
1.

GlassboxAnalytics (iOS) SDK Integration Guide

January 2019

Glassbox Analytics Application Detection

This document describes the Glassbox Analytics iOS SDK detection and how to use it.

Introduction

The Glassbox Analytics iOS SDK enables the capturing of user interactions that occur on the device side.

The SDK may report information, including page details, user events, such as clicks and navigation, screen resolution, interacted view
details, device details, app memory, CPU usage and so on. This contributes to richer session analytics based on more detailed data.

The provided SDK is portable and supports iOS 8 and above. The SDK has been tested to have no perceivable performance effect on
application performance. It is very conservative in terms of memory computation usage and upload bandwidth. The SDK is self-sufficient
and does not depend on any third-party other than libraries provided with the iOS SDK.

Integration

The Glassbox Analytics iOS SDK supports iOS 8 and above. Limiting the Glassbox SDK to version 8.0 and above is not a mandatory
prerequisite. However, it is Glassbox's recommended approach. This prerequisite is enforced at the SDK level.

The recording functionality does not start when the device runs on versions lower than 8.0. If you require support for iOS versions lower
than 8.0, contact Glassbox.

The provided SDK handles native iOS applications and therefore must be compiled with the application for future loading during runtime.

SDK Installation - Manual
Add the GlassboxAnalytics SDK to your project - Drag-and-drop the provided file into your applicationGlassboxAnalytics.framework
framework directory

 2. Start the Glassbox Agent - add the following code snippet to the method in theapplicationDidFinishLaunchingWithOptions:
AppDelegate:

@import GlassboxAnalytics
.
.
- (BOOL) application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 NSError *error = nil;
 GLAStartupSettings *settings = [GLAStartupSettings settings];
 settings.reportUrl = @"<YOUR_URL>";
 settings.appId = @"<YOUR_APP_ID>";
 [GlassboxAgent start:settings error:&error];
 .
 .
 return YES;
}

import GlassboxAnalytics
.
.
class AppDelegate: ...
.
.
 func application(_ application: UIApplication,
didFinishLaunchingWithOptions
launchOptions:[UIApplication.LaunchOptionsKey: Any]?)
-> Bool {
 let settings = GLAStartupSettings.init()
 settings.reportUrl = "<YOUR_URL>"
 settings.appId = "<YOUR_APP_ID>"
 do {
 try GlassboxAgent.start(settings, error:())
 } catch {
 print("caught: \(error)")
 }
 .
 .
 }

3. In your Xcode Project "Build Settings" go to "Other Linker Flags" and add "-ObjC":

Objective C

Swift

Session Lifecycle

The session lifecycle is very important for maintaining accurate session tracking by the Glassbox Analytics agent. The following describes
the agent’s methodology when creating or terminating a session:

A session starts once the GlassboxAgent's start method is invoked. A session ends if one of the following actions occur.

The application is terminated either by the user or the iOS system.
The GlassboxAgent's stop method is invoked.
The GlassboxAgent's start method is invoked again. In this case, the previous session ends and a new one begins.

After the application returns to the foreground, the SDK resumes automatically.

As an example, if a session logically starts when the splash screen view displays, then the viewWillAppear method is a good place to start
the GlassboxAgent of the UIViewController, which manages the splash screen view.

Session Delegate

A session delegate can be set to be notified on the following events:

Session has started
Session has failed to start
Session was not started due to session configuration
To add a session delegate implement the GLASessionDelegate protocol and call the setSessionDelegate method

The GlassboxAnalytics SDK automatically enters Suspended mode when the application works in the background.

class AppDelegate: UIResponder, UIApplicationDelegate,
GLASessionDelegate {

 var window: UIWindow?

 func application(_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions:
[UIApplication.LaunchOptionsKey: Any]?) -> Bool {
 // Override point for customization after application launch.

 GlassboxAgent.setSessionDelegate(self)
 do {
 try GlassboxAgent.start()
 } catch {
 print("caught: \(error)")

 }

 return true
 }

 func sessionStarted(withConfiguration configuration: [AnyHashable :
Any]!) {
 //add your code here
 }

 func sessionFailedWithError(_ error: Error!) {
 //add your code here
 }

 func sessionExcluded(withReason reason: String!, withConfiguration
configuration: [AnyHashable : Any]!) {
 //add your code here
 }

Certificate Pinning

For enhanced security, the Glassbox Analytics SDK can be initialised using a public certificate which will limit the SDK to allow
communication only using the provided public certificate. This is to prevent man- in-the-middle attacks.

To start the recording session using a provided public certificate, please use the GLAStartupSettings class by passing a NSData object
loaded with the certificate path.

For example:

1.

NSError *error = nil;
GLAStartupSettings *settings = [GLAStartupSettings settings];
settings.certificate = [NSData dataWithContentsOfFile:[[NSBundle
mainBundle] pathForResource:@"cert" ofType:@"pem"]];
[GlassboxAgent start:settings error:&error];

Troubleshooting

Starting the Glassbox Agent using the [GlassboxAgent start:settings error:&error] command may fail if certain requirement are not
met. For this purpose, an NSError object is passed to the start method.

If an error is encountered, the NSError object is instantiated with an error code and a description. The error codes are described in the
following table:

Error Codes

Error
Code

Description

0 Cause: The iOS version of the current device is too low.
Resolution: The Glassbox framework supports iOS 8 and above.

1 Cause: The ClarisiteSettings.plist file is missing.
Resolution: Please item #3 in the integration details on page 5.

2 Cause: The URL property is missing from the ClarisiteSettings.plist file. This means that the settings file exists, but the URL
property is not included.

URL property is missing from settingsResolution:

3 Cause: The APPID property settings is missing.
Set a valid value to your property.Resolution: APPID

2. Linkage error: if you get the following linker error from Xcode at build time:

Undefined symbols for architecture XXX:
"typeinfo for char", referenced from:
 GCC_except_table5 in GlassboxAnalytics
(KSCrashMonitor_CPPException.o)
.
.
.
ld: symbol(s) not found for architecture x86_64
clang: error: linker command failed with exit code 1 (use -v to see
invocation)

Solution: Add the library to the "Link Binary With Libraries" of your application project.libc++.tbd

API Reference

Controlling Session Monitoring

The following starts Glassbox Analytics session monitoring.

+(void) start:(NSError**)error;

• : error An NSError is instantiated if the agent encounters an error during the startup process.

(void) start:(NSString *) serverUrl appId:(NSString *)appId userData: (NSDictionary*) userData error:(NSError **) error

The following starts Glassbox Analytics session monitoring with parameters:
reportUrl: The URL to be used to send event information.
appid: The application ID.
error: An NSError is instantiated if the agent encounters an error during the startup process.

The following stops session monitoringGlassbox Analytics

+(void) stop

Sensitive Data
By default, Glassbox Analytics detects sensitive data, such as password fields. Sensitive data from such fields is excluded. The following
disables monitoring from the context of the parameter provided controller.Glassbox

(void) setScreenAsSensitive:(UIViewController *) controller

The following API marks a certain view as sensitive. The analytics content of such views is masked.

(void) setViewAsSensitive:(UIView *)view

The following API marks a certain view as sensitive with a configurable set of flags. GLAVisibilityFlags has 3 properties:

maskOnAlpha - Indicates if UIView elements with alpha property set to 0 should be masked, default is NO

maskOnHidden - Indicates if UIView elements with isHidden property set to true should be masked, default is NO

maskOnAllControllers - Indicates if UIView which reside on a UIViewController which is not top view controller should be masked

+(void) setViewAsSensitive:(UIView *)view
visibilityFlags:(GLAVisibilityFlags *)visibilityFlags

Application Custom Events
Application custom events can be added at any point in an application’s lifecycle.

+(void) reportEvent:(NSString *)event parameters:(NSDictionary *)
parameters

For example, you can send a custom event (such as Item deleted) using the following parameters:

eventName: The name of the event
parameters: Key-value pairs with custom parameters for the event Note the value must be of NSString type.

Deep Links Integration

In order to integrate Deep Links support follow the following instructions:

Add the following code snippets in your App Delegate - dependent on your iOS Version:

-(BOOL)application:(UIApplication *)application openURL:(NSURL *)url
sourceApplication:(NSString *)sourceApplication
annotation:(id)annotation {
 [GlassboxAgent handleOpenURL:url sourceApplication:sourceApplication
annotation:annotation];
 return YES;
}

- (BOOL)application:(UIApplication *)application
continueUserActivity:(NSUserActivity *)userActivity
restorationHandler:(void (^)(NSArray<id<UIUserActivityRestoring>> *
_Nullable))restorationHandler {
 [GlassboxAgent continueUserActivity:userActivity
restorationHandler:restorationHandler];
 return YES;
}

The value must be of NSString type.

Objective C - iOS8

func application(_ application: UIApplication, open url: URL,
sourceApplication: String?, annotation: Any) -> Bool {
 GlassboxAgent.handleOpen(url, sourceApplication: sourceApplication,
annotation: nil)
 return true
}

func application(_ application: UIApplication, continue userActivity:
NSUserActivity, restorationHandler: @escaping
([UIUserActivityRestoring]?) -> Void) -> Bool {
 GlassboxAgent.continue(userActivity, restorationHandler:
restorationHandler)
 return true
}

- (BOOL)application:(UIApplication *)app openURL:(NSURL *)url
options:(NSDictionary<UIApplicationOpenURLOptionsKey,id> *)options {
 [GlassboxAgent handleOpenURL:url options:options];
 return YES;
}

- (BOOL)application:(UIApplication *)application
continueUserActivity:(NSUserActivity *)userActivity
restorationHandler:(void (^)(NSArray<id<UIUserActivityRestoring>> *
_Nullable))restorationHandler {
 [GlassboxAgent continueUserActivity:userActivity
restorationHandler:restorationHandler];
 return YES;
}

Swift - iOS8

Objective C - iOS9 and later

1.

2.
3.

1.

func application(_ app: UIApplication, open url: URL, options:
[UIApplication.OpenURLOptionsKey : Any] = [:]) -> Bool {
 GlassboxAgent.handleOpen(url, options: options)
 return true
}

func application(_ application: UIApplication, continue userActivity:
NSUserActivity, restorationHandler: @escaping
([UIUserActivityRestoring]?) -> Void) -> Bool {
 GlassboxAgent.continue(userActivity, restorationHandler:
restorationHandler)
 return true
}

Symbolication

Uploading a .dSYM is essential for the Symbolication process of crash reports to succeed.

For builds, track the local dSYM on your computer using the following steps:Bitcode disabled

Find your .app file's UUID:

> dwarfdump YourAppName.app/YourAppName -u

UUID: 6E39EBFC-160E-3922-8BC7-2910DF8E77F3 (arm64)
YourAppName.app/YourAppName

Find the dSYM that matches the UUID you found on step 1.
Upload the found dSYM file to the Glassbox platform.

For builds that have been released to the Apple store or submitted to TestFlight, Apple generates new dSYMs. You’llBitcode enabled
need to:

Download the regenerated dSYMs from Xcode:

Open the Xcode's Organizer. Select the specific Archive of your app that you uploaded to iTunes Connect and click on the "Download
dSYMs" button which will insert the Bitcode compiled dSYMs into the original archive.

Swift - iOS9 and later

Result

2. Upload the downloaded dSYM file to the Glassbox platform.

Support and Contact Information

Support - Email - support@glassboxdigital.com

Important Notice

Copyright © 2019 Glassbox Digital. All rights reserved.

The information specified herein constitutes proprietary and confidential information of Glassbox Digital.

The information specified herein is provided solely for your internal use and you shall not disclose the Information to any third party.
Unauthorized use or disclosure of such information would cause irreparable harm to Glassbox Digital.

The information specified herein is provided "as is" and Glassbox Digital makes no representations or warranties of any kind, express or
implied, with respect to the information in this publication, and specifically disclaims implied warranties of accuracy, completeness,
merchantability, title, non- infringement and/or fitness for a particular purpose.

Glassbox Digital reserves the right to make changes in or to the said information, or any part thereof, in its sole judgment, without the
requirement of giving any notice prior to or after making such changes to the information.

Use, copying, and distribution of any Glassbox Digital software described in this publication requires an applicable software license.

The Glassbox Digital logo is a trademark of Glassbox Digital.

	GlassboxAnalytics (iOS) SDK Integration Guide

