the Local (LAN) port of the firewall. The default is 192.168.0.1
IP Subnet Mask	This field displays the IP Subnet Mask being used by the Local (LAN) port of the firewall. The default is 255.255.255.0
DHCP	If set to OFF, the firewall will not assign IP addresses to local PCs on the LAN. If set to ON, the firewall is configured to assign IP addresses to local PCs on the LAN.
WAN Port	These parameters apply to the Internet (WAN) port of the firewall.
MAC Address	This field displays the Ethernet MAC address being used by the Internet (WAN) port of the firewall.
IP Address	This field displays the IP address being used by the Internet (WAN) port of the firewall. If no address is shown, the firewall cannot connect to the Internet.
DHCP	If set to None, the firewall is configured to use a fixed IP address on the WAN. If set to Client, the firewall is configured to obtain an IP address dynamically from the ISP
IP Subnet Mask	This field displays the IP Subnet Mask being used by the Internet (WAN) port of the firewall.
Domain Name Servers (DNS)	This field displays the DNS Server IP addresses being used by the firewall. These addresses are usually obtained dynamically from the ISP.

Table 8-1.Menu 3.2 - Router Status Fields

Click the "Show Statistics" button to display firewall usage statistics, as shown in Figure 8-2 below:

Port	Status	TxPkts	RxPkts	Collisions	Tx B/s	Rx B/s	Up Time
WAN	10/100M	3672	40858	0	14	1637	3:4:35
LAN	10/100M	3902	5063	0	2193	706	3:4:35
Serial	Not Connected	0	0	n/a	0	0	0:0:0

Figure 8-2. Router Statistics screen

This screen shows the following statistics:

Field	Description
WAN, LAN, or Serial Port	The statistics for the WAN (Internet), LAN (local), and Serial ports. For each port, the screen displays:
Status	The link status of the port.
TxPkts	The number of packets transmitted on this port since reset or manual clear.
RxPkts	The number of packets received on this port since reset or manual clear.
Collisions	The number of collisions on this port since reset or manual clear.
Tx B/s	The current line utilization—bytes per second of current bandwidth used on this port.
Rx B/s	The bytes per second of average line utilization for this port.
Up Time	The time elapsed since this port acquired link.
System up Time	The time elapsed since the last power cycle or reset.
Poll Interval	Specifies the intervals at which the statistics are updated in this window. Click on Stop to freeze the display.

Viewing Attached Devices

The Attached Devices menu contains a table of all IP devices that the firewall has discovered on the local network. From the Main Menu of the browser interface, under the Maintenance heading, select Attached Devices to view the table, shown in Figure 8-3.

Device Name	IP Address	
	PAddless	#
		<u> </u>

Figure 8-3: Attached Devices menu

For each device, the table shows the IP address, Device Name (NetBIOS Host Name, if available), and the Ethernet MAC address.

Select the check box if you want to enable NetBIOS detection. If the NetBIOS name is not available, "Unknown" is listed as the Device Name.

If the firewall is rebooted, the table data is lost until the firewall rediscovers the devices. To force the firewall to look for attached devices, click the Refresh button.

Viewing, Selecting, and Saving Logged Information

The firewall logs security-related events such as denied incoming service requests, hacker probes, and administrator logins. If you enabled content filtering in the Block Sites menu, the Logs page shows you when someone on your network tries to access a blocked site. If you enabled e-mail notification, you will receive these logs in an e-mail message. If you do not have e-mail notification enabled, you can view the logs here. An example is shown below.

Logs
 Date: 2004-03-22 18:12:21
[Mon, 2004-03-22 16:48:08] - Attempt to access blocked site -
Source:192.168.0.2,LAN -
Destination:bc2.gator.com/gbsf/gd/do/doubleclick.net.gtrg2ze,WAN - [Block]
[Mon, 2004-03-22 17:07:20] - TCP Packet - Source:63.240.145.40,80
[HTTP] ,WAN - Destination:67.122.112.234,2389 ,LAN [Drop] - [TCP preconnect traffic]
[Mon, 2004-03-22 17:14:10] - Attempt to access blocked site -
Source:192.168.0.3,LAN - Destination:ad.doubleclick.net/adj/n2885.aimtoday/b1279346.5;sz=180x150;c
lick=http://ar.atwola.com/redir/b0/scmlgzckzzhyxzb0lkwj4etvi28tq8hbxupnpv kajzrvfej 6qikoq\$\$/;ord=66368116216?,VAN - [Block]
[Mon, 2004-03-22 17:16:04] - TCP Packet - Source:66.223.47.219,80
[HTTP] ,WAN - Destination:67.122.112.234,3722 ,LAN [Drop] - [First TCP Packet not SYN]
Refresh Clear Log Send Log
Include in Log
Known DoS attacks and Port Scans
Attempted access to blocked sites
All Websites and news groups visited
All Incoming TCP/UDP/ICMP traffic
All Outgoing TCP/UDP/ICMP traffic
Other IP traffic
Router operation (start up, get time etc)
Connections to the Web-based interface of this Router
Other connections and traffic to this Router
Allow duplicate log entries
Enable Syslog
Syslog server IP address 0.0.0.0
Apply Cancel

Figure 8-4: Security Logs menu

Log entries are described below:

Field	Description
Date and Time	The date and time the log entry was recorded.
Description or Action	The type of event and what action was taken if any.
Source IP	The IP address of the initiating device for this log entry.
Source port and interface	The service port number of the initiating device, and whether it originated from the LAN or WAN.
Destination	The name or IP address of the destination device or Web site.
Destination port and interface	The service port number of the destination device, and whether it's on the LAN or WAN.

Table 8-5:Security Log entry descriptions

Log action buttons are described below:

Field	Description
Refresh	Click this button to refresh the log screen.
Clear Log	Click this button to clear the log entries.
Send Log	Click this button to e-mail the log immediately.
Apply	Click this button to apply any changed settings.
Cancel	Click this button to clear any changed settings.

Changing the Include in Log Settings

You can choose to log additional information. Those optional selections are as follows:

- Known DoS attacks and Port Scans
- Attempted access to blocked sites
- All Web sites and news groups visited
- All Incoming TCP/UDP/ICMP traffic
- All Outgoing TCP/UDP/ICMP traffic
- Other IP traffic if selected, all other traffic (IP packets which are not TCP, UDP, or ICMP) is logged
- Router operation (start up, get time, etc.) if selected, Router operations, such as starting up and getting the time from the Internet Time Server, are logged.
- Connection to the Web-based interface of this Router
- Other connections and traffic to this Router if selected, this will log traffic sent to this Router (rather than through this Router to the Internet).
- Allow duplicate log entries if selected, events or packets that fall within more than one (1) category above will have a log entry for each category in which they belong. This will generate a large number of log entries.

If not selected, then events or packets will only be logged once. Usually, you should not allow duplicate log entries.

Enabling the Syslog Feature

You can choose to write the logs to a computer running a SYSLOG program. To use this feature, check the box under Syslog and enter the IP address of the server where the log file will be written. Then click Apply to activate the Syslog feature.

For a detailed description of the log files, see Appendix B, "Firewall Log Formats".

Enabling Security Event E-mail Notification

In order to receive logs and alerts by e-mail, you must provide your e-mail information in the E-mail menu:

E-mail	
□ □ Turn e-mail notification on	
Send alerts and logs by e-mail	
Outgoing Mail Server	
E-mail Address	
Send E-Mail alerts immediately	
🗹 If a DoS attack is detected.	
🗹 If abnormal TCP flag scan is detected.	
If someone attempts to access a blocked site.	
Send logs according to this schedule	
Hourly	
Day	
Time 📃 🕑 a.m. 🔾 p.m.	
Apply Cancel	

Figure 8-7: E-mail notification menu

To enable E-mail notification, configure the following fields:

- Turn e-mail notification on Select this check box if you want to receive e-mail logs and alerts from the firewall.
- Your outgoing mail server
 Enter the name or IP address of your ISP's outgoing (SMTP) mail server (such as mail.myISP.com). You may be able to find this information in the configuration menu of your e-mail program. If you leave this box blank, log and alert messages will not be sent via e-mail.
- Send to this e-mail address Enter the e-mail address to which logs and alerts will be sent. This e-mail address will also be used as the From address. If you leave this box blank, log and alert messages will not be sent via e-mail.

You can specify that logs are automatically sent to the specified e-mail address with these options:

- Send alert immediately Select this check box if you want immediate notification of a significant security event, such as a known attack, abnormal TCP flag, or attempted access to a blocked site.
- Send logs according to this schedule Specify how often to send the logs: None, Hourly, Daily, Weekly, or When Full.
 - Day for sending log Specify which day of the week to send the log. Relevant when the log is sent weekly or daily.
 - Time for sending log
 Specify the time of day to send the log. Relevant when the log is sent daily or weekly.

If the Weekly, Daily or Hourly option is selected and the log fills up before the specified period, the log is automatically e-mailed to the specified e-mail address. After the log is sent, the log is cleared from the firewall's memory. If the firewall cannot e-mail the log file, the log buffer may fill up. In this case, the firewall overwrites the log and discards its contents.

Backing Up, Restoring, or Erasing Your Settings

The configuration settings of the FVS328 Firewall are stored in a configuration file in the firewall. This file can be backed up to your computer, restored, or reverted to factory default settings. The procedures below explain how to do these tasks.

How to Back Up the FVS328 Configuration to a File

 Log in to the firewall at its default LAN address of *http://192.168.0.1* with its default User Name of admin, default password of password, or using whatever password and LAN address you have chosen for the firewall. 2. From the Maintenance heading of the main menu, select the Settings Backup menu as seen below.

save a copy of i	urrent settings	
	Back Up	
Restore saved	ettings from file	
	Bro	wse
	Restore	

Figure 8-8: Settings Backup menu

- 3. Click Backup to save a copy of the current settings.
- 4. Store the .cfg file on a computer on your network.

How to Restore a Configuration from a File

- 1. Log in to the firewall at its default LAN address of *http://192.168.0.1* with its default user name of **admin**, default password of **password**, or using whatever Password and LAN address you have chosen for the firewall.
- 2. From the Maintenance heading of the main menu, select the Settings Backup menu as seen in Figure 8-8.
- 3. Under Restore saved settings from file, enter the full path to the file on your network or click the Browse button to browse to the file.
- 4. When you have located the .cfg file, click the Restore button to upload the file to the firewall.
- 5. The firewall will then reboot automatically.

How to Erase the Configuration

It is sometimes desirable to restore the firewall to the factory default settings. This can be done by using the Erase function.

- 1. To erase the configuration, from the Settings Backup menu, click the Erase button under Revert to factory default settings.
- 2. The firewall will then reboot automatically.

After an erase, the firewall's password will be **password**, the LAN IP address will be 192.168.0.1, and the router's DHCP client will be enabled.

Note: To restore the factory default configuration settings without knowing the login password or IP address, you must use the Default Reset button on the rear panel of the firewall. See "How to Use the Default Reset Button" on page 9-7.

Running Diagnostic Utilities and Rebooting the Router

The FVS328 Firewall has a diagnostics feature. You can use the diagnostics menu to perform the following functions from the firewall:

- Ping an IP Address to test connectivity to see if you can reach a remote host.
- Perform a DNS Lookup to test if an Internet name resolves to an IP address to verify that the DNS server configuration is working.
- Display the Routing Table to identify what other routers the router is communicating with.
- Reboot the Router to enable new network configurations to take effect or to clear problems with the router's network connection.

From the main menu of the browser interface, under the Maintenance heading, select the Diagnostics link to display the menu shown below. Then select the function you want to activate.

Diagnostics	
Ping an IP address IP Address	Ping
Perform a DNS Lookup Internet Name IP address DNS Server: 10.1	Lookup
Display the Routing Table	Display
Reboot the Router	Reboot

Figure 8-9: Diagnostics menu

Upgrading the Router's Firmware

The software of the FVS328 Firewall is stored in FLASH memory, and can be upgraded as new software is released by NETGEAR. Upgrade files can be downloaded from the NETGEAR Web site. If the upgrade file is compressed (.ZIP file), you must first extract the binary (.BIN or .IMG) file before uploading it to the firewall.

The Web browser used to upload new firmware into the firewall must support HTTP uploads. Use Microsoft Internet Explorer 5.0 or above, or Netscape Navigator 4.7 or above.

Note: Product updates are available on the NETGEAR, Inc. Web site at *http://kbserver.netgear.com/products/FVS328.asp*.

How to Upgrade the Router

- 1. Download and unzip the new software file from NETGEAR.
- 2. Log in to the firewall at its default LAN address of *http://192.168.0.1* with its default user name of **admin**, default password of **password**, or using whatever password and LAN address you have chosen for the firewall.
- 3. From the main menu of the browser interface, under the Maintenance heading, select the Router Upgrade heading to display the menu shown in Figure 8-10.

Router Upgrade	
Locate and select the upgrade file from your h	
	Browse
Upload Cancel	

Figure 8-10: Router Upgrade menu

- 4. In the Router Upgrade menu, click Browse to locate the binary (.BIN or .IMG) upgrade file.
- 5. Click Upload.

Note: Do not interrupt the process of uploading software to the firewall by closing the window, clicking a link, or loading a new page. Interrupting the upgrade may corrupt the software. When the upload is complete, your firewall will automatically restart. The upgrade process will typically take about one minute. In some cases, you may need to clear the configuration and reconfigure the firewall after upgrading.

Chapter 9 Troubleshooting

This chapter gives information about troubleshooting your FVS328 ProSafe VPN Firewall with Dial Back-up. For the common problems listed, go to the section indicated.

- Is the firewall on?
- Have I connected the firewall correctly?

Go to "Basic Functions" on page 9-1.

• I can't access the firewall's configuration with my browser.

Go to "Troubleshooting the Web Configuration Interface" on page 9-3.

• I've configured the firewall but I can't access the Internet.

Go to "Troubleshooting the ISP Connection" on page 9-4.

• I can't remember the firewall's configuration password, or I want to clear the configuration and start over again.

Go to "Restoring the Default Configuration and Password" on page 9-7.

• Is there a new version of the firmware that corrects known problems or adds new features?

Note: Product updates are available on the NETGEAR Web site at *http://kbserver.netgear.com/products/FVS328.asp*.

Basic Functions

After you turn on power to the firewall, the following sequence of events should occur:

- 1. When power is first applied, verify that the Power LED is on.
- 2. Verify that the Test LED lights within a few seconds, indicating that the self-test procedure is running.
- 3. After approximately 10 seconds, verify that:

- a. The Test LED is not lit.
- b. The Local port Link LEDs are lit for any local ports that are connected.
- c. The Internet Link port LED is lit.

If a port's Link LED is lit, a link has been established to the connected device. If a port is connected to a 100 Mbps device, verify that the port's 100 LED is lit.

If any of these conditions does not occur, refer to the appropriate following section.

Power LED Not On

If the Power and other LEDs are off when your firewall is turned on:

- Make sure that the power cord is properly connected to your firewall and that the power supply adapter is properly connected to a functioning power outlet.
- Check that you are using the 12VDC power adapter supplied by NETGEAR for this product.

If the error persists, you have a hardware problem and should contact technical support.

Test LED Never Turns On or Test LED Stays On

When the firewall is turned on, the Test LED turns on for about 10 seconds and then turns off. If the Test LED does not turn on, or if it stays on, there is a fault within the firewall.

If you experience problems with the Test LED:

• Cycle the power to see if the firewall recovers and the LED blinks for the correct amount of time.

If all LEDs including the Test LED are still on one minute after power up:

- Cycle the power to see if the firewall recovers.
- Clear the firewall's configuration to factory defaults. This will set the firewall's IP address to 192.168.0.1. This procedure is explained in "How to Use the Default Reset Button" on page 9-7.

If the error persists, you might have a hardware problem and should contact technical support.

Local or Internet Port Link LEDs Not On

If either the Local or Internet Port Link LEDs do not light when the Ethernet connection is made, check the following:

- Make sure that the Ethernet cable connections are secure at the firewall and at the hub or computer.
- Make sure that power is turned on to the connected hub or computer.
- Be sure you are using the correct cable:
 - When connecting the firewall's Internet port to a cable or DSL modem, use the cable that was supplied with the cable or DSL modem. This cable could be a standard straight-through Ethernet cable or an Ethernet crossover cable.

Troubleshooting the Web Configuration Interface

If you are unable to access the firewall's Web Configuration interface from a computer on your local network, check the following:

- Check the Ethernet connection between the computer and the firewall as described in the previous section.
- Make sure your computer's IP address is on the same subnet as the firewall. If you are using the recommended addressing scheme, your computer's address should be in the range of 192.168.0.2 to 192.168.0.254. Refer to "Verifying TCP/IP Properties" on page D-5 or "Configuring the Macintosh for TCP/IP Networking" on page D-6 to find your computer's IP address. Follow the instructions in Appendix D to configure your computer.

Note: If your computer's IP address is shown as 169.254.x.x:

Recent versions of Windows and MacOS will generate and assign an IP address if the computer cannot reach a DHCP server. These auto-generated addresses are in the range of 169.254.x.x. If your IP address is in this range, check the connection from the computer to the firewall and reboot your computer.

- If your firewall's IP address has been changed and you don't know the current IP address, clear the firewall's configuration to factory defaults. This will set the firewall's IP address to 192.168.0.1. This procedure is explained in "How to Use the Default Reset Button" on page 9-7.
- Make sure your browser has Java, JavaScript, or ActiveX enabled. If you are using Internet Explorer, click Refresh to be sure the Java applet is loaded.

- Try quitting the browser and launching it again.
- Make sure you are using the correct login information. The factory default login name is **admin** and the password is **password**. Make sure that CAPS LOCK is off when entering this information.

If the firewall does not save changes you have made in the Web configuration interface, check the following:

- When entering configuration settings, be sure to click the Apply button before moving to another menu or tab, or your changes are lost.
- Click the Refresh or Reload button in the Web browser. The changes may have occurred, but the Web browser may be caching the old configuration.

Troubleshooting the ISP Connection

If your firewall is unable to access the Internet, you should first determine whether the firewall is able to obtain a WAN IP address from the ISP. Unless you have been assigned a static IP address, your firewall must request an IP address from the ISP. You can determine whether the request was successful using the Web configuration manager.

To check the WAN IP address:

- 1. Launch your browser and select an external site such as *www.netgear.com*.
- 2. Access the main menu of the firewall's configuration at *http://192.168.0.1*.
- 3. Under the Maintenance heading, select Broadband Status.
- 4. Check that an IP address is shown for the WAN Port. If 0.0.0 is shown, your firewall has not obtained an IP address from your ISP.

If your firewall is unable to obtain an IP address from the ISP, you may need to force your cable or DSL modem to recognize your new firewall by performing the following procedure:

- 1. Turn off power to the cable or DSL modem.
- 2. Turn off power to your firewall.
- 3. Wait five minutes and reapply power to the cable or DSL modem.
- 4. When the modem's LEDs indicate that it has reacquired sync with the ISP, reapply power to your firewall.

If your firewall is still unable to obtain an IP address from the ISP, the problem may be one of the following:

- Your ISP may require a login program. Ask your ISP whether they require PPP over Ethernet (PPPoE) or some other type of login.
- If your ISP requires a login, you may have incorrectly set the login name and password.
- Your ISP may check for your computer's host name. Assign the PC Host Name of your ISP account as the Account Name in the Basic Settings menu.
- Your ISP only allows one Ethernet MAC address to connect to Internet, and may check for your computer's MAC address. In this case:

Inform your ISP that you have bought a new network device, and ask them to use the firewall's MAC address.

OR

Configure your firewall to spoof your computer's MAC address. This can be done in the Basic Settings menu. Refer to "Manually Configuring Your Internet Connection" on page 3-14.

If your firewall can obtain an IP address, but your computer is unable to load any Web pages from the Internet:

• Your computer may not recognize any DNS server addresses.

A DNS server is a host on the Internet that translates Internet names (such as www.netgear.com) to numeric IP addresses. Typically your ISP will provide the addresses of one or two DNS servers for your use. If you entered a DNS address during the firewall's configuration, reboot your computer and verify the DNS address as described in "Verifying TCP/IP Properties" on page D-6. Alternatively, you may configure your computer manually with DNS addresses, as explained in your operating system documentation.

• Your computer may not have the firewall configured as its TCP/IP gateway.

If your computer obtains its information from the firewall by DHCP, reboot the computer and verify the gateway address as described in "Verifying TCP/IP Properties" on page D-6.

Troubleshooting a TCP/IP Network Using a Ping Utility

Most TCP/IP terminal devices and routers contain a ping utility that sends an echo request packet to the designated device. The device then responds with an echo reply. Troubleshooting a TCP/IP network is made easier by using the ping utility in your PC or workstation.

How to Test the LAN Path to Your Firewall

You can ping the firewall from your computer to verify that the LAN path to your firewall is set up correctly.

To ping the firewall from a PC running Windows 95 or later:

- 1. From the Windows toolbar, click the Start button and select Run.
- In the field provided, type Ping followed by the IP address of the firewall, as in this example: ping 192.168.0.1
- 3. Click OK.

You should see a message like this one:

Pinging <IP address> with 32 bytes of data

If the path is working, you see this message:

```
Reply from < IP address >: bytes=32 time=NN ms TTL=xxx
```

If the path is not working, you see this message:

```
Request timed out
```

If the path is not functioning correctly, you could have one of the following problems:

- Wrong physical connections
 - Make sure the LAN port LED is on. If the LED is off, follow the instructions in "Local or Internet Port Link LEDs Not On" on page 9-3.
 - Check that the corresponding Link LEDs are on for your network interface card and for the hub ports (if any) that are connected to your workstation and firewall.
- Wrong network configuration
 - Verify that the Ethernet card driver software and TCP/IP software are both installed and configured on your PC or workstation.
 - Verify that the IP address for your firewall and your workstation are correct and that the addresses are on the same subnet.

How to Test the Path from Your PC to a Remote Device

After verifying that the LAN path works correctly, test the path from your PC to a remote device. From the Windows run menu, type:

PING -n 10 <IP address>

where <IP address> is the IP address of a remote device such as your ISP's DNS server.

If the path is functioning correctly, replies as in the previous section are displayed. If you do not receive replies:

- Check that your PC has the IP address of your firewall listed as the default gateway. If the IP configuration of your PC is assigned by DHCP, this information will not be visible in your PC's Network Control Panel. Verify that the IP address of the firewall is listed as the default gateway as described in "Verifying TCP/IP Properties" on page D-5.
- Check to see that the network address of your PC (the portion of the IP address specified by the netmask) is different from the network address of the remote device.
- Check that your cable or DSL modem is connected and functioning.
- If your ISP assigned a host name to your PC, enter that host name as the Account Name in the Basic Settings menu.
- Your ISP could be rejecting the Ethernet MAC addresses of all but one of your computers. Many broadband ISPs restrict access by only allowing traffic from the MAC address of your broadband modem, but some ISPs additionally restrict access to the MAC address of a single PC connected to that modem. If this is the case, you must configure your firewall to "clone" or "spoof" the MAC address from the authorized PC. Refer to "Manually Configuring Your Internet Connection" on page 3-14.

Restoring the Default Configuration and Password

This section explains how to restore the factory default configuration settings, change the firewall's administration password to **password** and the IP address to 192.168.0.1. You can erase the current configuration and restore factory defaults in two ways:

- Use the Erase function of the Web Configuration Manager (see "Backing Up, Restoring, or Erasing Your Settings" on page 8-11).
- Use the Default Reset button on the rear panel of the firewall. Use this method for cases when the administration password or IP address is not known.

How to Use the Default Reset Button

To restore the factory default configuration settings without knowing the administration password or IP address, you must use the Default Reset button on the rear panel of the firewall.

- 1. Press and hold the Default Reset button until the Test LED turns on (about 10 seconds).
- 2. Release the Default Reset button and wait for the firewall to reboot.

Problems with Date and Time

The E-mail menu in the Security section displays the current date and time of day. The FVS328 Firewall uses the Network Time Protocol (NTP) to obtain the current time from one of several Network Time Servers on the Internet. Each entry in the log is stamped with the date and time of day. Problems with the date and time function can include:

• Date shown is January 1, 2000.

Cause: The firewall has not yet successfully reached a Network Time Server. Check that your Internet access settings are configured correctly. If you have just completed configuring the firewall, wait at least five minutes and check the date and time again.

• Time is off by one hour.

Cause: The firewall does not automatically sense Daylight Savings Time. In the Schedule menu, select or clear the check box marked Adjust for Daylight Savings Time.

Appendix A Technical Specifications

This appendix provides technical specifications for the FVS328 ProSafe VPN Firewall with Dial Back-up.

Network Protocol and Standards Compatibility Data and Routing Protocols: TCP/IP, RIP-1, RIP-2, DHCP PPP over Ethernet (PPPoE) **Power Adapter** North America: 120V, 60 Hz, input United Kingdom, Australia: 240V, 50 Hz, input Europe: 230V, 50 Hz, input 100V, 50/60 Hz, input Japan: 12 V DC @ 1.2A output, 20W maximum All regions (output): Physical Specifications **Dimensions:** H: 1.56 in (3.96 cm) W: 10.0 in (25.4 cm) D: 9.0 in (17.8 cm) Weight: 2.72 lb. (1.23 Kg) **Environmental Specifications** 32°-140° F (0° to 40° C) Operating temperature: 90% maximum relative humidity, noncondensing Operating humidity:

Electromagnetic Emissions		
Meets requirements of:	FCC Part 15 Class B	
	VCCI Class B	
	EN 55 022 (CISPR 22), Class B	
Interface Specifications		
Local:	10BASE-T or 100BASE-Tx, RJ-45	
Internet:	10BASE-T or 100BASE-Tx, RJ-45	

Appendix B Firewall Log Formats

Action List

Drop:	Packet dropped by Firewall current inbound or outbound rules.	
Reset:	TCP session reset by Firewall.	
Forward:	Packet forwarded by Firewall to the next hop based on matching the criteria in the rules table.	
Receive:	Packet was permitted by the firewall rules and modified prior to being forwarded and/or replied to.	

Field List

<date><time>:</time></date>	Log's date and time	
<event>:</event>	Event is that access the device or access other host via the device	
<pkt_type>:</pkt_type>	Packet type pass Firewall	
<src_ip><dst_ip>:</dst_ip></src_ip>	IP address in the packet	
<src_port><dst_port>:</dst_port></src_port>	Port in the packet	
<src_inf><dst_inf>:</dst_inf></src_inf>	Include `LAN` and `WAN` (optional)	
<action>:</action>	As `Action List` referenced	
<description>:</description>	A complement to the log (optional)	
<direction>:</direction>	Inbound and Outbound	
<service>:</service>	Firewall costumed service	

Outbound Log

Outgoing packets that match the Firewall rules are logged.

The format is:

```
<DATE> <TIME> <PKT_TYPE> <SRC_IP> <SRC_INF> <DST_IP > <DST_INF>
<ACTION><DESCRIPTION>
[Fri, 2003-12-05 22:19:42] - UDP Packet - Source:172.31.12.233,138 ,WAN -
Destination:172.31.12.255,138 ,LAN [Drop] - [Inbound Default rule match]
[Fri, 2003-12-05 22:35:04] - TCP Packet - Source:172.31.12.156,34239 ,WAN -
Destination:192.168.0.10,21[FTP Control] ,LAN [Forward] - [Inbound Rule(1)
match]
[Fri, 2003-12-05 22:35:11] - UDP Packet - Source:172.31.12.200,138 ,WAN -
Destination:172.31.12.255,138 ,LAN [Forward] - [Inbound Rule(1) not match]
Notes:
SRC_INF = WAN
DST_INF = LAN
DESCRIPTION = "Inbound rule match", "Inbound Default rule match"
PKT_TYPE = "UDP packet", "TCP connection", "ICMP packet"
```

Inbound Log

Incoming packets that match the Firewall rules are logged.

The format is:

```
<DATE> <TIME> <PKT_TYPE> <SRC_IP> <SRC_INF> <DST_IP > <DST_INF>
<ACTION><DESCRIPTION>
[Fri, 2003-12-05 22:59:56] - ICMP Packet [Echo Request] - Source:192.168.0.10,LAN
- Destination:192.168.0.1,WAN [Forward] - [Outbound Default rule match]
[Fri, 2003-12-05 23:00:58] - ICMP Packet [Echo Request] - Source:192.168.0.10,LAN
- Destination:172.31.12.200,WAN [Forward] - [Outbound Default rule match]
[Fri, 2003-12-05 23:02:30] - TCP Packet - Source:192.168.0.10,3472 ,LAN -
Destination:216.239.39.99,80[HTTP] ,WAN [Forward] - [Outbound Default rule
match]
Notes:
SRC_INF = LAN
DST_INF = WAN
DESCRIPTION = "Outbound rule match", "Outbound Default rule match"
PKT_TYPE = "UDP packet", "TCP connection", "ICMP packet"
```

Other IP Traffic

Some special packets matching the Firewall rules, like VPN connection, etc. are logged.

The format is:

```
<DATE><TIME><PKT_TYPE>< SRC_IP><SRC_PORT ><SRC_INF>< DST_IP><DST_PORT
><DST_PORT><ACTION><DESCRIPTION>
<DATE><TIME> <PKT_TYPE> <SRC_IP> <SRC_INF> <DST_IP> <DST_INF> <ACTION>
<DESCRIPTION>
[Wed, 2003-07-30 17:43:28] - IPSEC Packet - Source: 64.3.3.201, 37180 WAN -
Destination: 10.10.10.4,80[HTTP] LAN - [Drop] [VPN Packet]
[Wed, 2003-07-30 18:44:50] - IP Packet [Type Field: 321] - Source 18.7.21.69
192.168.0.3 - [Drop]
Notes:
DESCRIPTION = "VPN Packet"
PKT_TYPE = "GRE", "AH", "ESP", "IP packet [Type Field: Num]", "IPSEC"
ACTION = "Forward", "Drop"
```

Router Operation

Operations that the router initiates are logged.

The format is:

<DATE><TIME><EVENT>

[Wed, 2003-07-30 16:30:59] - Log emailed [Wed, 2003-07-30 13:38:31] - NETGEAR activated [Wed, 2003-07-30 13:42:01] - NTP Reply Invalid

The format is:

```
<DATE><TIME><EVENT><DST_IP>
<DATE><TIME><EVENT><SRC_IP>
```

[Wed, 2003-07-30 16:32:33] - Send out NTP Request to 207.46.130.100 [Wed, 2003-07-30 16:35:27] - Receive NTP Reply from 207.46.130.100

Other Connections and Traffic to this Router

The format is:

<DATE><TIME>< PKT_TYPE ><SRC_IP><DST_IP><ACTION>

[Fri, 2003-12-05 22:31:27] - ICMP Packet[Echo Request] - Source: 192.168.0.10 -Destination: 192.168.0.1 - [Receive] [Wed, 2003-07-30 16:34:56] - ICMP Packet[Type: 238] - Source: 64.3.3.201 -Destination: 192.168.0.3 - [Drop] [Fri, 2003-12-05 22:59:56] - ICMP Packet[Echo Request] - Source:192.168.0.10 -Destination:192.168.0.1 - [Receive]

The format is:

<DATE><TIME><EVENT>< SRC_IP><SRC_PORT ><SRC_INF>< DST_IP><DST_PORT><DST_INF><ACTION>

[Wed, 2003-07-30 16:24:23] - UDP Packet - Source: 207.46.130.100 WAN -Destination: 10.10.10.4,1234 LAN - [Drop] [Wed, 2003-07-30 17:48:09] - TCP Packet[SYN] - Source: 64.3.3.201,65534 WAN -Destination: 10.10.10.4,1765 LAN - [Receive] [Fri, 2003-12-05 22:07:11] - IP Packet [Type Field:8], from 20.97.173.18 to 172.31.12.157 - [Drop]

Notes: ACTION = "Drop", "Receive" EVENT = "ICMP Packet", "UDP Packet", "TCP Packet", "IP Packet"

DoS Attack/Scan

Common attacks and scans are logged.

The format is:

<DATE><TIME><PKT_TYPE>< SRC_IP><SRC_PORT ><SRC_INF>< DST_IP><DST_PORT</pre> ><DST_PORT><ACTION><DESCRIPTION> <DATE> <TIME> <PKT_TYPE> <SRC_IP> <SRC_INF> <DST_IP> <DST_INF> <ACTION> <DESCRIPTION> [Fri, 2003-12-05 21:22:07] - TCP Packet - Source:172.31.12.156,54611 ,WAN -Destination:172.31.12.157,134 ,LAN [Drop] - [FIN Scan] [Fri, 2003-12-05 21:22:38] - TCP Packet - Source:172.31.12.156,59937 ,WAN -Destination:172.31.12.157,670 ,LAN [Drop] - [Nmap Xmas Scan] [Fri, 2003-12-05 21:23:06] - TCP Packet - Source:172.31.12.156,39860 ,WAN -Destination:172.31.12.157,18000 ,LAN [Drop] - [Null Scan] [Fri, 2003-12-05 21:27:55] - TCP Packet - Source: 172.31.12.156,38009 ,WAN -Destination:172.31.12.157,15220 ,LAN [Drop] - [Full Sapu Scan] [Fri, 2003-12-05 21:28:56] - TCP Packet - Source:172.31.12.156,35128 ,WAN -Destination:172.31.12.157,38728 ,LAN [Drop] - [Full Xmas Scan] [Fri, 2003-12-05 21:30:30] - IP Packet - Source: 227.113.223.77, WAN -Destination:172.31.12.157,LAN [Drop] - [Fragment Attack] [Fri, 2003-12-05 21:30:30] - IP Packet - Source: 20.97.173.18, WAN -Destination:172.31.12.157,LAN [Drop] - [Targa3 Attack] [Fri, 2003-12-05 21:30:30] - TCP Packet - Source:3.130.176.84,37860 ,WAN -Destination:172.31.12.157,63881 ,LAN [Drop] - [Vecna Scan] [Fri, 2003-12-05 21:30:31] - ICMP Packet [Type 238] - Source:100.110.182.63, WAN - Destination:172.31.12.157,LAN [Drop] - [ICMP Flood] [Fri, 2003-12-05 21:33:52] - UDP Packet - Source:127.0.0.1,0 ,WAN -Destination:172.31.12.157,0 ,LAN [Drop] - [Fragment Attack] [Fri, 2003-12-05 19:20:00] - TCP Session - Source: 54.148.179.175,58595 ,LAN -Destination:192.168.0.1,20[FTP Data] ,WAN [Reset] - [SYN Flood] [Fri, 2003-12-05 19:21:22] - UDP Packet - Source: 172.31.12.156,7 ,LAN -Destination:172.31.12.157,7 ,WAN [Drop] - [UDP Flood] [Fri. 2003-12-05 20:59:08] - ICMP Echo Request packet - Source:192.168.0.5,LAN -Destination:172.31.12.99, WAN [Drop] - [ICMP Flood] [Fri, 2003-12-05 18:07:29] - TCP Packet - Source:192.168.0.10,1725 ,LAN -Destination:61.177.58.50,1352 ,WAN [Drop] - [TCP incomplete sessions overflow] [Fri, 2003-12-05 21:11:24] - TCP Packet - Source: 192.168.0.10,2342 ,LAN -Destination:61.177.58.50,1352 ,WAN [Drop] - [First TCP Packet not SYN] Notes: DESCRIPTION = "SYN Flood", "UDP Flood", "ICMP Flood", "IP Spoofing", "TearDrop", "Brute Force", "Ping of Death", "Fragment Attack", "Targa3 Attack", "Big Bomb" "SYN with Data", "Full Xmas Scan", "Full Head Scan", "Full Sapu Scan", "FIN Scan", "SYN FIN Scan", "Null Scan", "Nmap Xmas Scan", "Vecna Scan", "Tcp SYN RES Set", "Other Scan" "TCP incomplete sessions overflow", "TCP preconnect traffic", "TCP invalid traffic", "First TCP Packet not SYN", "First TCP Packet with no SYN" <DATE><TIME><PKT_TYPE>< SRC_IP >< DST_IP><ACTION> [Wed, 2003-07-30 17:45:17] - TCP Packet [Malformed, Length=896] - Source: 64.3.3.201 - Destination: 10.10.10.4 - [Drop] [Wed, 2003-07-30 17:45:17] - TCP Packet [Malformed, Length=1000] - Source: 64.3.3.201- Destination: 10.10.10.4 - [Forward] Notes: PKT TYPE = "TCP", "UDP", "ICMP", "Proto: Number"

Access Block Site

If keyword blocking is enabled and a keyword is specified, attempts to access a site whose URL contains a specified keyword are logged.

```
The format is

<DATE> <TIME> <EVENT> <SRC_IP> <SRC_INF> <DST_IP> <DST_INF> <ACTION>

[Fri, 2003-12-05 23:01:47] - Attempt to access blocked sites -

Source:192.168.0.10,LAN - Destination:www.google.com/,WAN - [Drop]

Notes:

EVENT = Attempt to access blocked sites

SRC_INF = LAN

DST_INF = WAN
```

All Web Sites and News Groups Visited

All Web sites and News groups that you visit are logged.

The format is <DATE> <TIME> <EVENT> <SRC_IP> <SRC_INF> <DST_IP> <DST_INF> <ACTION> [Fri, 2003-12-05 23:03:49] - Access site - Source:192.168.0.10,LAN -Destination:euro.allyes.com,WAN - [Forward] Notes: EVENT = Attempt to access blocked sites SRC_INF = LAN or WAN DST_INF = WAN or LAN

System Admin Sessions

Administrator session logins and failed attempts are logged, as well as manual or idle-time logouts.

The format is:

```
<DATE><TIME><EVENT ><SRC_IP>
<DATE><TIME><EVENT ><SRC_IP><SRC_PORT><DST_IP><DST_PORT><ACTION>

[Fri, 2003-12-05 21:07:43] - Administrator login successful - IP:192.168.0.10
[Fri, 2003-12-05 21:09:16] - Administrator logout - IP:192.168.0.10
[Fri, 2003-12-05 21:09:31] - Administrator login fail, Username error -
IP:192.168.0.10
[Fri, 2003-12-05 21:09:25] - Administrator login fail, Password error -
IP:192.168.0.10
[Fri, 2003-12-05 21:16:15] - Login screen timed out - IP:192.168.0.10
[Fri, 2003-12-05 21:07:43] - Administrator Interface Connecting[TCP] - Source
192.168.0.10,2440 - Destination 192.168.0.1,80 - [Receive]
```

```
Notes:
ACTION: Receive or Drop
```

Policy Administration LOG

<DATE> <TIME> <EVENT> <DIRECTION> <SERVICE>< DESCRIPTION >

```
[Fri, 2003-12-05 21:48:41] - Administrator Action - Inbound Policy to Service [BGP] is Added
[Fri, 2003-12-05 21:49:41] - Administrator Action - Outbound Policy to Service [BGP] is Added
[Fri, 2003-12-05 21:50:14] - Administrator Action - Inbound Policy to Service [BGP] is Modified
[Fri, 2003-12-05 21:50:57] - Administrator Action - Outbound Policy to Service
[BGP] is Modified
[Fri, 2003-12-05 21:51:14] - Administrator Action - Inbound Policy to Service
[BGP] is Deleted
[Fri, 2003-12-05 21:52:12] - Administrator Action - Inbound Policy to Service
[BGP] is Moved to Index [0]
[Fri, 2003-12-05 21:54:41] - Administrator Action - Outbound Policy to Service
[FTP] is Moved to Index [1]
[Fri, 2003-12-05 22:01:47] - Administrator Action - Inbound Policy to Service [BGP] is changed to Disable
[Fri, 2003-12-05 22:02:14] - Administrator Action - Inbound Policy to Service [BGP] is changed to Enable
[Fri, 2003-12-05 22:02:35] - Administrator Action - Outbound Policy to Service
[NFS] is changed to Disable
[Fri, 2003-12-05 22:02:52] - Administrator Action - Outbound Policy to Service
[NFS] is changed to Enable
```

Notes: DIRECTION: Inbound or Outbound SERVICE: Supported service name

Appendix C Networks, Routing, and Firewall Basics

This appendix provides an overview of IP networks, routing, and firewalls.

Related Publications

As you read this document, you may be directed to various RFC documents for further information. An RFC is a Request For Comment (RFC) published by the Internet Engineering Task Force (IETF), an open organization that defines the architecture and operation of the Internet. The RFC documents outline and define the standard protocols and procedures for the Internet. The documents are listed on the World Wide Web at *www.ietf.org* and are mirrored and indexed at many other sites worldwide.

Basic Router Concepts

Large amounts of bandwidth can be provided easily and relatively inexpensively in a local area network (LAN). However, providing high bandwidth between a local network and the Internet can be very expensive. Because of this expense, Internet access is usually provided by a slower-speed wide-area network (WAN) link such as a cable or DSL modem. In order to make the best use of the slower WAN link, a mechanism must be in place for selecting and transmitting only the data traffic meant for the Internet. The function of selecting and forwarding this data is performed by a router.

What is a Router?

A router is a device that forwards traffic between networks based on network layer information in the data and on routing tables maintained by the router. In these routing tables, a router builds up a logical picture of the overall network by gathering and exchanging information with other routers in the network. Using this information, the router chooses the best path for forwarding network traffic.

Routers vary in performance and scale, number of routing protocols supported, and types of physical WAN connection they support.

Routing Information Protocol

One of the protocols used by a router to build and maintain a picture of the network is the Routing Information Protocol (RIP). Using RIP, routers periodically update one another and check for changes to add to the routing table.

The FVS328 Firewall supports both the older RIP-1 and the newer RIP-2 protocols. Among other improvements, RIP-2 supports subnet and multicast protocols. RIP is not required for most home applications.

IP Addresses and the Internet

Because TCP/IP networks are interconnected across the world, every machine on the Internet must have a unique address to make sure that transmitted data reaches the correct destination. Blocks of addresses are assigned to organizations by the Internet Assigned Numbers Authority (IANA). Individual users and small organizations may obtain their addresses either from the IANA or from an Internet service provider (ISP). You can contact IANA at www.iana.org.

The Internet Protocol (IP) uses a 32-bit address structure. The address is usually written in dot notation (also called dotted-decimal notation), in which each group of eight bits is written in decimal form, separated by decimal points.

For example, the following binary address:

11000011 00100010 00001100 00000111

is normally written as:

195.34.12.7

The latter version is easier to remember and easier to enter into your computer.

In addition, the 32 bits of the address are subdivided into two parts. The first part of the address identifies the network, and the second part identifies the host node or station on the network. The dividing point may vary depending on the address range and the application.

There are five standard classes of IP addresses. These address classes have different ways of determining the network and host sections of the address, allowing for different numbers of hosts on a network. Each address type begins with a unique bit pattern, which is used by the TCP/IP software to identify the address class. After the address class has been determined, the software can correctly identify the host section of the address. The follow figure shows the three main address classes, including network and host sections of the address for each address type.

Class A			
Network	Node		
Class B			
Network		Node	
Class C			
	Network		Node

Figure 9-1: Three Main Address Classes

The five address classes are:

Class A

Class A addresses can have up to 16,777,214 hosts on a single network. They use an eight-bit network number and a 24-bit node number. Class A addresses are in this range:

1.x.x.x to 126.x.x.x.

Class B

Class B addresses can have up to 65,354 hosts on a network. A Class B address uses a 16-bit network number and a 16-bit node number. Class B addresses are in this range:

128.1.x.x to 191.254.x.x.

• Class C

Class C addresses can have 254 hosts on a network. Class C addresses use 24 bits for the network address and eight bits for the node. They are in this range:

192.0.1.x to 223.255.254.x.

Class D

Class D addresses are used for multicasts (messages sent to many hosts). Class D addresses are in this range:

224.0.0.0 to 239.255.255.255.

Class E

Class E addresses are for experimental use.

This addressing structure allows IP addresses to uniquely identify each physical network and each node on each physical network.

For each unique value of the network portion of the address, the base address of the range (host address of all zeros) is known as the network address and is not usually assigned to a host. Also, the top address of the range (host address of all ones) is not assigned, but is used as the broadcast address for simultaneously sending a packet to all hosts with the same network address.

Netmask

In each of the address classes previously described, the size of the two parts (network address and host address) is implied by the class. This partitioning scheme can also be expressed by a netmask associated with the IP address. A netmask is a 32-bit quantity that, when logically combined (using an AND operator) with an IP address, yields the network address. For instance, the netmasks for Class A, B, and C addresses are 255.0.0.0, 255.255.0.0, and 255.255.255.0, respectively.

For example, the address 192.168.170.237 is a Class C IP address whose network portion is the upper 24 bits. When combined (using an AND operator) with the Class C netmask, as shown here, only the network portion of the address remains:

11000000 10101000 10101010 11101101 (192.168.170.237)

combined with:

11111111 11111111 1111111 00000000 (255.255.255.0)

Equals:

11000000 10101000 10101010 00000000 (192.168.170.0)

As a shorter alternative to dotted-decimal notation, the netmask may also be expressed in terms of the number of ones from the left. This number is appended to the IP address, following a backward slash (/), as "/n." In the example, the address could be written as 192.168.170.237/24, indicating that the netmask is 24 ones followed by 8 zeros.

Subnet Addressing

By looking at the addressing structures, you can see that even with a Class C address, there are a large number of hosts per network. Such a structure is an inefficient use of addresses if each end of a routed link requires a different network number. It is unlikely that the smaller office LANs would have that many devices. You can resolve this problem by using a technique known as subnet addressing.
Subnet addressing allows us to split one IP network address into smaller multiple physical networks known as subnetworks. Some of the node numbers are used as a subnet number instead. A Class B address gives us 16 bits of node numbers translating to 64,000 nodes. Most organizations do not use 64,000 nodes, so there are free bits that can be reassigned. Subnet addressing makes use of those bits that are free, as shown below.

Figure 9-2: Example of Subnetting a Class B Address

A Class B address can be effectively translated into multiple Class C addresses. For example, the IP address of 172.16.0.0 is assigned, but node addresses are limited to 255 maximum, allowing eight extra bits to use as a subnet address. The IP address of 172.16.97.235 would be interpreted as IP network address 172.16, subnet number 97, and node number 235. In addition to extending the number of addresses available, subnet addressing provides other benefits. Subnet addressing allows a network manager to construct an address scheme for the network by using different subnets for other geographical locations in the network or for other departments in the organization.

Although the preceding example uses the entire third octet for a subnet address, note that you are not restricted to octet boundaries in subnetting. To create more network numbers, you need only shift some bits from the host address to the network address. For instance, to partition a Class C network number (192.68.135.0) into two, you shift one bit from the host address to the network address. The new netmask (or subnet mask) is 255.255.255.128. The first subnet has network number 192.68.135.0 with hosts 192.68.135.1 to 129.68.135.126, and the second subnet has network number 192.68.135.128 with hosts 192.68.135.129 to 192.68.135.254.

Note: The number 192.68.135.127 is not assigned because it is the broadcast address of the first subnet. The number 192.68.135.128 is not assigned because it is the network address of the second subnet.

The following table lists the additional subnet mask bits in dotted-decimal notation. To use the table, write down the original class netmask and replace the 0 value octets with the dotted-decimal value of the additional subnet bits. For example, to partition your Class C network with subnet mask 255.255.255.0 into 16 subnets (4 bits), the new subnet mask becomes 255.255.250.240.

Number of Bits Dotted-Decimal Value 1 128 2 192 3 224 4 240 5 248	
2 192 3 224 4 240	
3 224 4 240	
4 240	
5 248	
6 252	
7 254	
8 255	

 Table 9-1.
 Netmask Notation Translation Table for One Octet

The following table displays several common netmask values in both the dotted-decimal and the masklength formats.

Dotted-Decimal	Masklength	
255.0.0.0	/8	
255.255.0.0	/16	
255.255.255.0	/24	
255.255.255.128	/25	
255.255.255.192	/26	
255.255.255.224	/27	
255.255.255.240	/28	
255.255.255.248	/29	
255.255.255.252	/30	
255.255.255.254	/31	
255.255.255.255	/32	

Table 9-2.Netmask Formats

NETGEAR strongly recommends that you configure all hosts on a LAN segment to use the same netmask for the following reasons:

• So that hosts recognize local IP broadcast packets.

When a device broadcasts to its segment neighbors, it uses a destination address of the local network address with all ones for the host address. In order for this scheme to work, all devices on the segment must agree on which bits comprise the host address.

• So that a local router or bridge recognizes which addresses are local and which are remote.

Private IP Addresses

If your local network is isolated from the Internet (for example, when using NAT), you can assign any IP addresses to the hosts without problems. However, the IANA has reserved the following three blocks of IP addresses specifically for private networks:

10.0.0.0 - 10.255.255.255 172.16.0.0 - 172.31.255.255 192.168.0.0 - 192.168.255.255

NETGEAR recommends that you choose your private network number from this range. The DHCP server of the FVS328 Firewall is preconfigured to automatically assign private addresses.

Regardless of your particular situation, do not create an arbitrary IP address; always follow the guidelines explained here. For more information about address assignment, refer to RFC 1597, *Address Allocation for Private Internets*, and RFC 1466, *Guidelines for Management of IP Address Space*. The Internet Engineering Task Force (IETF) publishes RFCs on its Web site at *www.ietf.org*.

Single IP Address Operation Using NAT

In the past, if multiple computers on a LAN needed to access the Internet simultaneously, you had to obtain a range of IP addresses from the ISP. This type of Internet account is more costly than a single-address account typically used by a single user with a modem, rather than a router. The FVS328 Firewall employs an address-sharing method called Network Address Translation (NAT). This method allows several networked computers to share an Internet account using only a single IP address, which may be statically or dynamically assigned by your ISP.

The router accomplishes this address sharing by translating the internal LAN IP addresses to a single address that is globally unique on the Internet. The internal LAN IP addresses can be either private addresses or registered addresses. For more information about IP address translation, refer to RFC 1631, *The IP Network Address Translator (NAT)*.

The following figure illustrates a single IP address operation.

Figure 9-3: Single IP Address Operation Using NAT

This scheme offers the additional benefit of firewall-like protection because the internal LAN addresses are *not* available to the Internet through the translated connection. All incoming inquiries are filtered out by the router. This filtering can prevent intruders from probing your system. However, using port forwarding, you can allow one PC (for example, a Web server) on your local network to be accessible to outside users.

MAC Addresses and Address Resolution Protocol

An IP address alone cannot be used to deliver data from one LAN device to another. To send data between LAN devices, you must convert the IP address of the destination device to its media access control (MAC) address. Each device on an Ethernet network has a unique MAC address, which is a 48-bit number assigned to each device by the manufacturer. The technique that associates the IP address with a MAC address is known as address resolution. Internet Protocol uses the Address Resolution Protocol (ARP) to resolve MAC addresses.

If a device sends data to another station on the network and the destination MAC address is not yet recorded, ARP is used. An ARP request is broadcast onto the network. All stations on the network receive and read the request. The destination IP address for the chosen station is included as part of the message so that only the station with this IP address responds to the ARP request. All other stations discard the request.

Related Documents

The station with the correct IP address responds with its own MAC address directly to the sending device. The receiving station provides the transmitting station with the required destination MAC address. The IP address data and MAC address data for each station are held in an ARP table. The next time data is sent, the address can be obtained from the address information in the table.

For more information about address assignment, refer to the IETF documents RFC 1597, Address Allocation for Private Internets, and RFC 1466, Guidelines for Management of IP Address Space.

For more information about IP address translation, refer to RFC 1631, *The IP Network Address Translator (NAT)*.

Domain Name Server

Many of the resources on the Internet can be addressed by simple descriptive names such as *www.NETGEAR.com*. This addressing is very helpful at the application level, but the descriptive name must be translated to an IP address in order for a user to actually contact the resource. Just as a telephone directory maps names to phone numbers, or as an ARP table maps IP addresses to MAC addresses, a domain name system (DNS) server maps descriptive names of network resources to IP addresses.

When a PC accesses a resource by its descriptive name, it first contacts a DNS server to obtain the IP address of the resource. The PC sends the desired message using the IP address. Many large organizations, such as ISPs, maintain their own DNS servers and allow their customers to use the servers to look up addresses.

IP Configuration by DHCP

When an IP-based local area network is installed, each PC must be configured with an IP address. If the computers need to access the Internet, they should also be configured with a gateway address and one or more DNS server addresses. As an alternative to manual configuration, there is a method by which each PC on the network can automatically obtain this configuration information. A device on the network may act as a Dynamic Host Configuration Protocol (DHCP) server. The DHCP server stores a list or pool of IP addresses, along with other information (such as gateway and DNS addresses) that it may assign to the other devices on the network. The FVS328 Firewall has the capacity to act as a DHCP server.

The FVS328 Firewall also functions as a DHCP client when connecting to the ISP. The firewall can automatically obtain an IP address, subnet mask, DNS server addresses, and a gateway address if the ISP provides this information by DHCP.

Internet Security and Firewalls

When your LAN connects to the Internet through a router, an opportunity is created for outsiders to access or disrupt your network. A NAT router provides some protection because by the very nature of the Network Address Translation (NAT) process, the network behind the NAT router is shielded from access by outsiders on the Internet. However, there are methods by which a determined hacker can possibly obtain information about your network or at the least can disrupt your Internet access. A greater degree of protection is provided by a firewall router.

What is a Firewall?

A firewall is a device that protects one network from another, while allowing communication between the two. A firewall incorporates the functions of the NAT router, while adding features for dealing with a hacker intrusion or attack. Several known types of intrusion or attack can be recognized when they occur. When an incident is detected, the firewall can log details of the attempt, and can optionally send e-mail to an administrator notifying them of the incident. Using information from the log, the administrator can take action with the ISP of the hacker. In some types of intrusions, the firewall can fend off the hacker by discarding all further packets from the hacker's IP address for a period of time.

Stateful Packet Inspection

Unlike simple Internet sharing routers, a firewall uses a process called stateful packet inspection to ensure secure firewall filtering to protect your network from attacks and intrusions. Since user-level applications such as FTP and Web browsers can create complex patterns of network traffic, it is necessary for the firewall to analyze groups of network connection "states." Using stateful packet inspection, an incoming packet is intercepted at the network layer and then analyzed for state-related information associated with all network connections. A central cache within the firewall keeps track of the state information associated with all network connections. All traffic passing through the firewall is analyzed against the state of these connections in order to determine whether or not it will be allowed to pass through or be rejected.

Denial of Service Attack

A hacker may be able to prevent your network from operating or communicating by launching a Denial of Service (DoS) attack. The method used for such an attack can be as simple as merely flooding your site with more requests than it can handle. A more sophisticated attack may attempt to exploit some weakness in the operating system used by your router or gateway. Some operating systems can be disrupted by simply sending a packet with incorrect length information.

Ethernet Cabling

Although Ethernet networks originally used thick or thin coaxial cable, most installations currently use unshielded twisted pair (UTP) cabling. The UTP cable contains eight conductors, arranged in four twisted pairs, and terminated with an RJ45 type connector. A normal straight-through UTP Ethernet cable follows the EIA568B standard wiring as described in Table 9-1.

Pin	Wire color	Signal
1	Orange/White	Transmit (Tx) +
2	Orange	Transmit (Tx) -
3	Green/White	Receive (Rx) +
4	Blue	
5	Blue/White	
6	Green	Receive (Rx) -
7	Brown/White	
8	Brown	

 Table 9-1.
 UTP Ethernet cable wiring, straight-through

Uplink Switches and Crossover Cables

In the wiring table, the concept of transmit and receive are from the perspective of the PC. For example, the PC transmits on pins 1 and 2. At the hub, the perspective is reversed, and the hub receives on pins 1 and 2. When connecting a PC to a PC, or a hub port to another hub port, the transmit pair must be exchanged with the receive pair. This exchange is done by one of two mechanisms. Most hubs provide an uplink switch which will exchange the pairs on one port, allowing that port to be connected to another hub using a normal Ethernet cable. The second method is to use a crossover cable, which is a special cable in which the transmit and receive pairs are exchanged at one of the two cable connectors. Crossover cables are often unmarked as such, and must be identified by comparing the two connectors. Since the cable connectors are clear plastic, it is easy to place them side by side and view the order of the wire colors on each. On a straight-through cable, the color order will be the same on both connectors. On a crossover cable, the orange and blue pairs will be exchanged from one connector to the other.

Cable Quality

A twisted pair Ethernet network operating at 10 Mbits/second (10BASE-T) will often tolerate low quality cables, but at 100 Mbits/second (10BASE-Tx) the cable must be rated as Category 5, or "Cat 5", by the Electronic Industry Association (EIA). This rating will be printed on the cable jacket. A Category 5 cable will meet specified requirements regarding loss and crosstalk. In addition, there are restrictions on maximum cable length for both 10 and 100 Mbits/second networks.

Appendix D Preparing Your Network

This appendix describes how to prepare your network to connect to the Internet through the FVS328 ProSafe VPN Firewall with Dial Back-up and how to verify the readiness of broadband Internet service from an Internet service provider (ISP).

Note: If an ISP technician configured your computer during the installation of a broadband modem, or if you configured it using instructions provided by your ISP, you may need to copy the current configuration information for use in the configuration of your firewall. Write down this information before reconfiguring your computers. Refer to "Obtaining ISP Configuration Information for Windows Computers" on page D-10 or "Obtaining ISP Configuration Information for Macintosh Computers" on page D-11 for further information.

Preparing Your Computers for TCP/IP Networking

Computers access the Internet using a protocol called <u>TCP/IP</u> (<u>Transmission Control Protocol/</u><u>Internet Protocol</u>). Each computer on your network must have TCP/IP installed and selected as its networking protocol. If a <u>Network Interface Card</u> (NIC) is already installed in your PC, then TCP/IP is probably already installed as well.

Most operating systems include the software components you need for networking with TCP/IP:

- Windows[®] 95 or later includes the software components for establishing a TCP/IP network.
- Windows 3.1 does not include a TCP/IP component. You need to purchase a third-party TCP/ IP application package such as NetManage Chameleon.
- Macintosh Operating System 7 or later includes the software components for establishing a TCP/IP network.
- All versions of UNIX® or Linux® include TCP/IP components. Follow the instructions provided with your operating system or networking software to install TCP/IP on your computer.

In your IP network, each PC and the firewall must be assigned a unique IP addresses. Each PC must also have certain other IP configuration information such as a subnet mask (netmask), a domain name server (DNS) address, and a default gateway address. In most cases, you should install TCP/IP so that the PC obtains its specific network configuration information automatically from a DHCP server during bootup. For a detailed explanation of the meaning and purpose of these configuration items, refer to "Appendix C, "Networks, Routing, and Firewall Basics."

The FVS328 Firewall is shipped preconfigured as a DHCP server. The firewall assigns the following TCP/IP configuration information automatically when the computers are rebooted:

- PC or workstation IP addresses—192.168.0.2 through 192.168.0.254
- Subnet mask—255.255.255.0
- Gateway address (the firewall)—192.168.0.1

These addresses are part of the IETF-designated private address range for use in private networks.

Configuring Windows 95, 98, and Me for TCP/IP Networking

As part of the PC preparation process, you need to manually install and configure TCP/IP on each networked PC. Before starting, locate your Windows CD; you may need to insert it during the TCP/IP installation process.

Install or Verify Windows Networking Components

To install or verify the necessary components for IP networking:

- 1. On the Windows taskbar, click the Start button, point to Settings, and then click Control Panel.
- 2. Double-click the Network icon.

The Network window opens, which displays a list of installed components:

Network ?X
Configuration Identification Access Control
The following network components are installed:
■ Client for Microsoft Networks ■ NETGEAR FA310TX Fast Ethernet PCI Adapter TCP/IP
Add <u>Herrove</u> <u>Properties</u> Primary Network Logon: Client for Microsoft Networks
<u>F</u> ile and Print Sharing
Description
OK Cancel

You must have an Ethernet adapter, the TCP/IP protocol, and Client for Microsoft Networks.

Note: It is not necessary to remove any other network components shown in the Network window in order to install the adapter, TCP/IP, or Client for Microsoft Networks.

If you need to install a new adapter, follow these steps:

- a. Click the Add button.
- b. Select Adapter, and then click Add.
- c. Select the manufacturer and model of your Ethernet adapter, and then click OK.

If you need TCP/IP:

- a. Click the Add button.
- b. Select Protocol, and then click Add.
- c. Select Microsoft.
- d. Select TCP/IP, and then click OK.

If you need Client for Microsoft Networks:

- a. Click the Add button.
- b. Select Client, and then click Add.
- c. Select Microsoft.
- d. Select Client for Microsoft Networks, and then click OK.
- 3. Restart your PC for the changes to take effect.

Enabling DHCP to Automatically Configure TCP/IP Settings

After the TCP/IP protocol components are installed, each PC must be assigned specific information about itself and resources that are available on its network. The simplest way to configure this information is to allow the PC to obtain the information from the internal DHCP server of the FVS328 Firewall. To use DHCP with the recommended default addresses, follow these steps:

- 1. Connect all computers to the firewall, then restart the firewall and allow it to boot.
- 2. On each attached PC, open the Network control panel (refer to the previous section) and select the Configuration tab.
- 3. From the components list, select TCP/IP->(your Ethernet adapter) and click Properties.
- 4. In the IP Address tab, select "Obtain an IP address automatically".
- 5. Select the Gateway tab.
- 6. If any gateways are shown, remove them.
- 7. Click OK.
- 8. Restart the PC.

Repeat steps 2 through 8 for each PC on your network.

Selecting Windows' Internet Access Method

- 1. On the Windows taskbar, click the Start button, point to Settings, and then click Control Panel.
- 2. Double-click the Internet Options icon.
- 3. Select "I want to set up my Internet connection manually" or "I want to connect through a Local Area Network" and click Next.
- 4. Select "I want to connect through a Local Area Network" and click Next.

- 5. Uncheck all boxes in the LAN Internet Configuration screen and click Next.
- 6. Proceed to the end of the Wizard.

Verifying TCP/IP Properties

After your PC is configured and has rebooted, you can check the TCP/IP configuration using the utility *winipcfg.exe*:

- 1. On the Windows taskbar, click the Start button, and then click Run.
- 2. Type winipcfg, and then click OK.

The IP Configuration window opens, which lists (among other things), your IP address, subnet mask, and default gateway.

3. From the drop-down box, select your Ethernet adapter.

The window is updated to show your settings, which should match the values below if you are using the default TCP/IP settings that NETGEAR recommends:

- The IP address is between 192.168.0.2 and 192.168.0.254
- The subnet mask is 255.255.255.0
- The default gateway is 192.168.0.1

Configuring Windows NT, 2000 or XP for IP Networking

As part of the PC preparation process, you need to manually install and configure TCP/IP on each networked PC. Before starting, locate your Windows CD; you may need to insert it during the TCP/IP installation process.

Installing or Verifying Windows Networking Components

To install or verify the necessary components for IP networking:

- 1. On the Windows taskbar, click the Start button, point to Settings, and then click Control Panel.
- 2. Double-click the Network and Dialup Connections icon.
- 3. If an Ethernet adapter is present in your PC, you should see an entry for Local Area Connection. Double-click that entry.
- 4. Select Properties.

- 5. Verify that 'Client for Microsoft Networks' and 'Internet Protocol (TCP/IP)' are present. If not, select Install and add them.
- 6. Select 'Internet Protocol (TCP/IP)', click Properties, and verify that "Obtain an IP address automatically is selected.
- 7. Click OK and close all Network and Dialup Connections windows.
- 8. Make sure your PC is connected to the firewall, then reboot your PC.

Verifying TCP/IP Properties

To check your PC's TCP/IP configuration:

1. On the Windows taskbar, click the Start button, and then click Run.

The Run window opens.

2. Type cmd and then click OK.

A command window opens

3. Type ipconfig /all

Your IP Configuration information will be listed, and should match the values below if you are using the default TCP/IP settings that NETGEAR recommends:

- The IP address is between 192.168.0.2 and 192.168.0.254
- The subnet mask is 255.255.255.0
- The default gateway is 192.168.0.1
- 4. Type exit

Configuring the Macintosh for TCP/IP Networking

Beginning with Macintosh Operating System 7, TCP/IP is already installed on the Macintosh. On each networked Macintosh, you will need to configure TCP/IP to use DHCP.

MacOS 8.6 or 9.x

1. From the Apple menu, select Control Panels, then TCP/IP.

The TCP/IP Control Panel opens:

	TCP/IP
Connect via: Setup	Ethernet 🔷
Configure :	Using DHCP Server
DHCP Client ID :	
IP Address:	< will be supplied by server >
Subnet mask :	< will be supplied by server >
Router address:	< will be supplied by server >
Name server addr.:	<pre>Search domains: < will be supplied by server ></pre>
0	

- 2. From the "Connect via" box, select your Macintosh's Ethernet interface.
- From the "Configure" box, select Using DHCP Server.
 You can leave the DHCP Client ID box empty.
- 4. Close the TCP/IP Control Panel.
- 5. Repeat this for each Macintosh on your network.

MacOS X

- 1. From the Apple menu, choose System Preferences, then Network.
- 2. If not already selected, select Built-in Ethernet in the Configure list.
- 3. If not already selected, Select Using DHCP in the TCP/IP tab.
- 4. Click Save.

Verifying TCP/IP Properties for Macintosh Computers

After your Macintosh is configured and has rebooted, you can check the TCP/IP configuration by returning to the TCP/IP Control Panel. From the Apple menu, select Control Panels, then TCP/IP.

	TCP/IP
Connect via: Setup	Ethernet 🗢
Configure:	Using DHCP Server
DHCP Client ID :	
IP Address:	192.168.0.2
Subnet mask :	255.255.255.0
Router address:	192.168.0.1
Name server addr.:	Search domains:
0	

The panel is updated to show your settings, which should match the values below if you are using the default TCP/IP settings that NETGEAR recommends:

- The IP Address is between 192.168.0.2 and 192.168.0.254
- The Subnet mask is 255.255.255.0
- The Router address is 192.168.0.1

If you do not see these values, you may need to restart your Macintosh or you may need to switch the "Configure" setting to a different option, then back again to "Using DHCP Server".

Verifying the Readiness of Your Internet Account

For broadband access to the Internet, you need to contract with an Internet service provider (ISP) for a single-user Internet access account using a cable modem or DSL modem. This modem must be a separate physical box (not a card) and must provide an Ethernet port intended for connection to a Network Interface Card (NIC) in a computer. Your firewall does not support a USB-connected broadband modem.

For a single-user Internet account, your ISP supplies TCP/IP configuration information for one computer. With a typical account, much of the configuration information is dynamically assigned when your PC is first booted up while connected to the ISP, and you will not need to know that dynamic information.

In order to share the Internet connection among several computers, your firewall takes the place of the single PC, and you need to configure it with the TCP/IP information that the single PC would normally use. When the firewall's Internet port is connected to the broadband modem, the firewall appears to be a single PC to the ISP. The firewall then allows the computers on the local network to masquerade as the single PC to access the Internet through the broadband modem. The method used by the firewall to accomplish this is called Network Address Translation (NAT) or IP masquerading.

Are Login Protocols Used?

Some ISPs require a special login protocol, in which you must enter a login name and password in order to access the Internet. If you normally log in to your Internet account by running a program such as WinPOET or EnterNet, then your account uses PPP over Ethernet (PPPoE).

When you configure your router, you will need to enter your login name and password in the router's configuration menus. After your network and firewall are configured, the firewall will perform the login task when needed, and you will no longer need to run the login program from your PC. It is not necessary to uninstall the login program.

What Is Your Configuration Information?

More and more, ISPs are dynamically assigning configuration information. However, if your ISP does not dynamically assign configuration information but instead uses fixed configurations, your ISP should have given you the following basic information for your account:

- An IP address and subnet mask
- A gateway IP address, which is the address of the ISP's router
- One or more domain name server (DNS) IP addresses
- Host name and domain suffix

For example, your account's full server names may look like this:

mail.xxx.yyy.com

In this example, the domain suffix is xxx.yyy.com.

If any of these items are dynamically supplied by the ISP, your firewall automatically acquires them.

If an ISP technician configured your PC during the installation of the broadband modem, or if you configured it using instructions provided by your ISP, you need to copy the configuration information from your PC's Network TCP/IP Properties window or Macintosh TCP/IP Control Panel before reconfiguring your PC for use with the firewall. These procedures are described next.

Obtaining ISP Configuration Information for Windows Computers

As mentioned above, you may need to collect configuration information from your PC so that you can use this information when you configure the FVS328 Firewall. Following this procedure is only necessary when your ISP does not dynamically supply the account information.

To get the information you need to configure the firewall for Internet access:

- 1. On the Windows taskbar, click the Start button, point to Settings, and then click Control Panel.
- 2. Double-click the Network icon.

The Network window opens, which displays a list of installed components.

3. Select TCP/IP, and then click Properties.

The TCP/IP Properties dialog box opens.

4. Select the IP Address tab.

If an IP address and subnet mask are shown, write down the information. If an address is present, your account uses a fixed (static) IP address. If no address is present, your account uses a dynamically-assigned IP address. Click "Obtain an IP address automatically".

5. Select the Gateway tab.

If an IP address appears under Installed Gateways, write down the address. This is the ISP's gateway address. Select the address and then click Remove to remove the gateway address.

6. Select the DNS Configuration tab.

If any DNS server addresses are shown, write down the addresses. If any information appears in the Host or Domain information box, write it down. Click Disable DNS.

7. Click OK to save your changes and close the TCP/IP Properties dialog box.

You are returned to the Network window.

- 8. Click OK.
- 9. Reboot your PC at the prompt. You may also be prompted to insert your Windows CD.

Obtaining ISP Configuration Information for Macintosh Computers

As mentioned above, you may need to collect configuration information from your Macintosh so that you can use this information when you configure the FVS328 Firewall. Following this procedure is only necessary when your ISP does not dynamically supply the account information.

To get the information you need to configure the firewall for Internet access:

1. From the Apple menu, select Control Panels, then TCP/IP.

The TCP/IP Control Panel opens, which displays a list of configuration settings. If the "Configure" setting is "Using DHCP Server", your account uses a dynamically-assigned IP address. In this case, close the Control Panel and skip the rest of this section.

- 2. If an IP address and subnet mask are shown, write down the information.
- 3. If an IP address appears under Router address, write down the address. This is the ISP's gateway address.
- 4. If any Name Server addresses are shown, write down the addresses. These are your ISP's DNS addresses.
- 5. If any information appears in the Search domains information box, write it down.
- 6. Change the "Configure" setting to "Using DHCP Server".
- 7. Close the TCP/IP Control Panel.

Restarting the Network

Once you have set up your computers to work with the firewall, you must reset the network for the devices to be able to communicate correctly. Restart any computer that is connected to the firewall.

After configuring all of your computers for TCP/IP networking and restarting them, and connecting them to the local network of your FVS328 Firewall, you are ready to access and configure the firewall.

Appendix E Virtual Private Networking

There have been many improvements in the Internet, including Quality of Service, network performance, and inexpensive technologies, such as DSL. But one of the most important advances has been in Virtual Private Networking (VPN) Internet Protocol security (IPSec). IPSec is one of the most complete, secure, and commercially available, standards-based protocols developed for transporting data.

What is a VPN?

A VPN is a shared network, where private data is segmented from other traffic, so that only the intended recipient has access. The term VPN was originally used to describe a secure connection over the Internet. Today, however, VPN is also used to describe private networks, such as Frame Relay, Asynchronous Transfer Mode (ATM), and Multiprotocol Label Switching (MPLS).

A key aspect of data security is that the data flowing across the network is protected by encryption technologies. Private networks lack data security, which allows data attackers to tap directly into the network and read the data. IPSec-based VPNs use encryption to provide data security, which increases the network's resistance to data tampering or theft.

IPSec-based VPNs can be created over any type of IP network, including the Internet, Frame Relay, ATM, and MPLS, but only the Internet is ubiquitous and inexpensive.

VPNs are traditionally used for:

• **Intranets:** Intranets connect an organization's locations. These locations range from the headquarters offices, to branch offices, to a remote employee's home. Often this connectivity is used for e-mail and for sharing applications and files. While Frame Relay, ATM, and MPLS accomplish these tasks, the shortcomings of each limits connectivity. The cost of connecting home users is also very expensive compared to Internet-access technologies, such as DSL or cable. Because of this, organizations are moving their networks to the Internet, which is inexpensive, and using IPSec to create these networks.

- **Remote Access:** Remote access enables telecommuters and mobile workers to access e-mail and business applications. A dial-up connection to an organization's modem pool is one method of access for remote workers, but is expensive because the organization must pay the associated long distance telephone and service costs. Remote access VPNs greatly reduce expenses by enabling mobile workers to dial a local Internet connection and then set up a secure IPSec-based VPN communications to their organization.
- **Extranets**: Extranets are secure connections between two or more organizations. Common uses for extranets include supply-chain management, development partnerships, and subscription services. These undertakings can be difficult using legacy network technologies due to connection costs, time delays, and access availability. IPSec-based VPNs are ideal for extranet connections. IPSec-capable devices can be quickly and inexpensively installed on existing Internet connections.

What is IPSec and How Does It Work?

IPSec is an Internet Engineering Task Force (IETF) standard suite of protocols that provides data authentication, integrity, and confidentiality as data is transferred between communication points across IP networks. IPSec provides data security at the IP packet level. A packet is a data bundle that is organized for transmission across a network, and includes a header and payload (the data in the packet). IPSec emerged as a viable network security standard because enterprises wanted to ensure that data could be securely transmitted over the Internet. IPSec protects against possible security exposures by protecting data while in transit.

IPSec Security Features

IPSec is the most secure method commercially available for connecting network sites. IPSec was designed to provide the following security features when transferring packets across networks:

- Authentication: Verifies that the packet received is actually from the claimed sender.
- Integrity: Ensures that the contents of the packet did not change in transit.
- Confidentiality: Conceals the message content through encryption.

IPSec Components

IPSec contains the following elements:

- Encapsulating Security Payload (ESP): Provides confidentiality, authentication, and integrity.
- Authentication Header (AH): Provides authentication and integrity.
- Internet Key Exchange (IKE): Provides key management and Security Association (SA) management.

Encapsulating Security Payload (ESP)

ESP provides authentication, integrity, and confidentiality, which protect against data tampering and, most importantly, provides message content protection.

IPSec provides an open framework for implementing industry standard algorithms, such as SHA and MD5. The algorithms IPSec uses produce a unique and unforgeable identifier for each packet, which is a data equivalent of a fingerprint. This fingerprint allows the device to determine if a packet has been tampered with. Furthermore, packets that are not authenticated are discarded and not delivered to the intended receiver.

ESP also provides all encryption services in IPSec. Encryption translates a readable message into an unreadable format to hide the message content. The opposite process, called decryption, translates the message content from an unreadable format to a readable message. Encryption/ decryption allows only the sender and the authorized receiver to read the data. In addition, ESP has an option to perform authentication, called ESP authentication. Using ESP authentication, ESP provides authentication and integrity for the payload and not for the IP header.

The ESP header is inserted into the packet between the IP header and any subsequent packet contents. However, because ESP encrypts the data, the payload is changed. ESP does not encrypt the ESP header, nor does it encrypt the ESP authentication.

Authentication Header (AH)

AH provides authentication and integrity, which protect against data tampering, using the same algorithms as ESP. AH also provides optional anti-replay protection, which protects against unauthorized retransmission of packets. The authentication header is inserted into the packet between the IP header and any subsequent packet contents. The payload is not touched.

Although AH protects the packet's origin, destination, and contents from being tampered with, the identity of the sender and receiver is known. In addition, AH does not protect the data's confidentiality. If data is intercepted and only AH is used, the message contents can be read. ESP protects data confidentiality. For added protection in certain cases, AH and ESP can be used together. In the following table, IP HDR represents the IP header and includes both source and destination IP addresses.

IP HDR	TCP	Data	
acket with IP	Sec Authentication	on Header	

Figure E-2: Original packet and packet with IPSec Authentication Header

IKE Security Association

IPSec introduces the concept of the Security Association (SA). An SA is a logical connection between two devices transferring data. An SA provides data protection for unidirectional traffic by using the defined IPSec protocols. An IPSec tunnel typically consists of two unidirectional SAs, which together provide a protected, full-duplex data channel.

The SAs allow an enterprise to control exactly what resources may communicate securely, according to security policy. To do this an enterprise can set up multiple SAs to enable multiple secure VPNs, as well as define SAs within the VPN to support different departments and business partners.

Mode

SAs operate using modes. A mode is the method in which the IPSec protocol is applied to the packet. IPSec can be used in tunnel mode or transport mode. Typically, the tunnel mode is used for gateway-to-gateway IPSec tunnel protection, while transport mode is used for host-to-host IPSec tunnel protection. A gateway is a device that monitors and manages incoming and outgoing network traffic and routes the traffic accordingly. A host is a device that sends and receives network traffic.

- **Transport Mode:** The transport mode IPSec implementation encapsulates only the packet's payload. The IP header is not changed. After the packet is processed with IPSec, the new IP packet contains the old IP header (with the source and destination IP addresses unchanged) and the processed packet payload. Transport mode does not shield the information in the IP header; therefore, an attacker can learn where the packet is coming from and where it is going to. The previous packet diagrams show a packet in transport mode.
- **Tunnel Mode:** The tunnel mode IPSec implementation encapsulates the entire IP packet. The entire packet becomes the payload of the packet that is processed with IPSec. A new IP header is created that contains the two IPSec gateway addresses. The gateways perform the encapsulation/decapsulation on behalf of the hosts. Tunnel mode ESP prevents an attacker from analyzing the data and deciphering it, as well as knowing who the packet is from and where it is going.

Note: AH and ESP can be used in both transport mode or tunnel mode.

Packet with IPSec Authentication Header (in Tunnel Mode)

Key Management

IPSec uses the Internet Key Exchange (IKE) protocol to facilitate and automate the SA setup and the exchange of keys between parties transferring data. Using keys ensures that only the sender and receiver of a message can access it.

IPSec requires that keys be re-created, or refreshed, frequently, so that the parties can communicate securely with each other. IKE manages the process of refreshing keys; however, a user can control the key strength and the refresh frequency. Refreshing keys on a regular basis ensures data confidentiality between sender and receiver.

Understand the Process Before You Begin

This document provides case studies on how to configure secure IPSec VPN tunnels. This document assumes the reader has a working knowledge of NETGEAR management systems.

NETGEAR is a member of the VPN Consortium, a group formed to facilitate IPSec VPN vendor interoperability. The VPN Consortium has developed specific scenarios to aid system administrators in the often confusing process of connecting two different vendor implementations of the IPSec standard. The case studies in this appendix follow the addressing and configuration mechanics defined by the VPN Consortium. Additional information regarding inter-vendor interoperability may be found at *http://www.vpnc.org/interop.html*.

It is a good idea to gather all the necessary information required to establish a VPN before you begin the configuration process. You should understand whether the firmware is up to date, all of the addresses that will be necessary, and all of the parameters that need to be set on both sides. Try to understand any incompatibilities before you begin, so that you minimize any potential complications which may arise from normal firewall or WAN processes.

If you are not a full-time system administrator, it is a good idea to familiarize yourself with the mechanics of a VPN. The brief description in this appendix will help. Other good sources include:

- The NETGEAR VPN Tutorial *http://www.netgear.com/planetvpn/pvpn_2.html*
- The VPN Consortium *http://www.vpnc.org/*
- The VPN bibliography in "Additional Reading" on page E-11.

VPN Process Overview

Even though IPSec is standards-based, each vendor has its own set of terms and procedures for implementing the standard. Because of these differences, it may be a good idea to review some of the terms and the generic processes for connecting two gateways before diving into the specifics.

Network Interfaces and Addresses

The VPN gateway is aptly named because it functions as a "gatekeeper" for each of the computers connected on the Local Area Network behind it.

In most cases, each Gateway will have a "public" facing address (WAN side) and a "private" facing address (LAN side). These addresses are referred to as the "network interface" in documentation regarding the construction of VPN communication. Please note that the addresses used in the example do not use full TCP/IP notation.

Interface Addressing

This TechNote uses example addresses provided the VPN Consortium. It is important to understand that you will be using addresses specific to the devices that you are attempting to connect via IPSec VPN.

Figure E-4: VPNC Example Network Interface Addressing

It is also important to make sure the addresses do not overlap or conflict. That is, each set of addresses should be separate and distinct.

Gateway	LAN or WAN	VPNC Example Address
Gateway A	LAN (Private)	10.5.6.1
Gateway A	WAN (Public)	14.15.16.17
Gateway B	LAN (Private)	22.23.24.25
Gateway B	WAN (Public)	172.23.9.1

 Table 9-2.
 WAN (Internet/Public) and LAN (Internal/Private) Addressing

It will also be important to know the subnet mask of both gateway LAN Connections.

Table 9-3.Subnet Addressing

Gateway	LAN or WAN	Interface Name	Example Subnet Mask
Gateway A	LAN (Private)	Subnet Mask A	255.255.255.0
Gateway B	LAN (Private)	Subnet Mask B	255.255.255.0

Firewalls

It is important to understand that many gateways are also firewalls. VPN tunnels cannot function properly if firewall settings disallow all incoming traffic. Please refer to the firewall instructions for both gateways to understand how to open specific protocols, ports, and addresses that you intend to allow.

Setting Up a VPN Tunnel Between Gateways

An SA, frequently called a tunnel, is the set of information that allows two entities (networks, PCs, routers, firewalls, gateways) to "trust each other" and communicate securely as they pass information over the Internet.

The SA contains all the information necessary for gateway A to negotiate a secure and encrypted communication stream with gateway B. This communication is often referred to as a "tunnel." The gateways contain this information so that it does not have to be loaded onto every computer connected to the gateways.

Each gateway must negotiate its Security Association with another gateway using the parameters and processes established by IPSec. As illustrated below, the most common method of accomplishing this process is via the Internet Key Exchange (IKE) protocol which automates some of the negotiation procedures. Alternatively, you can configure your gateways using manual key exchange, which involves manually configuring each parameter on both gateways.

1. The IPSec software on Host A initiates the IPSec process in an attempt to communicate with Host B. The two computers then begin the Internet Key Exchange (IKE) process.

2. IKE Phase I.

- a. The two parties negotiate the encryption and authentication algorithms to use in the IKE SAs.
- b. The two parties authenticate each other using a predetermined mechanism, such as preshared keys or digital certificates.
- c. A shared master key is generated by the Diffie-Hellman Public key algorithm within the IKE framework for the two parties. The master key is also used in the second phase to derive IPSec keys for the SAs.
- 3. IKE Phase II.
 - a. The two parties negotiate the encryption and authentication algorithms to use in the IPSec SAs.
 - b. The master key is used to derive the IPSec keys for the SAs. Once the SA keys are created and exchanged, the IPSec SAs are ready to protect user data between the two VPN gateways.
- 4. **Data transfer.** Data is transferred between IPSec peers based on the IPSec parameters and keys stored in the SA database.
- 5. **IPSec tunnel termination.** IPSec SAs terminate through deletion or by timing out.

VPNC IKE Security Parameters

It is important to remember that both gateways must have the identical parameters set for the process to work correctly. The settings in these examples follow the examples given for Scenario 1 of the VPN Consortium.

VPNC IKE Phase I Parameters

The IKE Phase 1 parameters used:

- Main mode
- TripleDES
- SHA-1
- MODP group 1
- Ppre-shared secret of "hr5xb84l6aa9r6"
- SA lifetime of 28800 seconds (eight hours)

VPNC IKE Phase II Parameters

The IKE Phase 2 parameters used in Scenario 1 are:

- TripleDES
- SHA-1
- ESP tunnel mode
- MODP group 1
- Perfect forward secrecy for rekeying
- SA lifetime of 28800 seconds (one hour)

Testing and Troubleshooting

Once you have completed the VPN configuration steps you can use PCs, located behind each of the gateways, to ping various addresses on the LAN side of the other gateway.

You can troubleshoot connections using the VPN status and log details on the NETGEAR gateway to determine if IKE negotiation is working. Common problems encountered in setting up VPNs include:

- Parameters may be configured differently on Gateway A vs. Gateway B.
- Two LANs set up with similar or overlapping addressing schemes.
- So many required configuration parameters mean errors such as mistyped information or mismatched parameter selections on either side are more likely to happen.

Additional Reading

- Building and Managing Virtual Private Networks, Dave Kosiur, Wiley & Sons; ISBN: 0471295264
- *Firewalls and Internet Security: Repelling the Wily Hacker*, William R. Cheswick and Steven M. Bellovin, Addison-Wesley; ISBN: 0201633574
- VPNs A Beginners Guide, John Mains, McGraw Hill; ISBN: 0072191813
- [FF98] Floyd, S., and Fall, K., Promoting the Use of End-to-End Congestion Control in the Internet. IEEE/ACM Transactions on Networking, August 1999.

Relevant RFCs listed numerically:

- [RFC 791] Internet Protocol DARPA Internet Program Protocol Specification, Information Sciences Institute, USC, September 1981.
- [RFC 1058] Routing Information Protocol, C Hedrick, Rutgers University, June 1988.
- [RFC 1483] *Multiprotocol Encapsulation over ATM Adaptation Layer 5*, Juha Heinanen, Telecom Finland, July 1993.
- [RFC 2401] S. Kent, R. Atkinson, <u>Security Architecture for the Internet Protocol</u>, RFC 2401, November 1998.
- [RFC 2407] D. Piper, <u>The Internet IP Security Domain of Interpretation for ISAKMP</u>, November 1998.
- [RFC 2474] K. Nichols, S. Blake, F. Baker, D. Black, <u>Definition of the Differentiated Services</u> <u>Field (DS Field) in the IPv4 and IPv6 Headers</u>, December 1998.
- [RFC 2475] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, <u>An</u> <u>Architecture for Differentiated Services</u>, December 1998.
- [RFC 2481] K. Ramakrishnan, S. Floyd, <u>A Proposal to Add Explicit Congestion Notification</u> (ECN) to IP, January 1999.
- [RFC 2408] D. Maughan, M. Schertler, M. Schneider, J. Turner, <u>Internet Security Association</u> and Key Management Protocol (ISAKMP).
- [RFC 2409] D. Harkins, D.Carrel, <u>Internet Key Exchange</u> (IKE) protocol.
- [RFC 2401] S. Kent, R. Atkinson, Security Architecture for the Internet Protocol.

Appendix F NETGEAR VPN Configuration FVS318 or FVM318 to FVS328

This appendix provides a case study on how to configure a secure IPSec VPN tunnel between a NETGEAR FVS318 or FVM318 to a FVS328. The configuration options and screens for the FVS318 and FVM318 are the same.

Configuration Profile

The configuration in this document follows the addressing and configuration mechanics defined by the VPN Consortium. Gather all the necessary information before you begin the configuration process. Verify whether the firmware is up to date, all of the addresses that will be necessary, and all of the parameters that need to be set on both sides. Check that there are no firewall restrictions.

	-	
VP	N Consortium Scenario:	Scenario 1
Тур	be of VPN	LAN-to-LAN or Gateway-to-Gateway (not PC/Client-to-Gateway)
Se	curity Scheme:	IKE with Preshared Secret/Key (not Certificate-based)
Da	te Tested:	December 2003
Мс	del/Firmware Tested:	
	NETGEAR-Gateway A	FVS318 firmware version A1.4 or 2.0; FVM318 firmware version 1.1
	NETGEAR-Gateway B	FVS328 with firmware version 1.0 Release 00
IP.	Addressing:	
	NETGEAR-Gateway A	Static IP address
	NETGEAR-Gateway B	Static IP address

Table F-1. Summary

Figure F-1: Addressing and Subnet Used for Examples

Step-By-Step Configuration of FVS318 or FVM318 Gateway A

1. Log in to the FVS318 or FVM318 labeled Gateway A as in the illustration.

Out of the box, the FVS318 or FVM318 is set for its default LAN address of *http://192.168.0.1* with its default user name of **admin** and default password of **password**. For this example we will assume you have set the local LAN address as 10.5.6.1 for Gateway A and have set your own password.

220 W W					
	#	Enable	Connection Name	Local IPSec ID	Remote IPSec ID
\odot	1		-	10	-
0	2	2	-2	-	- 25
0	3	-	-	14	
0	4	-	-	, i s	-
0	5		7.9	1.	59
0	6	12	22	14	-
0	7	-	-		-2
0	8	-	- 1	3 	.

Figure F-2: NETGEAR FVS318 VPN Settings Pre-Configuration
2. Click the VPN Settings link on the left side of the Settings management GUI. Click the radio button of first available VPN leg (all 8 links are available in the example). Click the Edit button below. This will take you to the VPN Settings – Main Mode Menu.

Connection Name	to FV	S328		
ocal IPSec Identifier	14.15	.16.17		
Remote IPSec Identifier	22.23	.24.25		
unnel can be accessed from	a sub	onet of I	ocal ad	dress
Local LAN start IP Address	10	.5	. 6	. 0
Local LAN finish IP Address	0	.0	.0	.0
Local LAN IP Subnetmask	255	255	255	.0
unnel can access	a sub	onet of r	emote e	addres
Remote LAN start IP Address	172	. 23	.9	. 0
Remote LAN finish IP Address	0	.0	.0	.0
Remote LAN IP Subnetmask	255	255	255	0
Remote WAN IP or FQDN	22.23	.24.25		

Figure F-3: Figure 3 – NETGEAR FVS318 VPN Settings (part 1) – Main Mode

- In the Connection Name box, enter in a unique name for the VPN tunnel to be configured between the NETGEAR devices. For this example we have used toFVS328.
- Enter a Local IPSec Identifier name for the NETGEAR FVS318 Gateway A. This name must be entered in the other endpoint as Remote IPSec Identifier. In this example we used 14.15.16.17 as the local identifier.
- Enter a Remote IPSec Identifier name for the remote NETGEAR FVS328 Gateway B. This name must be entered in the other endpoint as Local IPSec Identifier. In this example we used 22.23.24.25 as the remote identifier.
- Choose a subnet from local address from the Tunnel can be accessed from pull-down menu.
- Type the starting LAN IP Address of Gateway A (10.5.6.1 in our example) in the Local IP Local LAN start IP Address field.
- Type the finishing LAN IP Address of Gateway A (0.0.0.0 in our example) in the Local IP Local LAN finish IP Address field.
- Type the LAN Subnet Mask of Gateway A (255.255.255.0 in our example) in the Local LAN IP Subnetmask field.

- Choose a subnet from local address from the Tunnel can access pull-down menu.
- Type the starting LAN IP Address of Gateway B (172.23.9.1 in our example) in the Local IP Remote LAN Start IP Address field.
- Type the finishing LAN IP Address of Gateway B (0.0.0.0 in our example) in the Local IP Remote LAN Finish IP Address field.
- Type the LAN Subnet Mask of Gateway B (**255.255.255.0** in our example) in the Remote LAN IP Subnetmask field.
- Type the WAN IP address (22.23.24.25 in our example) of Gateway B in the Remote WAN IP or FQDN field.

Secure Association	Main Mode	*
Perfect Forward Secrecy	Enabled	O Disabled
Encryption Protocol	3DES 💌	
PreShared Key	hr5xb8416aa9r6	
Key Life	3600	Seconds
IKE Life Time	28800	Seconds
NETBIOS Enable	L	

Figure F-4: Figure 4 – NETGEAR FVS318 VPN Settings (part 2) – Main Mode

- From the Secure Association drop-down box, select Main Mode.
- Next to Perfect Forward Secrecy, select the Enabled radio button.
- From the Encryption Protocol drop-down box, select 3DES.
- In the PreShared Key box, type a unique text string to be used as the shared key between Gateway A and Gateway B. In this example we used hr5xb84l6aa9r6. You must make sure the key is the same for both gateways.
- In the Key Life box, enter in 3600 seconds.
- In the IKE Life Time, enter 28800 seconds.
- Check the NETBIOS Enable box if you wish to pass NetBIOS traffic over the VPN tunnel, allowing functions such as Microsoft Network Neighborhood browsing.
- 3. Click the Apply button in the lower center of the screen to save all changes and return to the VPN Settings screen.
- 4. When the screen returns to the VPN Settings, make sure the Enable check box is selected.

Step-By-Step Configuration of FVS328 Gateway B

1. Log in to the NETGEAR FVS328 labeled Gateway B as in the illustration.

Out of the box, the FVS328 is set for its default LAN address of *http://192.168.0.1* with its default user name of **admin** and default password of **password**. For this example we will assume you have set the local LAN address as 172.23.9.1 for Gateway B and have set your own user name and password.

2. Click the IKE Policies link under the VPN category link on the left side of the Settings management GUI. This will open the IKE Policies Menu. Click Add. This will open a new screen titled IKE Policy Configuration.

General	
Policy Name	FVS318
DirectionЛуре	Both Directions 💌
Exchange Mode	Main Mode 🗾
Local	
Local Identity Type	WAN IP Address
Local Identity Data	22.23.24.25
Remote	
Remote Identity Type	Fully Qualified Domain Name
Remote Identity Data	netgear.dyndns.org

Figure F-5: NETGEAR FVS328 IKE Policy Configuration – Part 1

- Enter an appropriate name for the policy in the Policy Name field. This name is not supplied to the remote VPN Endpoint. It is used to help you manage the IKE policies. In our example we have used FVS318 as the Policy Name. In the Policy Name field type FVS318.
- From the Direction/Type drop-down box, select Both Directions.
- From the Exchange Mode drop-down box, select Main Mode.
- From the Local Identity drop-down box, select WAN IP Address (WAN IP address will automatically be populated into the Local Identity Data field after policy is applied).
- From the Remote Identity drop-down box, select Remote WAN IP (WAN IP address will automatically be populated into the Local Identity Data field after policy is applied).

KE SA Parameters	
Encryptian Algorithm	3DES 💌
uthentication Algorithm	MD5
wthentication Method	Pre-shared Key
	hr5xb84l6aa9r6
	C RSA Signature (requires Certificate)
Diffie-Hellman (DH) Group	Group 1 (768 Bit) 💌
A Life Time	28800 (secs)

Figure F-6: NETGEAR FVS328 IKE Policy Configuration – Part 2

- From the Encryption Algorithm drop-down box, select 3DES.
- From the Authentication Algorithm drop-down box, select MD5.
- From the Authentication Method radio button, select Pre-shared Key.
- In the Pre-Shared Key field, type **hr5xb84l6aa9r6**. You must make sure the key is the same for both gateways.
- From the Diffie-Hellman (DH) Group drop-down box, select Group 1 (768 Bit).
- In the SA Life Time field, type 28800.
- 3. Click the Apply Button. This will bring you back to the IKE Policies Menu.

licy	Tabl	9						
_	#	Name	Mode	Local ID	Remote ID	Encr	Auth	DH
•	4	FVS318	Main	22.23.24.25	netgear.dyndns.org	3DES	MD5	Group 1 (768 Bi

Figure F-7: NETGEAR FVS328 IKE Policies (Post Configuration)

The FVS318 IKE Policy is now displayed in the IKE Policies page.

4. Click the VPN Policies link under the VPN category link on the left side of the Settings management GUI. This will take you to the VPN Policies Menu page. Click Add Auto Policy. This will open a new screen titled VPN – Auto Policy.

General		
Policy Name	to318	
IKE policy	FVS318 -	
Remote VPN Endpoint	Address Type: IP Address	-
	Address Data: 14.15.16.17	
SA Life Time	300 (Seconds)	
	0 (Kybtes)	
✓ IPSec PFS	PFS Key Group: Group 2 (1024 Bit) 💌	
Traffic Selector		
Local IP	Subnet address 💌	
	Start IP address: 172 . 23 . 9 . 1	
	Finish IP address: 0 . 0 . 0 . 0	
	Subnet Mask: 255 . 255 . 255 . 0	

Figure F-8: NETGEAR FVS328 VPN – Auto Policy (part 1)

- Enter a unique name to identify this policy. This name is not supplied to the remote VPN endpoint. In our example we have used "to318" as the Policy Name. In the Policy Name field type to318.
- From the IKE policy drop-down box, select the IKE Policy that was set up in the earlier step – this being the FVS318 IKE Policy.
- From the Remote VPN Endpoint Address Type drop-down box, select IP Address.
- Type the WAN IP Address of Gateway A (14.15.16.17 in our example) in the Remote VPN Endpoint Address Data field.
- Type **300** in the SA Life Time (Seconds) field.
- Type **0** in the SA Life Time (Kbytes) field.
- Check the IPSec PFS check box.
- From the PFS Key Group drop-down box, select Group 2 (1024 Bit).
- From the Traffic Selector Local IP drop-down box, select Subnet address.
- Type the starting LAN IP Address of Gateway B (172.23.9.1 in our example) in the Local IP Start IP Address field.
- Type the finishing LAN IP Address of Gateway B (0.0.0.0 in our example) in the Local IP Finish IP Address field.

Type the LAN Subnet Mask of Gateway B (255.255.255.0 in our example) in the Local IP Subnet Mask field.

Remote IP	Subnet address 💌
	Start IP address: 10 . 5 . 6 . 1
	Finish IP address: 0 . 0 . 0 . 0
	Subnet Mask: 255.255.0
AH Configuration	
AH Configuration	tication Authentication Algorithm: MD5 🗾
Enable Authen	
Enable Authen	tion Encryption Algorithm: 3DES

Figure F-9: NETGEAR FVS328 VPN – Auto Policy (part 2)

- From the Traffic Selector Remote IP drop-down box, select Subnet address.
- Type the starting LAN IP Address of Gateway A (10.5.6.1 in our example) in the Remote IP Start IP Address field.
- Type the finishing LAN IP Address of Gateway A (0.0.0.0 in our example) in the Remote IP Finish IP Address field.
- Type the LAN Subnet Mask of Gateway A (255.255.255.0 in our example) in the Remote IP Subnet Mask field.
- From the AH Configuration Authentication Algorithm drop-down box, select MD5.
- Select Enable Encryption in the ESP Configuration Enable Encryption check box.
- From the ESP Configuration Encryption Algorithm drop-down box, select 3DES.
- Select Enable Authentication in the ESP Configuration Enable Authentication check box.
- From the ESP Configuration Authentication Algorithm drop-down box, select MD5.
- Select NETBIOS Enable in the NETBIOS Enable check box.
- 5. Click the Apply Button. You will be taken back to the VPN Policies Menu page.

olic	y T	able						
	#	Enable	Name	Туре	Local	Remote	AH	ESF
•	1	V	to 318	Auto	172.23.9.1/255.255.255.0	10.5.6.1/255.255.255.0	Disabled	ESF
					Edit Move D	Delete		

Figure F-10: NETGEAR FVS328 VPN Policies Menu (Post Configuration)

6. When the screen returns to the **VPN Policies**, make sure the **Enable** check box is selected. Click the **Apply** button.

Test the VPN Connection

- 1. From a PC behind the NETGEAR FVS318 or FVM318 gateway A attempt to ping the remote FVS328 gateway B LAN Interface address (example address 172.23.9.1)
- 2. From a PC behind the FVS328 gateway B attempt to ping the remote NETGEAR FVS318 or FVM318 gateway A LAN Interface address (example address 10.5.6.1)
- 3. Click the Broadband Status link on the left side of the FVS328 Settings management GUI. Click the Show VPN Status button below. This will take you to the IPSec Connection Status Screen. If the connection is functioning properly, the State fields will show "Estab."
- 4. Click the Router Status link on the left side of the FVS318 Settings management GUI. Click the Show VPN Logs button below. NETGEAR log files should be similar to the example below.

Appendix G NETGEAR VPN Configuration FVS318 or FVM318 with FQDN to FVS328

This appendix provides a case study on how to configure a VPN tunnel between a NETGEAR FVS318 or FVM318 to a FVS328 using a Fully Qualified Domain Name (FQDN) to resolve the public address of one or both routers. The configurations screens and settings for the FVS318 and FVM318 are the same.

Configuration Profile

The configuration in this document follows the addressing and configuration mechanics defined by the VPN Consortium. Gather all the necessary information before you begin the configuration process. Verify whether the firmware is up to date, all of the addresses that will be necessary, and all of the parameters that need to be set on both sides. Check that there are no firewall restrictions.

VP	N Consortium Scenario:	Scenario 1
Тур	be of VPN	LAN-to-LAN or Gateway-to-Gateway (not PC/Client-to-Gateway)
Se	curity Scheme:	IKE with Preshared Secret/Key (not Certificate-based)
Da	te Tested:	December 2003
Мо	del/Firmware Tested:	
	NETGEAR-Gateway A	FVS318 firmware version A1.4 or 2.0; FVM318 firmware version 1.1
	NETGEAR-Gateway B	FVS328 with firmware version 1.0 Release 00
IP .	Addressing:	
	NETGEAR-Gateway A	Fully Qualified Domain Name (FQDN)
	NETGEAR-Gateway B	Static IP address

Figure G-1: Addressing and Subnet Used for Examples

Using DDNS and Fully Qualified Domain Names (FQDN)

Many ISPs (Internet Service Providers) provide connectivity to their customers using dynamic instead of static IP addressing. This means that a user's IP address does not remain constant over time, which presents a challenge for gateways attempting to establish VPN connectivity.

A Dynamic DNS (DDNS) service allows a user whose public IP address is dynamically assigned to be located by a host or domain name. It provides a central public database where information (such as email addresses, host names and IP addresses) can be stored and retrieved. Now, a gateway can be configured to use a 3rd party service in lieu of a permanent and unchanging IP address to establish bi-directional VPN connectivity.

To use DDNS, you must register with a DDNS service provider. Example DDNS Service Providers include:

 Table G-1.
 Example DDNS Service Providers

DynDNS	www.dyndns.org
TZO.com	netgear.tzo.com
ngDDNS	ngddns.iego.net

In this example, Gateway A is configured using an example FQDN provided by a DDNS Service provider. In this case we established the hostname **netgear.dyndns.org** for Gateway A using the

DynDNS service. Gateway B will use the DDNS Service Provider when establishing a VPN tunnel.

In order to establish VPN connectivity Gateway A must be configured to use Dynamic DNS, and Gateway B must be configured to use a DNS hostname to find Gateway A provided by a DDNS Service Provider. Again, the following step-by-step procedures assume that you have already registered with a DDNS Service Provider and have the configuration information necessary to set up the gateways.

Step-By-Step Configuration of FVS318 or FVM318 Gateway A

1. Log in to the FVS318 or FVM318 labeled Gateway A as in the illustration.

Out of the box, the FVS318 or FVM318 is set for its default LAN address of *http://* 192.168.0.1 with its default user name of **admin** and default password of **password**. For this example we will assume you have set the local LAN address as 10.5.6.1 for Gateway A and have set your own password.

- 2. Click the Dynamic DNS link on the left side of the Settings management GUI.
- 3. Access the Web site of one of the dynamic DNS service providers whose names appear in the 'Use a dynamic DNS service' list, and register for an account.

For example, for dyndns.org, click the link or go to www.dyndns.org.

Use a dynamic DNS se	rvice
O None	
OynDNS.org	Click here for information
O TZO.com	Click here for free trial
O Oray.net	Click here for information
Host and Domain Nam	e .dydns.org
Host and Domain Nam	- .dydns.org
Host and Domain Nam	- .dydns.org
Host and Domain Nam	- .dydns.org
	dydns.org example: yourname.dyndns.org

Figure G-2: Dynamic DNS Setup menu

- 4. Select the Use a dynamic DNS service radio button for the service you are using. In this example we are using www.DynDNS.org as the service provider.
 - Type the Host Name that your dynamic DNS service provider gave you.
 The dynamic DNS service provider may call this the domain name. In this example we are using dyndns.org as the domain suffix.
 - Type the User Name for your dynamic DNS account. In this example we used netgear as the Host Name. This means that the complete FQDN we are using is netgear.dyndns.org and the Host Name is "netgear."
 - Type the Password (or key) for your dynamic DNS account.
- 5. Click Apply to save your configuration.

Note: The router supports only basic DDNS and the login and password may not be secure. If your ISP assigns a private WAN IP address such as 192.168.x.x or 10.x.x.x, the dynamic DNS service will not work because private addresses will not be routed on the Internet.

6. Click on the VPN Settings link on the left side of the Settings management GUI.

1.22		12	1		
	#	Enable	Connection Name	Local IPSec ID	Remote
\odot	1		-	10	59
0	2	2	-20	14 A	
0	3	-	-	-	-8
0	4	-	1 6		-1
0	5		7.9	1.	59
0	6	-		-	
0	7	-		-	-8
0	8	-	- 1	. .	8 5

Figure G-3: NETGEAR FVS318 VPN Settings Pre-Configuration

 Click the VPN Settings link on the left side of the Settings management GUI. Click the radio button of first available VPN leg (all 8 links are available in the example). Click the Edit button below. This will take you to the VPN Settings – Main Mode Menu.

Connection Name	toFV	S328		15
Local IPSec Identifier	netgear.dyndns.org 22.23.24.25			
Remote IPSec Identifier				
Tunnel can be accessed from	a sut	onet of l	ocal ad	dress Ň
Local LAN start IP Address	10	5	. 6	.0
Local LAN finish IP Address	0	.0	0	Ö
Local LAN IP Subnetmask	255	255	255	0
Funnel can access	a sut	onet of r	emote a	address
Remote LAN start IP Address	172	.23	. 9	.0
Remote LAN finish IP Address	0	0	.0	0
Remote LAN IP Subnetmask	255	255	255	.0
Remote WAN IP or FQDN	22.23	.24.25		

Figure G-4: NETGEAR FVS318 VPN Settings (part 1) – Main Mode

- In the Connection Name box, enter in a unique name for the VPN tunnel to be configured between the NETGEAR devices. For this example we have used **toFVS328**.
- Enter a Local IPSec Identifier name for the NETGEAR FVS318 Gateway A. This name must be entered in the other endpoint as Remote IPSec Identifier. In this example we used netgear.dyndns.org (the FQDN) as the local identifier.
- Enter a Remote IPSec Identifier name for the remote NETGEAR FVS328 Gateway B.
 This name must be entered in the other endpoint as Local IPSec Identifier. In this example we used 22.23.24.25 as the remote identifier.
- Choose a subnet from local address from the Tunnel can be accessed from pull-down menu.
- Type the starting LAN IP Address of Gateway A (10.5.6.1 in our example) in the Local IP Local LAN start IP Address field.
- Type the finishing LAN IP Address of Gateway A (0.0.0.0 in our example) in the Local IP Local LAN finish IP Address field.
- Type the LAN Subnet Mask of Gateway A (255.255.255.0 in our example) in the Local LAN IP Subnetmask field.
- Choose a subnet from local address from the Tunnel can access pull-down menu.
- Type the starting LAN IP Address of Gateway B (172.23.9.1 in our example) in the Local IP Remote LAN Start IP Address field.

- Type the finishing LAN IP Address of Gateway B (0.0.0.0 in our example) in the Local IP Remote LAN Finish IP Address field.
- Type the LAN Subnet Mask of Gateway B (**255.255.255.0** in our example) in the Remote LAN IP Subnetmask field.
- Type the WAN IP address (22.23.24.25 in our example) of Gateway B in the Remote WAN IP or FQDN field.

Secure Association	Main Mode	*
Perfect Forward Secrecy	Enabled	O Disabled
Encryption Protocol	3DES 💌	
PreShared Key	hr5xb8416aa9r6	
Key Life	3600	Seconds
IKE Life Time	28800	Seconds
NETBIOS Enable		
	Apply Cancel	

Figure G-5: Figure 4 – NETGEAR FVS318 VPN Settings (part 2) – Main Mode

- From the Secure Association drop-down box, select Main Mode.
- Next to Perfect Forward Secrecy, select the Enabled radio button.
- From the Encryption Protocol drop-down box, select 3DES.
- In the PreShared Key box, type a unique text string to be used as the shared key between Gateway A and Gateway B. In this example we used hr5xb84l6aa9r6. You must make sure the key is the same for both gateways.
- In the Key Life box, enter in 3600 seconds.
- In the IKE Life Time, enter 28800 seconds.
- Check the NETBIOS Enable box if you wish to pass NetBIOS traffic over the VPN tunnel, allowing functions such as Microsoft Network Neighborhood browsing.
- 8. Click the Apply button in the lower center of the screen to save all changes and return to the VPN Settings screen.
- 9. When the screen returns to the VPN Settings, make sure the Enable check box is selected.

Step-By-Step Configuration of FVS328 Gateway B

1. Log in to the NETGEAR FVS328, labeled Gateway B in the illustration.

Out of the box, the FVS328 is set for its default LAN address of *http://192.168.0.1* with its default user name of **admin** and default password of **password**. For this example we will assume you have set the local LAN address as 172.23.9.1 for Gateway B.

2. Click IKE Policies link under the VPN category and click Add on the IKE Policies Menu.

General	
Policy Name	FVS318
Direction/Type	Both Directions 💌
Exchange Mode	Main Mode 💌
Local	
Local Identity Type	WAN IP Address 🗾
Local Identity Data	22.23.24.25
Remote	
Remote Identity Type	Fully Qualified Domain Name 💌
Remote Identity Data	netgear.dyndns.org

Figure G-6: NETGEAR FVS328 IKE Policy Configuration – Part 1

- Enter an appropriate name for the policy in the Policy Name field. This name is not supplied to the remote VPN Endpoint. It is used to help you manage the IKE policies. In our example we have used FVS318 as the Policy Name. In the Policy Name field type FVS318.
- From the Direction/Type drop-down box, select Both Directions.
- From the Exchange Mode drop-down box, select Main Mode.
- From the Local Identity drop-down box, select WAN IP Address (WAN IP address will automatically be populated into the Local Identity Data field after policy is applied).
- From the Remote Identity drop-down box, select Fully Qualified Domain Name.
- Type the FQDN (netgear.dnydns.org in our example) in the Remote Identity Data field.

Encryptian Algorithm	3DES -
Authentication Algorithm	MD5 💌
Authentication Method	Pre-shared Key
	hr5xb84l6aa9r6
	C RSA Signature (requires Certificate)
Diffie-Hellman (DH) Group	Group 1 (768 Bit) 💌
SA Life Time	288D0 (secs)

Figure G-7: NETGEAR FVS328 IKE Policy Configuration – Part 2

- From the Encryption Algorithm drop-down box, select 3DES.
- From the Authentication Algorithm drop-down box, select MD5.
- From the Authentication Method radio button, select Pre-shared Key.
- In the Pre-Shared Key field, type hr5xb84l6aa9r6. You must make sure the key is the same for both gateways.
- From the Diffie-Hellman (DH) Group drop-down box, select Group 1 (768 Bit).
- In the SA Life Time field, type 28800.
- 3. Click Apply. This will bring you back to the IKE Policies Menu.

licu	Table							
,	#	Name	Mode	Local ID	Remote ID	Encr	Auth	DH
•	1	FVS318	Main	22.23.24.25	netgear.dyndns.org	3DES	MD5	Group 1 (768 Bit

Figure G-8: NETGEAR FVS328 IKE Policies (Post Configuration)

The FVS318 IKE Policy is now displayed in the IKE Policies page.

 Click the VPN Policies link under the VPN category on the left side of the Settings management GUI. This will take you to the VPN Policies Menu page. Click Add Auto Policy. This will open a new screen titled VPN – Auto Policy.

VPN - Auto Policy	
General	
Policy Name	to318
IKE policy	FVS318 -
Remote VPN Endpoint	Address Type: Fully Qualified Domain Name 💌
	Address Data: netgear.dyndns.org
SA Life Time	300 (Seconds) 0 (Kybtes)
🗹 IPSec PFS	PFS Key Group: Group 2 (1024 Bit)
Traffic Selector	
Local IP	Subnet address 💌
	Start IP address: 172 .23 .9 .1
	Finish IP address: 0 .0 .0 .0
	Subnet Mask: 255 .255 .255 .0

Figure G-9: NETGEAR FVS328 VPN – Auto Policy (part 1)

- Enter a unique name to identify this policy. This name is not supplied to the remote VPN endpoint. In our example we have used to318 as the Policy Name. In the Policy Name field type to318.
- From the IKE policy drop-down box, select the IKE Policy that was set up in the earlier step – the FVS318 IKE Policy.
- From the Remote VPN Endpoint Address Type drop-down box, select IP Address.
- Type the WAN IP Address of Gateway A (14.15.16.17 in our example) in the Remote VPN Endpoint Address Data field.
- Type **300** in the SA Life Time (Seconds) field.
- Type **0** in the SA Life Time (Kbytes) field.
- Check the IPSec PFS check box.
- From the PFS Key Group drop-down box, select Group 2 (1024 Bit).
- From the Traffic Selector Local IP drop-down box, select Subnet address.
- Type the starting LAN IP Address of Gateway B (172.23.9.1 in our example) in the Local IP Start IP Address field.
- Type the finishing LAN IP Address of Gateway B (0.0.0.0 in our example) in the Local IP Finish IP Address field.
- Type the LAN Subnet Mask of Gateway B (255.255.255.0 in our example) in the Local IP Subnet Mask field.

Remote IP	Subnet address 💌
	Start IP address: 10 . 5 . 6 . 1
	Finish IP address: 0 . 0 . 0 . 0
	Subnet Mask: 255 . 255 . 255 . 0
AH Configuration	
🔲 Enable Authenticatio	on Authentication Algorithm: MD5 💽
ESP Configuration	
Enable Encryption	Encryption Algorithm: 3DES -
🔽 Enable Authenticatio	on Authentication Algorithm: MD5
NETBIOS Enable	
	Back Apply Cancel

Figure G-10: NETGEAR FVS328 VPN – Auto Policy (part 2)

- From the Traffic Selector Remote IP drop-down box, select Subnet address.
- Type the starting LAN IP Address of Gateway A (10.5.6.1 in our example) in the Remote IP Start IP Address field.
- Type the finishing LAN IP Address of Gateway A (0.0.0.0 in our example) in the Remote IP Finish IP Address field.
- Type the LAN Subnet Mask of Gateway A (255.255.255.0 in our example) in the Remote IP Subnet Mask field.
- From the AH Configuration Authentication Algorithm drop-down box, select MD5.
- Select the Enable Encryption check box.
- From the ESP Configuration Encryption Algorithm drop-down box, select 3DES.
- Select the Enable Authentication check box.
- From the ESP Configuration Authentication Algorithm drop-down box, select MD5.
- Select the NETBIOS Enable check box.
- 5. Click the Apply Button. You will be taken back to the VPN Policies Menu page.

olic	уT	able						
	#	Enable	Name	Туре	Local	Remote	AH	ESP
æ	1	N	to 31 8	Auto	172.23.9.1/255.255.255.0	10.5.6.1/255.255.255.0	Disabled	ESP
					Edit Move [Delete		

Figure G-11: NETGEAR FVS328 VPN Policies Menu (Post Configuration)

6. When the screen returns to the VPN Policies, make sure the Enable check box is selected. Click the Apply button.

Test the VPN Connection

- 1. From a PC behind the NETGEAR FVS318 or FVM318 Gateway A, attempt to ping the remote FVS328 Gateway B LAN Interface address (example address 172.23.9.1).
- From the FVS318 or FVM318, click the Router Status link on the left side of the Settings management menu. Click the Show VPN Status button. This will take you to the IPSec Connection Status Screen. If the connection is functioning properly, the State fields will show "Estab."
- 3. From the FVS328, click the VPN Status link under the VPN section of the main menu. The VPN Logs and status are displayed.

Appendix H NETGEAR VPN Client to NETGEAR the FVS328

Follow these procedures to configure a VPN tunnel from a NETGEAR ProSafe VPN Client to an FVS328. This case study follows the Virtual Private Network Consortium (VPNC) interoperability profile guidelines. The menu options for the FVS328, FVL328, and FWAG114 are the same.

Profile: Traveling User or Telecommuter at Home

The configuration in this document follows the addressing and configuration mechanics defined by the VPN Consortium. Gather all the necessary information before you begin the configuration process. Verify whether the firmware is up to date, all of the addresses that will be necessary, and all of the parameters that need to be set on both sides. Check that there are no firewall restrictions.

VF	N Consortium Scenario:	Scenario 1
Ту	pe of VPN	PC/Client-to-Gateway
Se	curity Scheme:	IKE with Preshared Secret/Key (not Certificate-based)
Da	ate Tested:	December 2003
Mo	odel/Firmware Tested:	
	Gateway	NETGEAR FVS328 firmware v 1.0
	Client	NETGEAR ProSafe VPN Client v10.1
IP	Addressing:	
	Gateway	Static IP Address
	Client	Dynamic

Figure H-1: Addressing and Subnet Used for Examples

Note: Product updates are available on the NETGEAR Web site at *http://kbserver.netgear.com/products/FVS328.asp.* VPNC Interoperability guidelines can be found at *http://www.vpnc.org/InteropProfiles.*

Step-By-Step Configuration of FVS328 Gateway

1. Log in to the FVS328 gateway as in the illustration.

Out of the box, the FVS328 is set for its default LAN address of *http://192.168.0.1* with its default user name of **admin** and default password of **password**. Even though the remainder of this document will refer to the FVS328, the login procedures and configuration menu screens are the same for the FVS328 and the FWAG114.

2. Click IKE Policies under the VPN menu and click Add on the IKE Policies Menu.

General			
Policy Name	VPNclient Remote Access		
Direction/Type			
Exchange Mode	Aggressive Mode 💌		
Local	2 7		
Local Identity Type	Fully Qualified Domain Name 🔽		
Local Identity Data	FVS328		
Remote Identity Data	VPNclient		
IKE SA Parameters	·		
Encryption Algorithm	3DES 👻		
Authentication Algorithm	SHA-1 💌		
Authentication Method	Pre-shared Key		
	hr5xb8416aa9r6		
	 RSA Signature (requires Certificate) 		
Diffie-Hellman (DH) Group	Group 2 (1024 Bit) 🚩		
SA Life Time	86400 (secs)		

Figure H-2: NETGEAR FVS328 IKE Policy Configuration

- Enter a descriptive name for the policy in the Policy Name field. This name is not supplied to the remote VPN endpoint. It is used to help you manage the IKE policies. In our example, we used **VPNclient** as the Policy Name.
- From the Direction/Type drop-down box, select **Remote Access**.
- From the Exchange Mode drop-down box, select Aggressive Mode. This will also be selected in the VPN Client My Identity ID Type fields, as seen in "Security Policy" on page H-10.

From the Local Identity drop-down box, select Fully Qualified Domain Name (the actual WAN IP address of the FVS328 will also be used in the Connection ID Type fields of the VPN Client as seen in "Security Policy Editor New Connection" on page H-8).

	Note: Selecting Remote Access as the Direction Type, Aggressive Mode as the
\rightarrow	Exchange Mode, and Fully Qualified Domain Name as the Local Identity type enables
	list a traveling user with a direct Internet connection or a home telecommuter behind a
	NAT router to connect regardless of the IP address they have on their remote PC.
	However, this configuration does not require FQDN be set up on the WAN port of the
	FVS328.

- For this example we typed **FVS328** in the Local Identity Data field.
- From the Remote Identity drop-down box, select **Fully Qualified Domain Name**.
- Type VPNclient in the Remote Identity Data. This will also be entered in the VPN Client My Identity ID Type fields, as seen in "My Identity" on page H-9.
- From the Encryption Algorithm drop-down box, select **3DES**. This will also be selected in the VPN Client Security Policy Authentication Phase 1 Proposal 1 Encrypt Alg field, as seen in "Connection Security Policy Authentication (Phase 1)" on page H-11.
- From the Authentication Algorithm drop-down box, select SHA-1. This will also be selected in the VPN Client Security Policy Authentication Phase 1 Proposal 1 Hash Alg field, as seen in "Connection Security Policy Authentication (Phase 1)" on page H-11.
- From the Authentication Method radio button, select Pre-shared Key. This will also be selected in the VPN Client Security Policy Authentication Phase 1 Proposal 1
 Authentication Method field, as seen in "Connection Security Policy Authentication (Phase 1)" on page H-11.
- In the Pre-Shared Key field, type hr5xb84l6aa9r6. You must make sure the key is the same for both the client and the FVS328 Firewall. This will also be selected in the VPN client Security Policy Authentication Phase 1 Proposal 1 Encrypt Alg field, as seen in "Connection Identity Pre-Shared Key" on page H-10.
- From the Diffie-Hellman (DH) Group drop-down box, select Group 2 (1024 Bit). This will also be selected in the VPN Client Security Policy Authentication Phase 1 Proposal 1 Key Group field, as seen in "Connection Security Policy Authentication (Phase 1)" on page H-11.
- In the SA Life Time field, type **86400**.

Click **Apply**. This will bring you back to the IKE Policies Menu. The FVS328 IKE Policy is now displayed in the IKE Policies page.

3. Click the **VPN Policies** link under the VPN category on the left side of the main menu. This will take you to the VPN Policies Menu page. Click **Add Auto Policy**. This will open a new screen titled VPN – Auto Policy.

VPN - Auto Policy						
General						
Policy Name	VPNclient					
IKE policy	VPNclient 💌					
Remote VPN Endpoint	Address Type: IP Address	*				
	Address Data: 0.0.0.0					
SA Life Time	86400 (Seconds)					
	0 (Kybtes)					
IPSec PFS	PFS Key Group: Group 2 (1024 Bit) 💌					
Traffic Selector						
Local IP	Subnet address 👻					
	Start IP address: 192 . 168 . 0 . 0					
	Finish IP address: 0 . 0 . 0 . 0					
	Subnet Mask: 255 . 255 . 255 . 0					
Remote IP	Single address 🔽					
	Start IP address: 0 . 0 . 0 . 0					
	Finish IP address: 0 . 0 . 0 . 0					
	Subnet Mask: 0,0,0,0,0					
AH Configuration	ⁿ Authentication Algorithm: MD5					
ESP Configuration						
🗹 Enable Encryption	Encryption Algorithm: 3DES 💌					
Enable Authenticatio	ⁿ Authentication Algorithm: SHA-1 👻					
NETBIOS Enable						
B	ack Apply Cancel					

Figure H-3: NETGEAR FVS328 VPN – Auto Policy General settings

- Enter a unique name to identify this policy. This name is not supplied to the remote VPN endpoint. In our example, we use **VPNclient** as the Policy Name.
- From the IKE policy drop-down box, select **VPNclient** which is the IKE Policy that was set up in the earlier step.

- From the Remote VPN Endpoint Address Type drop-down box, select IP Address.
- Type 0.0.0.0 as the Address Data of the client because we are assuming the remote PC will have a dynamically assigned IP address. This will also be entered in the VPN Client Internal Network IP Address field, as seen in "My Identity" on page H-9.
- Type **86400** in the SA Life Time (Seconds) field.
- Type **0** in the SA Life Time (Kbytes) field.
- Check the **IPSec PFS** check box to enable Perfect Forward Secrecy. This will also be entered in the VPN Client Security Policy Enable Perfect Forward Secrecy check box, as seen in "Security Policy" on page H-10.
- From the PFS Key Group drop-down box, select Group 2 (1024 Bit). This will also be entered in the VPN Client Security Policy PFS Key Group drop-down selection box, as seen in "Security Policy" on page H-10.
- From the Traffic Selector Local IP drop-down box, select Subnet addresses. This will also be entered in the VPN Client Connection Remote Party Identity and Addressing ID Type field, as seen in "Security Policy Editor New Connection" on page H-8.
- Type the starting LAN IP Address of the FVS328 in the Local IP Start IP Address field. For this example, we used **192.168.0.0** which is the default LAN IP address of the FVS328. This will also be entered in the VPN Client Connection Remote Party Identity and Addressing Subnet field, as seen in "Security Policy Editor New Connection" on page H-8.
- Type the LAN Subnet Mask of the FVS328 (255.255.0 in our example) in the Local IP Subnet Mask field. This will also be entered in the VPN Client Connection Remote Party Identity and Addressing Mask field, as seen in "Security Policy Editor New Connection" on page H-8.
- From the Traffic Selector Remote IP drop-down box, select Single addresses.
- Type 0.0.0.0 as the start IP Address of the in the Remote IP Start IP Address field because we are assuming the remote PC will have a dynamically assigned IP address. This will also be entered in the VPN Client My Identity Internal Network IP Address field, as seen in "My Identity" on page H-9.
- Select the Enable Encryption check box. This will also be selected in the VPN Client Security Policy Key Exchange (Phase 2) Encapsulation Protocol (ESP) check box, as seen in "Connection Security Policy Key Exchange (Phase 2)" on page H-12.
- From the ESP Configuration Encryption Algorithm drop-down box, select **3DES**. This will also be entered in the VPN Client Security Policy Key Exchange (Phase 2) Encrypt Alg field, as seen in "Connection Security Policy Key Exchange (Phase 2)" on page H-12.

 Select Enable Authentication in the ESP Configuration Enable Authentication check box.

Note: Do not confuse this with the Authentication Protocol (AH) option. Using the AH option will prevent clients behind a home NAT router from connecting.

- From the ESP Configuration Authentication Algorithm drop-down box, select SHA-1.
 This will also be entered in the VPN Client Security Policy Key Exchange (Phase 2) Hash
 Alg field, as seen in "Connection Security Policy Key Exchange (Phase 2)" on page H-12.
- Select the NETBIOS Enable check box to enable networking features like Windows Network Neighborhood.

Click **Apply** to save your changes. You will be taken back to the VPN Policies Menu page.

4. When the screen returns to the VPN Policies, make sure the Enable check box is selected. Click **Apply** to save your changes.

Step-By-Step Configuration of the Netgear VPN Client B

Note: The Netgear ProSafe VPN Client has the ability to "Import" a predefined configuration profile. The FVS328.SPD file on the FVS328 ProSafe VPN Firewall with Dial Back-up *Resource CD* (230-10041-02) includes all the settings identified in this procedure.

Whenever importing policy settings, you should first export any existing settings you may have configured to prevent the new imported settings from replacing an existing working configuration.

To import this policy, use the Security Policy Editor File menu to select Import Policy, and select the FVS328.SPD file at D:\Software\Policies where D is the drive letter of your CD-ROM drive.

This procedure describes linking a remote PC and a LAN. The LAN will connect to the Internet using an FVS328 with a static IP address. The PC can be directly connected to the Internet through dialup, cable or DSL modem, or other means, and we will assume it has a dynamically assigned IP address.

1. Install the Netgear VPN Client Software on the PC.

Note: Before installing the Netgear VPN Client software, be sure to turn off any virus protection or firewall software you may be running on your PC.

- You may need to insert your Windows CD to complete the installation.
- Reboot your PC after installing the client software.
- 2. Configure the Connection Network Settings.

N Security Policy Editor - NETGEAR ProSafe	VPN Client
<u>File E</u> dit <u>O</u> ptions <u>H</u> elp	
Network Security Policy	NETGEAR 😽
My Connections VS 328 G My Identity Security Policy Other Connections	Connection Security C Secure C Non-secure C Block
	Remote Party Identity and Addressing ID Type IP Subnet Subnet: 192.168.0.0 Mask: 255.255.255.0 Protocol All Pott All Connect using Secure Gateway Tunnel ID Type Domain Name FVS328 66.120.188.153

Figure H-4: Security Policy Editor New Connection

a. Run the Security Policy Editor program and create a VPN Connection.

Figure H-5: Security Policy Editor Options menu

Note: If the configuration settings on this screen are not available for editing, go to the Options menu, select Secure, and Specified Options to enable editing these settings.

From the Edit menu of the Security Policy Editor, click **Add**, then **Connection**. A "New Connection" listing appears. Rename the "New Connection" to **FVS328**.

- b. ensure that the following settings are configured:
 - In the Connection Security box, Secure is selected.
 - In the Protocol menu, All is selected.
 - The Connect using Secure Gateway Tunnel check box is selected.
- c. In this example, select IP Subnet as the ID Type, **192.168.0.0** in the Subnet field (the Subnet address is the LAN IP Address of the FVS328 with 0 as the last number), and **255.255.255.0** in the Mask field, which is the LAN Subnet Mask of the FVS328.
- d. In the ID Type menus, select **Domain Name** and **Gateway IP Address**. Enter **FVS328** in the Domain Name field. In this example, **66.120.188.153** would be used for the Gateway IP Address, which is the static IP address for the FVS328 WAN port.

3. Configure the Connection Identity Settings.

a. In the Network Security Policy list, click the My Identity subheading.

My Connections FVS328 G My Identity	My Identity Select C <u>e</u> rtificate	Pre-Shared Key
🛨 🔁 Security Policy	None	-
- 2 Other Connections	ID T⊻pe Domain Name _▼	Port
	VPNclient	
	Virtual Adapter	Disabled 💌
	Internal Network IP Address	0.0.0.0

Figure H-6: My Identity

In this example, select Domain Name as the ID Type, and enter **VPNclient**. Also, accept the default Internal Network IP Address of 0.0.0.0.

My Connections FVS328 My Identity	My Identity Select C <u>e</u> rtificate	Pre-Shared Key
🗄 🚊 Security Policy	None	•
Connections	ID Type	Po <u>r</u> t

Figure H-7: My Identity Pre-Shared Key

b. Click **Pre-Shared Key**.

Pre-Shared Key		
Enter Key	Enter Pre-Shared Key (at least 8 characters) This key is used during Authentication Phase if the Authentication Method Proposal is "Pre-Shared key".	In this example, enter this pre-shared key in this field: hr5xb84l6aa9r6
	OK Cancel	

Figure H-8: Connection Identity Pre-Shared Key

- c. Enter hr5xb84l6aa9r6 which is the same Pre-Shared Key entered in the FVS328.
- d. Click OK.

4. Configure the Connection Identity Settings.

a. In the Network Security Policy list, click the Security Policy subheading.

Figure H-9: Security Policy

- b. For this example, ensure that the following settings are configured:
 - In the Select Phase 1 Negotiation Mode menu, select Aggressive Mode.
 - Select the Enable Perfect Forward Secrecy (PFS) check box.
 - In the PFS Key Group drop-down list, Diffie-Hellman Group 2.
 - Select the Enable Replay Detection check box.

5. Configure the Connection Security Policy

In this step, you will provide the authentication (IKE Phase 1) settings, and the key exchange (Phase 2) settings. The setting choices in this procedure follow the VPNC guidelines.

My Connections PVS328 My Identity Security Policy Authentication (Phase 1) Proposal Key Exchange (Phase 2) Proposal 1 Souther Connections	Authentication Method and Algorithms Authentication Method Pre-Shared Key Encryption and Data Integrity Algorithms Encrypt Alg Triple DES Hash Alg SHA-1 Seconds SA Life Unspecified
	Key Group Diffie-Hellman Group 2
	Ley Group Diffie-Hellman Group 2 _
	My Connections PV S328 My Identity Security Policy Authentication (Phase 1) Proposal 1 Proposal 1

Figure H-10: Connection Security Policy Authentication (Phase 1)

- a. Configure the Authentication (Phase 1) Settings.
 - Expand the Security Policy heading, then expand the Authentication (Phase 1) heading, and click on Proposal 1.
 - For this example, ensure that the following settings are configured:
 - In the Encrypt Alg menu, select **Triple DES**.
 - In the Hash Alg, select **SHA-1**.
 - In the SA Life, select Unspecified.
 - In the Key Group menu, select **Diffie-Hellman Group 2**.

My Connections VS328 My Identity Security Policy Authentication (Phase 1) Proposal 1 Key Exchange (Phase 2) Other Connections	IPSec Protocols SA Life Unspecified ▼ Compression None ▼ ✓ Encapsulation Protocol (ESP) Encrypt Alg Triple DES ▼ Hagh Alg SHA-1 ▼ Encapsulation Tunnel ▼
	Authentication Protocol (AH) Hash Alg SHA-1 Encapsulation Tunnel

Figure H-11: Connection Security Policy Key Exchange (Phase 2)

- b. Configure the Key Exchange (Phase 2).
 - Expand the Key Exchange (Phase 2) heading, and click on Proposal 1.
 - For this example, ensure that the following settings are configured:
 - In the SA Life menu, select **Unspecified**.
 - In the Compression menu, select **None**.
 - Check the **Encapsulation Protocol (ESP)** check box.
 - In the Encrypt Alg menu, select **Triple DES**.
 - In the Hash Alg, select **SHA-1**.
 - In the Encapsulation menu, select **Tunnel**.

- 6. Configure the Global Policy Settings.
 - a. From the Options menu at the top of the Security Policy Editor window, select **Global Policy Settings**.

Global Policy Settings				
Retransmit Interval (seconds):	45			
Number of retries:	3			
Send status notifications to p	eer hosts			
Allow to Specify Internal Network Address				
Enable IPSec Logging				
🔲 Smart card removal clears ke	iys			
<u> </u>	ncel			

Figure H-12: Security Policy Editor Global Policy Options

- b. Increase the Retransmit Interval period to **45** seconds.
- c. Select the Allow to Specify Internal Network Address check box and click **OK**.

7. Save the VPN Client Settings.

From the File menu at the top of the Security Policy Editor window, select Save.

After you have configured and saved the VPN client information, your PC will automatically open the VPN connection when you attempt to access any IP addresses in the range of the remote VPN router's LAN.

Note: Whenever you make changes to a Security Policy, save them first, then deactivate the security policy, reload the security policy, and finally activate the security policy. This ensures that your new settings will take effect.

Testing the VPN Connection

You can test the VPN connection in several ways:

- From the client PC to the FVS328
- From the FVS328 to the client PC

These procedures are explained below.

Note: Virus protection or firewall software can interfere with VPN communications. Be sure such software is not running on the remote PC with the Netgear ProSafe VPN Client and that the firewall features of the FVS328 are not set in such a way as to prevent VPN communications.

From the Client PC to the FVS328

To check the VPN Connection, you can initiate a request from the remote PC to the FVS328 by using the "Connect" option of the FVS328 Firewall popup menu.

- 1. Open the popup menu by right-clicking on the system tray icon.
- 2. Select **Connect** to open the My Connections list.
- 3. Choose FVS328.

The FVS328 Firewall will report the results of the attempt to connect.

Once the connection is established, you can access resources of the network connected to the FVS328.

Another method is to ping from the remote PC to the LAN IP address of the FVS328. To perform a ping test using our example, start from the remote PC:

- 1. Establish an Internet connection from the PC.
- 2. On the Windows taskbar, click the Start button, and then click Run.
- 3. Type ping -t 192.168.0.1 and click OK.

This will cause a continuous ping to be sent to the first FVS328. After a period of up to two minutes, the ping response should change from "timed out" to "reply."

To test the connection to a computer connected to the FVS328, simply ping the IP address of that computer.

Once connected, you can open a browser on the remote PC and enter the LAN IP Address of the FVS328, which is http://192.168.0.1 in this example. After a short wait, you should see the login screen of the FVS328.

From the FVS328 to the Client PC

You can use the FVS328 Diagnostic utilities to test the VPN connection from the FVS328 to the client PC. Run ping tests from the Diagnostics link of the FVS328 main menu.

Monitoring the PC VPN Connection

Information on the progress and status of the VPN client connection can be viewed by opening the Netgear ProSafe VPN Client Connection Monitor or Log Viewer. To launch these functions, click on the Windows Start button, then select Programs, then Netgear ProSafe VPN Client, then either the Connection Monitor or Log Viewer.

The Log Viewer screen for a successful connection is shown below:

Figure H-13: Log Viewer screen

A sample Connection Monitor screen for a different connection is shown below:

Connection Monitor - NE Global Statistics Non-Secured Packets 352 Dropped Packets 3		s 0	<u>[</u>]	<u>C</u> lose Details			
Connection Name Local Ac	Idress Local Subnet	Remote Address	Remote Modifier	GW Address	Protocol	Local Port	Rem Port
🖙 *My Connectio 192.16	3.0.3 255.255.255.255	192.168.0.0	255.255.255.0	66.120.188.153	ALL	ALL	ALL

Figure H-14: Connection Monitor screen

In this example the following connection options apply:

- The FVS328 has a public IP WAN address of 66.120.188.153
- The FVS328 has a LAN IP address of 192.168.0.1
- The VPN client PC is behind a home NAT router and has a dynamically assigned address of 192.168.0.3

While the connection is being established, the Connection Name field in this menu will say "SA" before the name of the connection. When the connection is successful, the "SA" will change to the yellow key symbol shown in the illustration above.

Viewing the FVS328 VPN Status and Log Information

Information on the status of the VPN client connection can be viewed by opening the FVS328 VPN Status screen. To view this screen, click the VPN Status link on the FVS328 main menu.
The FVS328 VPN Status screen for a successful connection is shown below:

1	VPNclien	t 64.17	5.249.42	SA MATU	RE	0	
#	Policy Nam	ne En	dpoint	State		LifeTime in	Secs
KE S#	۱ <u> </u>						
2	3797946439	INc0a80003	66.120.188.153	ESP	0	28760	0
1	3693815379	c0a80003	64.175.249.42	ESP	0	28760	28670
Sec #	SA	Policy Name	Endpoint	Protocol	Tx (KBytes)	HLifeTime	SLifeTime
[200 [200 [200 [200 [200 [200	03-11-22 09:3 03-11-22 09:3 03-11-22 09:3 03-11-22 09:3 03-11-22 09:3 03-11-22 09:3	9:45] <initiato 9:45]<responde 9:45]**** SENT 9:45]**** RECE 9:45]<policy: 9:46]**** QUIC</policy: </responde </initiato 	D IDS,EXTRACE I r IPADR=192.16 UT SECOND MES UVED THIRD MES VPNclient> PAYL K MODE COMPLETE PHASE 2 ESTABL	8.0.3> 8.0.0 MAS SAGE OF (SAGE OF (OADS: HAS D ****	SK=255.255. DUICK MODE DUICK MODE SH	***	~
[200 [200	3-11-22 09:3 3-11-22 09:3	9:45][==== IKE 9:45]**** RECE	PHASE 1 ESTABL PHASE 2(from 6 IVED FIRST MES	4.175.249 SAGE OF (9.42) START DUICK MODE		r) ===
[200 [200	3-11-22 09:3 3-11-22 09:3	9:45] <policy: 9:45]**** AGGR</policy: 	VPNclient> PAYL MODE COMPLETED	OADS: HAS ****	5H,NOTIFY		
	3-11-22 09:3		IVED THIRD MES		AGGR MODE * AGGR MODE *		^

Figure H-15: FVS328 VPN Status screen

Glossary

10BASE-T	IEEE 802.3 specification for 10 Mbps Ethernet over twisted pair wiring.
100BASE-Tx	IEEE 802.3 specification for 100 Mbps Ethernet over twisted pair wiring.
3DES	3DES (Triple DES) achieves a high level of security by encrypting the data three times using DES with three different, unrelated keys.
802.11b	IEEE specification for wireless networking at 11 Mbps using direct-sequence spread-spectrum (DSSS) technology and operating in the unlicensed radio spectrum at 2.5GHz.
АН	Authentication Header
CA	Certificate Authority. A trusted third-party organization or company that issues digital certificates used to create digital signatures and public-private key pairs. The role of the CA in this process is to guarantee that the individual granted the unique certificate is, in fact, who he or she claims to be. Usually, this means that the CA has an arrangement with a financial institution, such as a credit card company, which provides it with information to confirm an individual's claimed identity. CAs are a critical component in data security and electronic_commerce because they guarantee that the two parties exchanging information are really who they claim to be.
CRL	Certificate Revocation List. Each Certificate Authority (CA) maintains a revoked certificates list.
Denial of Service attack	DoS. A hacker attack designed to prevent your computer or network from operating or communicating.
DES	The Data Encryption Standard (DES) processes input data that is 64 bits wide, encrypting these values using a 56 bit key. <i>See</i> also 3DES.
Deffie Helman	Deffie Helman shared secret algorithm.Deffie Helman shared secret algorithm is a method for securely exchanging a shared secret between two parties, in real-time, over an untrusted network. A shared secret allows two parties, who may not have ever communicated previously, to encrypt their communications. As such, it is used by several protocols, including Secure Sockets Layer (SSL) and Internet Protocol Security (IPSec).

DHCP	See Dynamic Host Configuration Protocol.
DMZ	A Demilitarized Zone is used by a company that wants to host its own Internet services without sacrificing unauthorized access to its private network. The DMZ sits between the Internet and an internal network's line of defense, usually some combination of firewalls and bastion hosts. Typically, the DMZ contains devices accessible to Internet traffic, such as Web (HTTP) servers, FTP servers, SMTP (e-mail) servers and DNS servers.
DNS	See Domain Name Server.
domain name	A descriptive name for an address or group of addresses on the Internet. Domain names are of the form of a registered entity name plus one of a number of predefined top level suffixes such as .com, .edu, .uk, and so forth. For example, in the address mail.NETGEAR.com, mail is a server name and NETGEAR.com is the domain.
Domain Name Server	DNS. A Domain Name Server resolves descriptive names of network resources (such as www.NETGEAR.com) to numeric IP addresses.
Dynamic Host Configuration Protocol	DHCP. An Ethernet protocol specifying how a centralized DHCP server can assign network configuration information to multiple DHCP clients. The assigned information includes IP addresses, DNS addresses, and gateway (router) addresses.
ESP	Encapsulating Security Payload.
gateway	A local device, usually a router, that connects hosts on a local network to other networks.
IETF	Internet Engineering Task Force. An open international community of network designers, operators, vendors, and researchers concerned with the evolution of the Internet architecture and the smooth operation of the Internet. Working groups of the IETF propose standard protocols and procedures for the Internet, which are published as RFCs (Request for Comment) at <i>www.ietf.org</i> .
IKE	Internet Key Exchange. An automated method for exchanging and managing encryption keys between two VPN devices.
IP	Internet Protocol. The main internetworking protocol used in the Internet. Used in conjunction with the Transfer Control Protocol (TCP) to form TCP/IP.

IP Address	A four-position number uniquely defining each host on the Internet. Ranges of addresses are assigned by Internic, an organization formed for this purpose. Usually written in dotted-decimal notation with periods separating the bytes (for example, 134.177.244.57).
IPSec	Internet Protocol Security. IPSec is a series of guidelines for securing private information transmitted over public networks. IPSec is a VPN method providing a higher level of security than PPTP.
ISP	Internet service provider.
LAN	See local area network.
LDAP	Lightweight Directory Access Protocol. A set of protocols for accessing information directories. LDAP is based on the standards contained within the X.500 standard, but is significantly simpler. And unlike X.500, LDAP supports TCP/IP, which is necessary for any type of Internet access. Because it's a simpler version of X.500, LDAP is sometimes called <i>X.500-lite</i> .
local area network	LAN. A communications network serving users within a limited area, such as one floor of a building. A LAN typically connects multiple personal computers and shared network devices such as storage and printers. Although many technologies exist to implement a LAN, Ethernet is the most common for connecting personal computers.
MAC address	Media Access Control address. A unique 48-bit hardware address assigned to every Ethernet node. Usually written in the form 01:23:45:67:89:ab.
Mbps	Megabits per second.
MSB	See Most Significant Bit or Most Significant Byte.
МТО	See Maximum Transmit Unit.
Maximum Transmit Unit	The size in bytes of the largest packet that can be sent or received.
Most Significant Bit or Most Significant Byte	MSB. The portion of a number, address, or field that is farthest left when written as a single number in conventional hexadecimal ordinary notation. The part of the number having the most value.
NAT	See Network Address Translation.

NetBIOS	Network Basic Input Output System. An application programming interface (API) for sharing services and information on local-area networks (LANs). Provides for communication between stations of a network where each station is given a name. These names are alphanumeric names, 16 characters in length. NetBIOS is needed to run Microsoft networking functions such as Network Neighborhood.
netmask	A number that explains which part of an IP address comprises the network address and which part is the host address on that network. It can be expressed in dotted-decimal notation or as a number appended to the IP address. For example, a 28-bit mask starting from the MSB can be shown as 255.255.255.192 or as /28 appended to the IP address.
Network Address Translation	A technique by which several hosts share a single IP address for access to the Internet.
ΡΚΙΧ	See Public Key Infrastructure.
packet	A block of information sent over a network. A packet typically contains a source and destination network address, some protocol and length information, a block of data, and a checksum.
PPP	See Point-to-Point Protocol.
PPP over Ethernet	PPPoE. PPP over Ethernet is a protocol for connecting remote hosts to the Internet over an always-on connection by simulating a dial-up connection.
РРТР	Point-to-Point Tunneling Protocol. A method for establishing a virtual private network (VPN) by embedding Microsoft's network protocol into Internet packets.
PSTN	Public Switched Telephone Network.
Point-to-Point Protocol	PPP. A protocol allowing a computer using TCP/IP to connect directly to the Internet.
Public Key Infrastructure	PKIX. The most widely used standard for defining digital certificates. X.509 is actually an ITU Recommendation, which means that has not yet been officially defined or approved. As a result, companies have implemented the standard in different ways. For example, both Netscape and Microsoft use X.509 certificates to implement SSL in their Web servers and browsers. But an X.509 Certificate generated by Netscape may not be readable by Microsoft products, and vice versa.

RFC	Request For Comment. Refers to documents published by the Internet Engineering Task Force (IETF) proposing standard protocols and procedures for the Internet. RFCs can be found at <i>www.ietf.org</i> .
RIP	See Routing Information Protocol.
router	A device that forwards data between networks. An IP router forwards data based on IP source and destination addresses.
Routing Information Protocol	RIP. A protocol in which routers periodically exchange information with one another so that they can determine minimum distance paths between sources and destinations.
subnet mask	See netmask.
URL	Universal Resource Locator, the global address of documents and other resources on the World Wide Web.
UTP	Unshielded twisted pair. The cable used by 10BASE-T and 100BASE-Tx Ethernet networks.
VPN	Virtual Private Network. A method for securely transporting data between two private networks by using a public network such as the Internet as a connection.
VPNC	Virtual Private Network Consortium. VPNC is the international trade association for manufacturers in the VPN market. It should be noted that VPNC does not create standards; instead, it strongly supports the current and future IETF standards. See http://www.vpnc.org/ for more information.
WAN	See wide area network.
wide area network	WAN. A long distance link used to extend or connect remotely located local area networks. The Internet is a large WAN.
Windows Internet Naming Service	WINS. Windows Internet Naming Service is a server process for resolving Windows-based computer names to IP addresses. If a remote network contains a WINS server, your Windows computers can gather information from that WINS server about its local hosts. This allows your computers to browse that remote network using Network Neighborhood.
WINS	See Windows Internet Naming Service.

Index

Α

Account Name 3-8, 3-9, 3-15 Address Resolution Protocol C-9 Addressing E-7 Austria 3-15 Authentication Header (AH) E-3, E-4 Auto Uplink 2-3

В

backup configuration 8-11 BigPond 3-15

С

CA 7-25 Cabling C-12 Cat5 cable 3-1, C-13 Certificate Authority 7-25 configuration automatic by DHCP 2-3 backup 8-11 erasing 8-13 router, initial 3-1 Connection Monitor H-15 content filtering 2-3 conventions typography 1-1, 1-2 crossover cable 2-3, 9-3, C-12 customer support 1-iii

D

date and time 9-8 Daylight Savings Time 6-15, 9-8 daylight savings time 6-14 Default DMZ Server 5-5 default reset button 9-7 Denial of Service (DoS) protection 2-2 denial of service attack C-11 DHCP 2-3, 5-2, C-10 DHCP Client ID D-7 DHCP Setup field, Ethernet Setup menu 8-4 Disabling NAT 3-15 DMZ Server 5-5 **DNS Proxy 2-4** DNS server 3-8, 3-9, 3-15, D-11 DNS, dynamic 5-6 domain D-11 Domain Name 3-8, 3-9, 3-15 domain name server (DNS) C-9 DoS attack C-11 Dynamic DNS 2-4, 5-6

Ε

Enable VPN Passthrough (IPSec, PPTP, L2TP) 6-13 Encapsulating Security Payload E-3 EnterNet D-9 EPROM, for firmware upgrade 2-5 ESP E-3 Ethernet 2-3 Ethernet cable C-12

F

factory settings, restoring 8-13 features 2-1

firewall features 2-2 FLASH memory 8-14 FQDN 2-2 Fully Qualified Domain Name 2-2

G

gateway address D-11 General 7-4, 7-7, 7-11

Η

host name 3-8, 3-9, 3-15

IANA contacting C-2 IETF C-1 Web site address C-7 **IKE Security Association E-4** inbound rules 6-8 installation 2-4 Internet account address information D-9 establishing D-9 Internet Key Exchange (IKE) E-3 Internet Protocol security E-1 Internet Service Provider 3-1 Intranets E-1 IP addresses D-10, D-11 and NAT C-7 and the Internet C-2 assigning C-2, C-9 auto-generated 9-3 private C-7 translating C-9 IP configuration by DHCP C-10 **IP** networking for Macintosh D-6 for Windows D-2, D-5 **IPSec E-1 IPSec Components E-2**

IPSec SA negotiation E-9 IPSec Security Features E-2 ISP 3-1

L

LAN IP Setup Menu 5-3 LEDs description 2-6 troubleshooting 9-3 log sending 8-10 Log Viewer H-15

Μ

MAC address 9-7, C-9 spoofing 3-9, 3-16, 9-5 Macintosh D-10 configuring for IP networking D-6 DHCP Client ID D-7 Obtaining ISP Configuration Information D-11 masquerading D-9 metric 5-9 Modem 4-2 modem 2-1, 2-7, 3-10 Modem Type 3-12 MTU 5-6 multicasting 5-2

Ν

NAT D-9 NAT. *See* Network Address Translation netmask translation table C-6 Network Address Translation 2-3, C-7, D-9 Network Time Protocol 6-13, 9-8 newsgroup 6-4 NTP 6-13, 9-8

0

outbound rules 6-11

Ρ

package contents 2-5 password restoring 9-7 PC, using to configure D-12 ping 5-6 **PKIX 7-25** port filtering 6-11 port forwarding behind NAT C-8 port numbers 6-5 PPP over Ethernet 2-4, D-9 PPPoE 2-4, 3-8, D-9 **PPTP 3-15** Primary DNS Server 3-8, 3-9, 3-10, 3-15 protocols Address Resolution C-9 DHCP 2-3, C-10 Routing Information 2-3, C-2 support 2-3 TCP/IP 2-3 publications, related C-1

R

rear panel 2-7 reset button, clearing config 9-7 restore factory settings 8-13 RFC 1466 C-7, C-9 1597 C-7, C-9 1631 C-8, C-9 finding C-7 RIP (Router Information Protocol) 5-1 router concepts C-1 Routing Information Protocol 2-3, C-2 RTS Threshold 4-3, 4-5, 4-6 rules inbound 6-8 outbound 6-11

S

SA E-4 Scope of Document 1-1 Secondary DNS Server 3-8, 3-9, 3-10, 3-15 Serial 3-3, 3-10, 3-12, 4-2 serial 2-1, 2-7, 3-3, 3-10 service blocking 6-11 service numbers 6-5 Setup Wizard 3-1 SMTP 8-10 spoof MAC address 9-5 stateful packet inspection 2-2, C-11 Static Routes 5-3 subnet addressing C-4 subnet mask C-5, D-10, D-11 Syslog 8-9

Т

TCP/IP configuring B-1, D-1, E-1 network, troubleshooting 9-5 **TCP/IP** properties verifying for Macintosh D-8 verifying for Windows D-5, D-6 Telstra 3-15 Testing and Troubleshooting E-11 time of day 9-8 time zone 6-14 timeout, administrator login 6-2 time-stamping 6-14 Transport Mode E-5 troubleshooting 9-1 Trusted Host 6-4 Tunnel Mode E-5 typographical conventions 1-2

U

Uplink switch C-12 USB D-9

V

Virtual Private Networking 2-3 VPN E-1 VPN Consortium E-6 VPN Process Overview E-7 VPNC IKE Phase I Parameters E-10 VPNC IKE Phase II Parameters E-11

W

Windows, configuring for IP routing D-2, D-5 winipcfg utility D-5 WinPOET D-9 World Wide Web 1-iii