©2010 NETGEAR, Inc. All rights reserved.
No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of NETGEAR, Inc.

Technical Support
Thank you for choosing NETGEAR. To register your product, get the latest product updates, or get support online, visit us at http://support.netgear.com.

Phone (US & Canada only): 1-888-NETGEAR
Phone (Other Countries): See Support information card.

Trademarks
NETGEAR, the NETGEAR logo, ReadyNAS, ProSafe, Smart Wizard, Auto Uplink, X-RAID2, and NeoTV are trademarks or registered trademarks of NETGEAR, Inc. Microsoft, Windows, Windows NT, and Vista are registered trademarks of Microsoft Corporation. Other brand and product names are registered trademarks or trademarks of their respective holders.

Statement of Conditions
To improve internal design, operational function, and/or reliability, NETGEAR reserves the right to make changes to the products described in this document without notice. NETGEAR does not assume any liability that may occur due to the use, or application of, the product(s) or circuit layout(s) described herein.

Revision History

<table>
<thead>
<tr>
<th>Publication Part Number</th>
<th>Version</th>
<th>Publish Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>202-10753-01</td>
<td>1.0</td>
<td>October 2010</td>
<td>First publication</td>
</tr>
</tbody>
</table>
Table of Contents

Chapter 1 Configuring Basic Connectivity
- Using the Setup Manual ... 6
- Logging In To Your Wireless Router .. 7
- Selecting a Language for Your Screen Display 9
- Configuring Your Internet Settings Using the Setup Wizard 11
- Viewing and Configuring Basic Internet Settings 11
- Your Internet Connection Does Not Require a Login 11
- Your Internet Connection Does Require a Login 13
- Setting Up and Testing Basic Wireless Connectivity 16

Chapter 2 Safeguarding Your Network
- Choosing Appropriate Wireless Security 20
- Recording Basic Wireless Settings Setup Information 23
- Changing Wireless Security Settings 24
 - Viewing Basic Wireless Settings 24
 - Configuring WEP Wireless Security 26
 - Configuring WPA-PSK and WPA2-PSK Wireless Security 28
 - Viewing Advanced Wireless Settings 29
 - Using Push ‘N’ Connect (Wi-Fi Protected Setup) 30
 - Push Button Configuration .. 31
 - Security PIN Entry .. 32
 - Configuring the WPS Settings 33
 - Connecting Additional Wireless Client Devices after WPS Setup 34
 - Restricting Wireless Access by MAC Address 35
 - Adding Guest Networks ... 37
 - Changing the Administrator Password 38
 - Backing Up Your Configuration .. 39
 - Understanding Your Firewall .. 40

Chapter 3 Restricting Access From Your Network
- Content Filtering Overview .. 41
- Blocking Access to Internet Sites 41
- Blocking Access to Internet Services 42
 - Blocking Services by IP Address Range 44
 - Scheduling Blocking .. 44
 - Viewing Logs of Web Access or Attempted Web Access 45
 - Configuring E-mail Alert and Web Access Log Notifications 46
- Setting the Time Zone .. 47
Chapter 7 Troubleshooting

Quick Tips ... 91
Troubleshooting Basic Functions 92
Login Problems .. 94
Checking the Internet Service Connection 95
 Obtaining an Internet IP Address 95
 Troubleshooting PPPoE .. 96
Troubleshooting Internet Browsing 96
Troubleshooting Your Network Using the Ping Utility 97
 Testing the LAN Path to Your Router 97
 Testing the Path from Your Computer to a Remote Device 98
Problems with Date and Time 99
Problems with Wireless Adapter Connections 99
Restoring the Default Configuration and Password 100

Appendix A Technical Specifications

Default Configuration Settings 101
General Specifications .. 103

Appendix B Related Documents

Appendix C Notification of Compliance

Index
Configuring Basic Connectivity

This chapter describes the settings for your Internet connection and your wireless local area network (LAN) connection. When you perform the initial configuration of your wireless router using the Resource CD as described in the NETGEAR Wireless Router Setup Manual, these settings are specified automatically for you. This chapter provides further details about these connectivity settings, as well as instructions on how to log in to the router for further configuration.

Note: NETGEAR recommends using the Smart Wizard™ on the Resource CD for initial configuration, as described in the NETGEAR Wireless Router Setup Manual.

This chapter includes the following sections:

- Using the Setup Manual on page 6
- Logging In To Your Wireless Router on page 7
- Selecting a Language for Your Screen Display on page 9
- Configuring Your Internet Settings Using the Setup Wizard on page 11
- Viewing and Configuring Basic Internet Settings on page 11
- Setting Up and Testing Basic Wireless Connectivity on page 16

Using the Setup Manual

For first-time installation of your wireless router, refer to the NETGEAR Wireless Router Setup Manual. The Setup Manual explains how to launch the NETGEAR Smart Wizard on the Resource CD to step you through the procedure to connect your router, modem, and computers. The Smart Wizard will assist you in configuring your wireless settings and enabling wireless security for your network. After initial configuration using the Setup Manual, you can use the information in this User Manual to configure additional features of your wireless router.

For installation instructions in a language other than English, refer to the language options on the Resource CD.
Logging In To Your Wireless Router

When the wireless router is connected to your network, you can access and configure the router using your browser. The Default Access login information is printed on the bottom label of your router.

To access the router:

1. Connect to the wireless router by typing http://www.routerlogin.net in the address field of your browser, and then press Enter. A login window displays

![Login Window](image)

Tip: You can connect to the wireless router by typing either of these URLs in the address field of your browser, and then pressing Enter:

- http://www.routerlogin.net
- http://www.routerlogin.com

If these URLs do not work, you must type the IP address of the router, for example, http://192.168.1.1.

2. Enter admin for the router user name and your password (or the default, password).

 Note: The router user name and password are not the same as any other user name or password you might use to log in to your Internet connection.

- The Checking for Firmware Updates screen appears unless you previously cleared the Check for Updated Firmware Upon Log-in check box.
Figure 2.

This message displays if the router discovers that new firmware is available. (If no new firmware is available, the router will proceed to the router status screen.)

![Checking for Firmware Updates](image)

Figure 3.

To automatically update to the new firmware, click **Yes** to allow the router to download and install the new firmware file from NETGEAR.

![Firmware Upgrade Assistant](image)

WARNING!

When uploading firmware to the WNR1000v3h2 router, **do not** interrupt the Web browser by closing the window, clicking a link, or loading a new page. If the browser is interrupted, it could corrupt the firmware.

The update process typically takes about 1 minute. When the upload is complete, your Wireless Router automatically restarts.

3. If there is no new firmware, the login will take you to the Basic Settings screen displayed here.
If the wireless router is connected to the Internet, you can select **Knowledge Base** or **Documentation** under Web Support in the main menu to view support information or the documentation for the wireless router.

If you do not click **Logout**, the wireless router will wait for 5 minutes after no activity before it automatically logs you out.

Selecting a Language for Your Screen Display

Using the Select Language drop-down menu, located in the upper right corner of the Router Manager screen, you can display the router manager screens in any of languages shown in Figure 1-5:
The language is set to English by default. The default language is always stored in memory. When you select a language other than the default, that language as well as English is stored in memory. The additional language stored is the most recently selected. For example, if you select Deutsch, German and English will be stored. If you next select Chinese, Chinese and English will be stored.

To specify a language to be used on your router manager screens, do the following:

1. Expand the list and select the language you want.
2. Click Apply.

The language you select is then downloaded and displayed in the language selection box, and your screen display will be in the selected language.

Note: You can select from the entire list of supported languages only when the router is connected to the Internet. When the router is not connected to the Internet, you can select one of the stored languages only.
Configuring Your Internet Settings Using the Setup Wizard

You can manually configure your Internet connection using the Basic Settings screen, or you can allow the Setup Wizard to determine your Internet Service Provider (ISP) configuration. The Setup Wizard searches your Internet connection for servers and protocols to determine your ISP configuration.

To use the Setup Wizard to assist with configuration or to verify the Internet connection settings:

1. Select **Setup Wizard** from the top of the main menu.
2. Click **Next** to proceed. Enter your ISP settings, as needed.
3. At the end of the Setup Wizard, click **Test** to verify your Internet connection. If you have trouble connecting to the Internet, see *Chapter 7.*

Viewing and Configuring Basic Internet Settings

Settings related to your Internet service are specified in the Basic Settings screen. Select **Basic Settings** under Setup in the main menu.

The content you see in the Basic Settings screen depends on whether your ISP requires that you log in with a user name and password for Internet access.

Your Internet Connection Does Not Require a Login

If no login is required by your ISP, the following settings appear in the Basic Settings screen.
No login required

12 | Chapter 1: Configuring Basic Connectivity

Figure 6.

- **Account Name** (might also be called Host Name). The account name is provided to the ISP during a DHCP request from your router. In most cases, this setting is not required, but some ISPs require it for access to ISP services such as mail or news servers.

- **Domain Name.** The domain name is provided by your router to computers on your LAN when the computers request DHCP settings from your router. In most cases, this settings is not required.

- **Internet IP Address.** Determines how your router obtains an IP address for Internet access.
 - If your ISP assigns an IP address dynamically (by DHCP), select **Get Dynamically From ISP**.
 - If your ISP has assigned you a permanent, fixed (static) IP address for your computer, select **Use Static IP Address**. Enter the IP address that your ISP assigned. Also, enter the subnet mask and the gateway IP address. The gateway is the ISP’s router to which your router will connect.

- **Domain Name Server (DNS) Address.** If you know that your ISP does not automatically transmit DNS addresses to the router during login, select **Use These DNS Servers**, and enter the IP address of your ISP’s primary DNS server. If a secondary DNS server address is available, enter it also.
Note: If you enter or change a DNS address, restart the computers on your network so that these settings take effect.

- **Router MAC Address.** This section determines the Ethernet MAC address that the router will use on the Internet port. Typically, you would leave **Use Default Address** selected. However, some ISPs (especially cable modem providers) register the Ethernet MAC address of the network interface card in your computer when your account is first opened. They then accept only traffic from the MAC address of that computer. This feature allows your router to masquerade as that computer by “cloning” or “spoofing” its MAC address.

 To change the MAC address, select one of the following methods:

 - Select **Use Computer MAC Address.** The router will then capture and use the MAC address of the computer that you are now using. You must be using the one computer that is allowed by the ISP.
 - Select **Use This MAC Address**, and enter it here.

Your Internet Connection Does Require a Login

If a login is required by your ISP, the following settings appear in the Basic Settings screen:
• **Does Your Internet Connection Require A Login?** If you usually must use a login program such as WinPOET to access the Internet, your Internet connection requires a login. After you select **Yes**, the Basic Settings screen displays.

Note: After you finish setting up your router, you will no longer need to launch the ISP’s login program on your computer to access the Internet. When you start an Internet application, your router will automatically log you in.

• **Internet Service Provider.** This drop-down list contains a few ISPs that need special protocols for connection. Not all ISPs are listed here. The ones on this list have special requirements. The list includes:
- **PPTP** (Point to Point Tunneling Protocol), used primarily in Austrian DSL services
- **Telstra Bigpond**, an Australian residential cable modem service

Note: The Telstra Bigpond setting is only for older cable modem service accounts still requiring a Bigpond login utility. Telstra has discontinued this type of account. Those with Telstra DSL accounts and newer cable modem accounts should select **No** for Does Your Internet Connection Require a Login.

- **PPPoE** (Point to Point Protocol over Ethernet), the protocol used by most DSL services worldwide.
 - **Login and Password.** This is the user name and password provided by your ISP. This name and password are used to log in to the ISP server.
 - **Service Name.** If your connection is capable of connecting to multiple Internet services, this setting specifies which service to use.
 - **Connection Mode.** This drop-down list selects when the router will connect to and disconnect from the Internet. The list includes:

 - **Always On.** The router logs in to the Internet immediately after booting and never disconnects.
 - **Dial on Demand.** The router logs in only when outgoing traffic is present and logs out after the idle time-out.
 - **Manually Connect.** The router logs in or logs out only when the user clicks **Connect** or **Disconnect** in the Router Status screen.
 - **Idle Timeout.** Your Internet connection is logged out if there is no data transfer during the specified time interval.
• **Domain Name Server (DNS) Address.** If you know that your ISP does not automatically transmit DNS addresses to the router during login, select **Use These DNS Servers**, and enter the IP address of your ISP’s primary DNS server. If a secondary DNS server address is available, enter it also.

Note: If you enter or change a DNS address, restart the computers on your network so that these settings take effect.

Setting Up and Testing Basic Wireless Connectivity

Follow these instructions to set up and test basic wireless connectivity. Once you have established basic wireless connectivity, you can enable security settings appropriate to your needs.

1. Select **Wireless Settings** under Setup in the main menu of the WNR1000v3h2 router.

![Wireless Settings](image)

Figure 10.

2. As appropriate, select the region in which the wireless interface will operate.

Note: In North America, you will not be able to change the region setting.

3. For the wireless network name (SSID), use the default name, or choose a suitable descriptive name. In the **Name (SSID)** field, you can enter a value of up to 32 alphanumeric characters. The default SSID is NETGEAR.
4. For the remaining settings, accept the defaults.
 • The default channel is **Auto**.

 It should not be necessary to change the wireless channel unless you notice interference problems with another nearby wireless router or access point. Select a channel that is not being used by any other wireless networks within several hundred feet of your router. For more information about the wireless channel frequencies, click the link to the online document *Wireless Networking Basics* in Appendix B.

 • The default mode of **Up to 72 Mbps**. The options are:
 - Up to 54 Mbps – Legacy Mode – Maximum speed of up to 54 Mbps for b/g networks.
 - Up to 72 Mbps – Neighbor Friendly Mode – Will not interfere with neighboring wireless networks.
 - Up to 150 Mbps – Performance Mode – Maximum Wireless-N speed up to 150 Mbps.

 • The default Security Options is **None**.

5. Click **Apply** to save your changes.

Note: If you are configuring the router from a wireless computer and you change the router’s SSID, channel, or security settings, you will lose your wireless connection when you click **Apply**. You must then change the wireless settings of your computer to match the router’s new settings.

6. Select **Wireless Settings** under Advanced in the main menu of the WNR1000v3h2 router.
7. Make sure that the **Enable Wireless Router Radio**, **Enable SSID Broadcast**, and **Enable WMM** check boxes are selected.

8. Click **Setup Access List**.

9. Make sure that the **Turn Access Control On** check box is *not* selected.

10. Configure and test your wireless computer for wireless connectivity.

 Program the wireless adapter of your computer to have the same SSID and channel that you specified in the router, and disable encryption. Check that your computer has a wireless link and can obtain an IP address by DHCP from the router.

Once your computer has basic wireless connectivity to the router, you can configure the advanced wireless security functions of the computer and router (for more information about security and these settings, see *Chapter 2*).
Safeguarding Your Network

The N150 Wireless Router provides highly effective security features, which are covered in detail in this chapter.

This chapter includes the following sections:

- Choosing Appropriate Wireless Security
- Recording Basic Wireless Settings Setup Information on page 23
- Changing Wireless Security Settings on page 24
- Viewing Advanced Wireless Settings on page 29
- Using Push 'N' Connect (Wi-Fi Protected Setup) on page 30
- Restricting Wireless Access by MAC Address on page 35
- Adding Guest Networks on page 37
- Changing the Administrator Password on page 38
- Backing Up Your Configuration on page 39
- Understanding Your Firewall on page 40
Choosing Appropriate Wireless Security

Unlike wired networks, wireless networks allow anyone with a compatible adapter to receive your wireless data transmissions well beyond your walls. Operating an unsecured wireless network creates an opportunity for outsiders to eavesdrop on your network traffic or to enter your network to access your computers and files. Indoors, computers can connect over wireless networks at ranges of up to 300 feet. Such distances can allow for others outside your immediate area to access your network. Use the security features of your wireless equipment that are appropriate to your needs.

The time it takes to establish a wireless connection can vary depending on both your security settings and router placement.

Stronger security methods can entail a cost in terms of throughput, latency, battery consumption, and equipment compatibility. In choosing an appropriate security level, you can also consider the effort compared to the reward for a hacker to break into your network. As a minimum, however, NETGEAR recommends using WEP with Shared Key authentication. Do not run an unsecured wireless network unless it is your intention to provide free Internet access for the public.

WEP connections can take slightly longer to establish. Also, WEP, WPA-PSK, and WPA2-PSK encryption can consume more battery power on a notebook computer, and can cause significant performance degradation with a slow computer.

Note: NETGEAR recommends that you change the administration password of your router. Default passwords are well known, and an intruder can use your administrator access to read or disable your security settings. For information about how to change the administrator password, see Changing the Administrator Password on page 38.
Figure 1.

To configure the wireless network, you can:

- **Manually specify your SSID and your wireless security settings.** The WNR1000v3h2 router provides two screens for configuring the wireless settings:
 - **Wireless Settings.** You access these under Setup in the main menu (see Viewing Basic Wireless Settings on page 24).
 - **Advanced Wireless Settings.** You access these under Advanced in the main menu (see Viewing Advanced Wireless Settings on page 29).

- **Use Wi-Fi Protected Setup (WPS) to automatically set the SSID and implement WPA/WPA2 security on both the router and the client device.** If the clients in your network are WPS capable, you can use Wi-Fi Protected Setup (WPS) to automatically set the SSID and implement WPA/WPA2 security on both the router and the client device (see Using Push 'N' Connect (Wi-Fi Protected Setup) on page 30).

Basic security options are listed in order of increasing effectiveness in Table 1. Other features that affect security are listed in Table 2 on page 22. For more details on wireless
security methods, click the link to the online document *Wireless Networking Basics* in Appendix B.

Table 1. Wireless Security Options

<table>
<thead>
<tr>
<th>Security Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>None.</td>
<td>No wireless security. Recommended only for troubleshooting wireless connectivity. Do not run an unsecured wireless network unless it is your intention to provide free Internet access for the public.</td>
</tr>
<tr>
<td>WEP. Wired Equivalent Privacy.</td>
<td>Wired Equivalent Privacy (WEP) data encryption provides moderate data security. WEP Shared Key authentication and WEP data encryption can be defeated by a determined eavesdropper using publicly available tools. For more information, see Configuring WEP Wireless Security on page 26.</td>
</tr>
<tr>
<td>WPA-PSK (TKIP). WPA-PSK standard encryption with TKIP encryption type.</td>
<td>Wi-Fi Protected Access with Pre-Shared Key (WPA-PSK and WPA2-PSK) data encryption provides extremely strong data security, very effectively blocking eavesdropping. Because WPA and WPA2 are relatively new standards, older wireless adapters and devices might not support them. For more information, see Configuring WPA-PSK and WPA2-PSK Wireless Security on page 28.</td>
</tr>
<tr>
<td>WPA2-PSK (AES). Wi-Fi Protected Access version 2 with Pre-Shared Key; WPA2-PSK standard encryption with the AES encryption type.</td>
<td></td>
</tr>
<tr>
<td>WPA-PSK (TKIP) + WPA2-PSK (AES). Mixed mode.</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Other Features That Enhance Security

<table>
<thead>
<tr>
<th>Security Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disable the wireless router radio.</td>
<td>If you disable the wireless router radio, wireless devices cannot communicate with the router at all. You might disable this when you are away or when other users of your network all use wired connections. For more information, see Viewing Advanced Wireless Settings on page 29.</td>
</tr>
<tr>
<td>Turn off the broadcast of the wireless network name SSID.</td>
<td>If you disable the broadcast of the SSID, only devices that know the correct SSID can connect. This nullifies the wireless network discovery feature of some products such as Windows XP, but your data is still fully exposed to an intruder using available wireless eavesdropping tools. For more information, see Viewing Advanced Wireless Settings on page 29.</td>
</tr>
</tbody>
</table>
Before and after customizing your wireless settings, print this section, and record the following information. If you are working with an existing wireless network, the person who set up or is responsible for the network can provide this information. Otherwise, you must choose the settings for your wireless network. Either way, record the settings for your wireless network in the spaces provided.

- **Wireless Network Name (SSID).** The SSID identifies the wireless network. You can use up to 32 alphanumeric characters. The SSID is case-sensitive. The SSID in the wireless adapter card must match the SSID of the wireless router. In some configuration utilities (such as in Windows XP), the term “wireless network name” is used instead of SSID.

- If **WEP Authentication** is used, circle one: Shared Key or Auto.

Note: If you select Shared Key, the other devices in the network will not connect unless they are also set to Shared Key and are configured with the correct key.
- **WEP Encryption Key Size.** Choose one: 64-bit or 128-bit. Again, the encryption key size must be the same for the wireless adapters and the wireless router.

- **Data Encryption (WEP) Keys.** There are two methods for creating WEP data encryption keys. Whichever method you use, record the key values in the spaces provided.

 - **Passphrase Method.** ______________________________ These characters are case-sensitive. Enter a word or group of printable characters and click Generate. Not all wireless devices support the passphrase method.

 - **Manual Method.** These values are not case-sensitive. For 64-bit WEP, enter 10 hexadecimal digits (any combination of 0–9, a–f, or A–F). For 128-bit WEP, enter 26 hexadecimal digits.

 Key 1: ______________________________

 Key 2: ______________________________

 Key 3: ______________________________

 Key 4: ______________________________

- If WPA-PSK or WPA2-PSK authentication is used:

 - **Passphrase.** ______________________________ These characters are case-sensitive. Enter a word or group of printable characters. When you use WPA-PSK, the other devices in the network will not connect unless they are also set to WPA-PSK and are configured with the correct passphrase. Similarly, when you use WPA2-PSK, the other devices in the network will not connect unless they are also set to WPA2-PSK and are configured with the correct passphrase.

Use the procedures described in the following sections to specify the WNR1000v3h2 router. Store this information in a safe place.

Changing Wireless Security Settings

This section describes the wireless settings that you can view and configure in the Wireless Settings screen, which you access under Setup in the main menu.

Viewing Basic Wireless Settings

To specify the wireless security settings of your router:

1. Log in to the router as described in *Logging In To Your Wireless Router* on page 7.
The available settings in this screen are:

- **Name (SSID).** The SSID is also known as the wireless network name. Enter a value of up to 32 alphanumeric characters. When more than one wireless network is active, different wireless network names provide a way to separate the traffic. For a wireless device to participate in a particular wireless network, it must be configured with the SSID for that network. The WNR1000v3h2 default SSID is **NETGEAR**. You can disable this broadcast as described in *Viewing Advanced Wireless Settings* on page 29.

- **Region.** This field identifies the region where the WNR1000v3h2 router can be used. It might not be legal to operate the wireless features of the wireless router in a region other than one of those identified in this field.

 Note: The region selection feature might not be available in all countries.

- **Channel.** This field determines which operating frequency is used. It should not be necessary to change the wireless channel unless you notice interference problems with another nearby wireless network. The wireless router uses channel bonding technology to extend the bandwidth for data transmission. For more information about the wireless channel frequencies, see the online document that you can access from *Wireless Networking Basics* in Appendix B.

- **Mode.** The default mode is **Up to 72 Mbps**.
Note: The maximum wireless signal rate is derived from the IEEE Standard 802.11 specifications. Actual data throughput will vary. Network conditions and environmental factors, including volume of network traffic, building materials and construction, and network overhead, lower actual data throughput rate.

The Mode options are:

- Up to 54 Mbps - Legacy Mode with maximum speed of up to 54 Mbps for b/g networks.
- Up to 72 Mbps - Neighbor Friendly Mode - Will not interfere with neighboring wireless networks.
- Up to 150 Mbps - Performance Mode - Maximum Nx speeds up to 150 Mbps. Using channel expansion to achieve the 150 Mbps data rate, the WNR1000v3h2 will use the channel you selected as the primary channel and expand to the secondary channel (primary channel +4 or –4) to achieve a 40 MHz frame-by-frame bandwidth. The WNR1000v3h2 will detect channel usage and will disable frame-by-frame expansion if the expansion would result in interference with the data transmission of other access points or clients.

- **Security Options.** The selection of wireless security options can significantly affect your network performance. The time it takes to establish a wireless connection can vary depending on both your security settings and router placement.

WEP connections can take slightly longer to establish. Also, WEP, WPA-PSK, and WPA2-PSK encryption can consume more battery power on a notebook computer, and can cause significant performance degradation with a slow computer. Instructions for configuring the security options can be found in Choosing Appropriate Wireless Security on page 20. A full explanation of wireless security standards is available in the online document that you can access from Wireless Networking Basics in Appendix B.

3. Click **Apply** to save your settings.

Configuring WEP Wireless Security

WEP Shared Key authentication and WEP data encryption can be defeated by a determined eavesdropper using publicly available tools.

WEP offers the following options:

- **Automatic.** With the Automatic option, the router will try both Open System and Shared Key authentication. Normally this setting is suitable. If it fails, select **Open System** or **Shared Key.** You can also refer to your wireless adapter’s documentation to see what method to use.

- **Open System.** With Open System authentication and 64 or 128 bit WEP data encryption, the WNR1000v3h2 router does perform data encryption but does not perform any
authentication. Anyone can join the network. This setting provides very little practical wireless security.

- **Shared Key.** With Shared Key authentication, a wireless device must know the WEP key to join the network. Select the encryption strength (64 or 128 bit data encryption). Manually enter the key values, or enter a word or group of printable characters in the **Passphrase** field. Manually entered keys are not case-sensitive, but passphrase characters are case-sensitive.

To configure WEP data encryption:

Note: If you use a wireless computer to configure WEP settings, you will be disconnected when you click **Apply.** You must then either configure your wireless adapter to match the wireless router WEP settings or access the wireless router from a wired computer to make any further changes. Not all wireless adapter configuration utilities support passphrase key generation.

1. Select **Wireless Settings** under Setup in the main menu.
2. In the Security Options section, select **WEP.** The WEP options display.

![Figure 3](image)

3. Select the authentication type and encryption strength.
4. You can manually or automatically program the four data encryption keys. These values must be identical on all computers and access points in your network.
 - **Automatic.** In the **Passphrase** field, enter a word or group of printable characters, and click **Generate.** The passphrase is case-sensitive. For example, NETGEAR is not the same as nETgear. The four key fields are automatically populated with key values.
 - **Manual.** Enter 10 hexadecimal digits (any combination of 0–9, a–f, or A–F). These entries are not case-sensitive. For example, AA is the same as aa. Select which of the four keys to activate.
5. Click **Apply** to save your settings.

Configuring WPA-PSK and WPA2-PSK Wireless Security

Wi-Fi Protected Access with Pre-Shared Key (WPA-PSK and WPA2-PSK) data encryption provides extremely strong data security, very effectively blocking eavesdropping. Because WPA and WPA2 are relatively new standards, older wireless adapters and devices might not support them. Check whether newer drivers are available from the manufacturer. Also, you might be able to use the Push 'N' Connect feature to configure this type of security if it is supported by your wireless clients. See *Using Push 'N' Connect (Wi-Fi Protected Setup)* on page 30.

WPA–Pre-Shared Key *does* perform authentication. WPA-PSK uses TKIP (Temporal Key Integrity Protocol) data encryption, and WPA2-PSK uses AES (Advanced Encryption Standard) data encryption. Both methods dynamically change the encryption keys making them nearly impossible to circumvent.

Mixed mode allows clients using either WPA-PSK (TKIP) or WPA2-PSK (AES). This provides the most reliable security, and is easiest to implement, but it might not be compatible with older adapters.

Note: Not all wireless adapters support WPA. Furthermore, client software is also required. Windows XP with Service Pack 2 does include WPA support. Nevertheless, the wireless adapter hardware and driver must also support WPA. For instructions on configuring wireless computers or PDAs (personal digital assistants) for WPA-PSK security, consult the documentation for the product you are using.

To configure WPA-PSK, WPA2-PSK, or WPA-PSK+WPA2-PSK:

2. Select one of the WPA-PSK or WPA2-PSK options for the security type. The third option (WPA-PSK [TKIP] + WP2-PSK [AES]) is the most flexible, since it allows clients using either WPA-PSK or WPA2-PSK.
3. In the **Passphrase** field, enter a word or group of 8–63 printable characters. The passphrase is case-sensitive.
4. Click **Apply** to save your settings.

Viewing Advanced Wireless Settings

This section describes the wireless settings that you can view and specify in the Advanced Wireless Settings screen, which you access under Advanced in the main menu.

To configure the advanced wireless security settings of your router:

1. Log in to the router as described in *Logging In To Your Wireless Router* on page 7.
2. Select **Wireless Settings** under Advanced in the main menu. The advanced Wireless Settings screen displays.

 ![Advanced Wireless Settings Screen](image)

 Figure 4.

 The available settings in this screen are:
• **Enable Wireless Router Radio.** If you disable the wireless router radio, wireless devices cannot connect to the WNR1000v3h2 router. If you will not be using your wireless network for a period of time, you can clear this check box and disable all wireless connectivity.

• **Enable SSID Broadcast.** Clear this check box to disable broadcast of the SSID, so that only devices that know the correct SSID can connect. Disabling SSID broadcast nullifies the wireless network discovery feature of some products such as Windows XP.

• **Enable WMM.** Clear this check box to disable WMM. WMM (Wireless Multimedia), a subset of the 802.11e standard, allows wireless traffic to have a range of priorities, depending on the kind of data. Time-dependent information, like video or audio, will have a higher priority than normal traffic. For WMM to function correctly, Wireless clients must also support WMM.

• **Fragmentation Threshold, CTS/RTS Threshold, and Preamble Mode.** The Fragmentation Threshold, CTS/RTS Threshold, and Preamble Mode options are reserved for wireless testing and advanced configuration only. Do not change these settings.

• **WPS Settings.** For information about these settings, see the section, *Using Push 'N' Connect (Wi-Fi Protected Setup)* on page 30.

• **Wireless Card Access List.** For information about this list, see *Restricting Wireless Access by MAC Address* on page 35.

Using Push 'N' Connect (Wi-Fi Protected Setup)

If your wireless clients support Wi-Fi Protected Setup (WPS), you can use this feature to configure the router’s network name (SSID) and security settings and, at the same time, connect a wireless client securely and easily to the router. Look for the symbol on your client device. WPS automatically configures the network name (SSID) and wireless security settings for the router (if the router is in its default state) and broadcasts these settings to the wireless client.

Note: NETGEAR’s Push 'N' Connect feature is based on the Wi-Fi Protected Setup (WPS) standard (for more information, see http://www.wi-fi.org). All other Wi-Fi-certified and WPS-capable products should be compatible with NETGEAR products that implement Push 'N' Connect.

When you add wireless clients, whether or not they are WPS enabled, the added devices must share the same network name (SSID) and security passphrase. For more information, see *Connecting Additional Wireless Client Devices after WPS Setup* on page 34.
Note: If you choose to use WPS, the only security methods supported are WPA-PSK and WPA2-PSK. WEP security is not supported by WPS.

The WNR1000v3h2 router provides two methods for connecting to a wireless client that supports WPS, described in the following sections:

- Push Button Configuration
- Security PIN Entry on page 32

Push Button Configuration

There are two methods to enable a wireless client to join a network using a push button on the router: using the physical push button or using the software button in the Add WPS Client screen.

Using the Physical Push Button

1. Press the button on the rear of the WNR1000v3h2 router for over 5 seconds. For information about the WPS light, see the NETGEAR Wireless Router Setup Manual.

 The green light begins to blink in a regular pattern. While the light is blinking, you have 2 minutes to enable WPS on the client that you are trying to connect to the router.

2. On the wireless client, follow its specific networking instructions to enable WPS, to allow it to connect to the router.

 The WNR1000v3h2 router’s green light ceases blinking and remains on when one of these conditions occurs:

 - The router and the client establish a wireless connection.
 - The 2-minute window period expires for establishing a WPS connection. If the connection is not established, the SSID and security settings will not be changed.

Using the Software Button in the Add WPS Client Screen

1. Log in to the router as described in Logging In To Your Wireless Router on page 7.
2. Select Add WPS Client in the main menu, and click Next.
4. Click the button in the Add WPS Client screen. The Connecting to New Wireless Client screen displays.

5. In the wireless client, follow its specific networking instructions to enable WPS, to allow it to connect to the router.

 The WNR1000v3h2 router’s green light ceases blinking and remains on when one of these conditions occurs:
 - The router and the client establish a wireless connection.
 - The 2-minute window period expires for establishing a WPS connection. If the connection is not established, the SSID and security settings will not be changed.

Security PIN Entry

There are two ways to enable a wireless client to join a network using a PIN: using the router’s security PIN or using the wireless client’s security PIN.

Using the Router’s Security PIN

1. Obtain your router’s security PIN from the rear panel of the router or from the Advanced Wireless Settings screen.
2. On the wireless client, follow its specific networking instructions to enter the router’s security PIN and to establish a wireless connection with the router.

Using the Wireless Client’s Security PIN

1. Log in to the router as described in *Logging In To Your Wireless Router* on page 7.
2. Select *Add WPS Client* in the main menu, and click *Next*.
3. Select the *PIN Number* setup method.

![Image 8](image8.png)

Figure 8.

4. On the wireless client, obtain its security PIN, or follow its specific networking instructions to generate a client security PIN.
5. In the Add WPS Client screen of the WNR1000v3h2 router, enter the client security PIN in the *Enter Client’s PIN* field.
6. Click *Next*. The following screen displays, and the Smart Wizard initiates the wireless connection:

![Image 9](image9.png)

Figure 9.

Configuring the WPS Settings

1. Log in to the router as described in *Logging In To Your Wireless Router* on page 7.
2. Select *Wireless Settings* under Advanced in the main menu.
These options are available under WPS Settings:

- **Router’s PIN.** The PIN is displayed so that you can use it to configure the router through WPS (Wi-Fi Protected Setup) without using the Push Button or entering the client’s PIN from the router management GUI. It is also displayed on the router’s label.

- **Disable Router’s PIN.** If the router’s PIN is disabled, you cannot run WPS through the router’s PIN method. However, if your settings are already configured, you can still add WPS-enabled wireless clients. The router might disable the PIN if it detects suspicious attempts to break into your wireless settings; when this happens, the check box is selected automatically by the router. You can enable the PIN by clearing the check box and clicking **Apply**.

- **Keep Existing Wireless Settings.** This check box is automatically selected to prevent unwanted settings changes after WPS has been performed once successfully. The check box is also selected if you have already specified wireless security settings or your SSID without using WPS. When this check box is not selected, adding a new wireless client successfully using the push button or the Add WPS Client screen (see **Push Button Configuration** on page 31) changes the router’s SSID and security passphrase. You might need to clear it if you are using certain registrars, such as for a Windows Vista PC, to configure the router through WPS.

Connecting Additional Wireless Client Devices after WPS Setup

You can add WPS-enabled and non-WPS-enabled client devices.

Adding Additional WPS-Enabled Clients

To add an additional wireless client device that is WPS enabled:

Note: Your wireless settings do not change when you add an additional WPS-enabled client unless you have cleared the **Keep Existing Wireless Settings** check box (in the Wireless Settings screen). If you do clear the check box, once you’ve added a new wireless client successfully through WPS, a new SSID and a passphrase are generated, and all existing connected wireless clients are disassociated and disconnected from the router.
1. Follow the procedures in *Push Button Configuration* on page 31 or *Security PIN Entry* on page 32.

2. For information about how to view a list of all devices connected to your router (including wireless and Ethernet-connected), see *Viewing a List of Attached Devices* on page 82.

Adding Additional Non-WPS-Enabled Clients

If you are connecting a combination of WPS-enabled clients and clients that are not WPS enabled, you cannot use the WPS setup procedures to add clients that are not WPS enabled.

To connect both non-WPS-enabled and WPS-enabled clients to the WNR1000v3h2 router:

1. Configure the settings of the WNR1000v3h2 router (shown in the Wireless Settings screen) for WPA-PSK or WPA2-PSK security, and record that information. See *Configuring WPA-PSK and WPA2-PSK Wireless Security* on page 28.

 When you change security settings, all existing connected wireless clients that do not share those settings are disassociated and disconnected from the router.

2. For the non-WPS-enabled devices that you wish to connect, open the networking utility, and follow the utility’s instructions to enter security settings.

3. For the WPS-enabled devices that you wish to connect, follow the procedures in *Using Push 'N' Connect (Wi-Fi Protected Setup)* on page 30.

 The WNR1000v3h2 router automatically preserves the settings you configured in step 1 so all clients share the same security settings (for more information, see *Configuring the WPS Settings* on page 33).

4. For information about how to view a list of all devices connected to your router (including wireless and Ethernet connected), see *Viewing a List of Attached Devices* on page 82.

Restricting Wireless Access by MAC Address

When a Wireless Card Access List is configured and enabled, the router checks the MAC address of any wireless device attempting a connection and allows only connections to computers identified on the trusted computers list.

The Wireless Card Access List displays a list of wireless computers that you allow to connect to the router based on their MAC addresses. These wireless computers must also have the correct SSID and wireless security settings to access the wireless router.

The MAC address is a network device’s unique 12-character physical address, containing the hexadecimal characters 0–9, a–f, or A–F only, and separated by colons (for example, 00:09:AB:CD:EF:01). It can usually be found on the bottom of the wireless card or network interface device. If you do not have access to the physical label, you can display the MAC address using the network configuration utilities of the computer. In WindowsXP, for example, typing the `ipconfig/all` command in an MSDOS command prompt window displays the MAC address as Physical Address. You might also find the MAC addresses in the router’s Attached Devices screen.

To restrict access based on MAC addresses:
1. Select **Wireless Settings** under Advanced in the main menu.

2. In the Advanced Wireless Settings screen, click **Setup Access List** to display the Wireless Card Access List.

![Wireless Card Access List](image1)

Figure 11.

3. Click **Add** to add a wireless device to the wireless access control list. The Wireless Card Access Setup screen opens and displays a list of currently active wireless cards and their MAC addresses.

![Wireless Card Access Setup](image2)

Figure 12.

4. If the computer you want appears in the Available Wireless Cards list, you can select the radio button of that computer to capture its MAC address; otherwise, you can manually enter a name and the MAC address of the authorized computer. You can usually find the MAC address on the bottom of the wireless device.

 Tip: You can copy and paste the MAC addresses from the router’s Attached Devices screen into the MAC Address field of this screen. To do this, configure each wireless computer to obtain a wireless link to the router. The computer should then appear in the Attached Devices screen.

5. Click **Add** to add this wireless device to the Wireless Card Access List. The screen changes back to the list screen.

6. Repeat step 3 through step 5 for each additional device you want to add to the list.

7. Select the **Turn Access Control On** check box
Note: When configuring the router from a wireless computer whose MAC address is not in the Trusted PC list, if you select Turn Access Control On, you lose your wireless connection when you click Apply. You must then access the wireless router from a wired computer or from a wireless computer that is on the access control list to make any further changes.

8. Click Apply to save your Wireless Card Access List settings. Now, only devices on this list can wirelessly connect to the WNR1000v3h2 router.

WARNING!

MAC address filtering adds an obstacle against unwanted access to your network by the general public. However, because your trusted MAC addresses appear in your wireless transmissions, an intruder can read them and impersonate them. Do not rely on MAC address filtering alone to secure your network.

Adding Guest Networks

Adding a guest network allows visitors at your home to use the Internet without having to know your wireless security key.

To add a guest network, do the following:

1. Select Guest Network from the Setup menu. The Guest Network Settings screen appears
2. Select any of the following Wireless settings:
 - **Enable Guest Network** – When this check box is selected, the guest network is enabled, and guests can connect to your network using the SSID of this profile.
 - **Enable SSID Broadcast** – If selected, the Wireless Access Point broadcasts its name (SSID) to all Wireless Stations. Stations can adopt the correct SSID for connections to this Access Point.
 - **Allow Guest to access MY Local Network** – If selected any user who connects to this SSID can access local networks associated with the router like users in the primary SSID.

3. Give the wireless network a name.
 The name is case-sensitive and can be up to 32 characters. The same name must be assigned to all wireless devices in your network. NETGEAR recommends that you change the name to a different value.

4. Select a Security option from the list.

5. Click **Apply** to save your selections.

Changing the Administrator Password

The default password for the router’s Web Configuration Manager is **password**. NETGEAR recommends that you change this password to a more secure password.
Tip: Before changing the router password, back up your configuration settings with the default password of **password**. If you save the settings with a new password, and then you later forget the new password, you will have to reset the router back to the factory defaults, and log in using the default password of **password**. This means you will have to re-enter all the router configuration settings. For information about how to back up your settings, see *Backing Up and Restoring the Configuration* on page 83.

To change the administrator password:

1. On the main menu, under Maintenance, select **Set Password** to display the Set Password screen.

 ![Set Password Screen](image)

 Figure 14.

2. To change the password, first enter the old password, then enter the new password twice.

3. Click **Apply**.

Backing Up Your Configuration

The configuration settings of the WNR1000v3h2 router are stored within the router in a configuration file. You can back up (save) this file and retrieve it later. NETGEAR recommends that you save your configuration file after you complete the configuration. If the router fails or becomes corrupted, or an administrator password is lost, you can easily re-create your configuration by restoring the configuration file.

For instructions on saving and restoring your configuration file, see *Managing the Configuration File* on page 83.
Tip: Before saving your configuration file, change the administrator password to the default, password. Then change it again after you have saved the configuration file. If you save the file with a new password, and then you later forget the new password, you will have to reset the router back to the factory defaults and log in using the default password of password. This means you will have to re-enter all the router configuration settings.

Understanding Your Firewall

Your N150 Wireless Router contains a true firewall to protect your network from attacks and intrusions. A firewall is a device that protects one network from another while allowing communication between the two. Using a process called Stateful Packet Inspection, the firewall analyzes all inbound and outbound traffic to determine whether or not it will be allowed to pass through.

By default, the firewall allows any outbound traffic and prohibits any inbound traffic except for responses to your outbound traffic. However, you can modify the firewall’s rules to achieve the following behavior:

- **Blocking sites.** Block access from your network to certain Web locations based on Web addresses and Web address keywords. This feature is described in Blocking Access to Internet Sites on page 41.

- **Blocking services.** Block the use of certain Internet services by specific computers on your network. This feature is described in Blocking Access to Internet Services on page 42.

- **Scheduled blocking.** Block sites and services according to a daily schedule. This feature is described in Scheduling Blocking on page 44.

- **Allow inbound access to your server.** To allow inbound access to resources on your local network (for example, a Web server or remote desktop program), you can open the needed services by configuring port forwarding as described in Allowing Inbound Connections to Your Network on page 57.

- **Allow certain games and applications to function correctly.** Some games and applications need to allow additional inbound traffic in order to function. Port triggering can dynamically allow additional service connections, as described in Configuring Port Triggering on page 64. Another feature to solve application conflicts with the firewall is Universal Plug and Play (UPnP), described in Using Universal Plug and Play on page 66.
Restricting Access From Your Network

This chapter describes how to use the content filtering and reporting features of the N150 Wireless Router to protect your network.

This chapter includes the following sections:

- **Content Filtering Overview**
- **Blocking Access to Internet Sites**
- **Blocking Access to Internet Services** on page 42
- **Scheduling Blocking** on page 44
- **Viewing Logs of Web Access or Attempted Web Access** on page 45
- **Configuring E-mail Alert and Web Access Log Notifications** on page 46
- **Setting the Time Zone** on page 47

Content Filtering Overview

The N150 Wireless Router provides you with Web content filtering options, plus browser activity reporting and instant alerts through e-mail. Parents and network administrators can establish restricted access policies based on time of day, Web addresses, and Web address keywords. You can also block Internet access by applications and services, such as chat rooms or games.

Blocking Access to Internet Sites

The WNR1000v3h2 router allows you to restrict access based on Web addresses and Web address keywords. Up to 255 entries are supported in the Keyword list.

Keyword application examples:

- If the keyword **XXX** is specified, the URL www.zzyyqq.com/xxx.html is blocked.
- If the keyword **.com** is specified, only websites with other domain suffixes (such as .edu, .org, or .gov) can be viewed.

To block access to Internet sites:
1. Select **Block Sites** under Content Filtering in the main menu. The Block Sites screen displays.

2. Enable keyword blocking by selecting either **Per Schedule** or **Always**.

 To block by schedule, be sure to specify a time period in the Schedule screen. For information about scheduling, see *Scheduling Blocking* on page 44.

 Block all access to Internet browsing during a scheduled period by entering a dot (.) as the keyword, and then set a schedule in the Schedule screen.

3. Add a keyword or domain by entering it in the keyword field and clicking **Add Keyword**. The keyword or domain name then appears in the **Block sites containing these keywords or domain names** list.

 Delete a keyword or domain name by selecting it from the list and clicking **Delete Keyword**.

4. You can specify one trusted user, which is a computer that is exempt from blocking and logging. Specify a trusted user by entering that computer’s IP address in the **Trusted IP Address** fields.

 Since the trusted user is identified by IP address, you should configure that computer with a fixed IP address.

5. Click **Apply** to save all your settings in the Block Sites screen.

Blocking Access to Internet Services

The WNR1000v3h2 router allows you to block the use of certain Internet services by computers on your network. This is called service blocking or port filtering. Services are functions performed by server computers at the request of client computers. For example,
Web servers serve Web pages, time servers serve time and date information, and game hosts serve data about other players’ moves. When a computer on your network sends a request for service to a server computer on the Internet, the requested service is identified by a service or port number. This number appears as the destination port number in the transmitted IP packets. For example, a packet that is sent with destination port number 80 is an HTTP (Web server) request.

To block access to Internet services:

1. Select **Block Services** under Content Filtering in the main menu. The Block Services screen displays.

 ![Figure 2](image)

2. Enable service blocking by selecting either **Per Schedule** or **Always**, and then click **Apply**.

 To block by schedule, be sure to specify a time period in the Schedule screen. For information about scheduling, see **Scheduling Blocking** on page 44.

3. Specify a service for blocking by clicking **Add**. The Block Services Setup screen displays.

 ![Figure 3](image)

4. From the **Service Type** list, select the application or service to be allowed or blocked. The list already displays several common services, but you are not limited to these choices. To add any additional services or applications that do not already appear, select **User Defined**.
To define a service, first you must determine which port number or range of numbers is used by the application. The service port numbers for many common protocols are defined by the Internet Engineering Task Force (IETF) and published in RFC1700, “Assigned Numbers.” Service numbers for other applications are typically chosen from the range 1024 to 65535 by the authors of the application. You can often determine port number information by contacting the publisher of the application, by asking user groups or newsgroups, or by searching.

- Enter the starting port and ending port numbers. If the application uses a single port number, enter that number in both fields.
- If you know that the application uses either TCP or UDP, select the appropriate protocol. If you are not sure, select Both.

5. Select the radio button for the IP address configuration you want to block, and then enter the IP addresses in the appropriate fields.

6. Click Add to enable your Block Services Setup selections.

Blocking Services by IP Address Range

In the Filter Services For area, you can block the specified service for a single computer, a range of computers (having consecutive IP addresses), or all computers on your network.

Scheduling Blocking

The WNR1000v3h2 router allows you to specify when blocking is enforced.

To schedule blocking:

1. Select Schedule under Content Filtering in the main menu. The Schedule screen displays.

Figure 4.
2. Configure the schedule for blocking keywords and services.
 a. **Days to Block.** Select days on which you want to apply blocking by selecting the appropriate check boxes. Select **Every Day** to select the check boxes for all days. Click **Apply**.

 b. **Time of Day to Block.** Select a start and end time in 24-hour format. Select **All Day** for 24-hour blocking. Click **Apply**.

 Be sure to select your time zone in the E-mail screen as described in Setting the Time Zone on page 47.

3. Click **Apply** to save your settings.

Viewing Logs of Web Access or Attempted Web Access

The log is a detailed record of the websites you have accessed or attempted to access. Up to 128 entries are stored in the log. Log entries appear only when keyword blocking is enabled and no log entries are made for the trusted user.

Select **Logs** under Content Filtering in the main menu. The Logs screen displays.

![Logs](image.jpg)

Figure 5.

Table 1 describes the log entries.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date and time</td>
<td>The date and time the log entry was recorded.</td>
</tr>
<tr>
<td>Source IP</td>
<td>The IP address of the initiating device for this log entry.</td>
</tr>
</tbody>
</table>
To refresh the log screen, click the **Refresh** button.

To clear the log entries, click the **Clear Log** button.

To e-mail the log immediately, click the **Send Log** button.

Configuring E-mail Alert and Web Access Log Notifications

To receive logs and alerts by e-mail, you must provide your e-mail account information.

To configure e-mail alert and web access log notifications:

1. Select **E-mail** under Content Filtering in the main menu. The E-mail screen displays.

 ![E-mail Screen](image)

 Figure 6.

2. To receive e-mail logs and alerts from the router, select the **Turn E-mail Notification On** check box.

 a. Enter the name of your ISP’s outgoing (SMTP) mail server (such as `mail.myISP.com`) in the **Your Outgoing Mail Server** field. You might be able to find this information in the configuration screen of your e-mail program. If you leave this field blank, log and alert messages will not be sent by e-mail.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target address</td>
<td>The name or IP address of the website or newsgroup visited or to which access was attempted.</td>
</tr>
<tr>
<td>Action</td>
<td>Whether the access was blocked or allowed.</td>
</tr>
</tbody>
</table>
b. Enter the e-mail address to which logs and alerts are sent in the **Send To This E-mail Address** field. This e-mail address will also be used as the From address. If you leave this field blank, log and alert messages will not be sent by e-mail.

3. If your e-mail server requires authentication, select the **My Mail Server requires authentication** check box.
 a. Enter your user name for the e-mail server in the **User Name** field.
 b. Enter your password for the e-mail server in the **Password** field.

4. You can specify that logs are automatically sent by e-mail with these options:
 - **Send alert immediately**. Select this check box for immediate notification of attempted access to a blocked site or service.
 - **Send Logs According to this Schedule**. Specifies how often to send the logs: Hourly, Daily, Weekly, or When Full.
 - **Day**. Specifies which day of the week to send the log. Relevant when the log is sent weekly or daily.
 - **Time**. Specifies the time of day to send the log. Relevant when the log is sent daily or weekly.

 If you select the Weekly, Daily, or Hourly option and the log fills up before the specified period, the log is automatically e-mailed to the specified e-mail address. After the log is sent, the log is cleared from the Wireless Router’s memory. If the Wireless Router cannot e-mail the log file, the log buffer might fill up. In this case, the router overwrites the log and discards its contents.

5. Click **Apply** to save your settings.

So that the log entries are correctly time-stamped and sent at the correct time, be sure to set the time as described in the next section.

Setting the Time Zone

The WNR1000v3h2 router uses the Network Time Protocol (NTP) to obtain the current time and date from one of several network time servers on the Internet. Localize the time zone so that your log entries and other router functions include the correct time stamp.

To verify and set the time zone (see Figure 6 on page 46):

- **Time Zone**. To select your local time zone, use the drop-down list. This setting is used for the blocking schedule and for time-stamping log entries.
- **Automatically Adjust for Daylight Savings Time**. If your region supports daylight savings time, select this check box. The router will automatically adjust the time at the start and end of the daylight savings time period.
This chapter describes how to configure advanced networking features of the N150 Wireless Router, including LAN, WAN, and routing settings.

It contains the following sections:

- **Using the LAN IP Setup Options**
- **Using a Dynamic DNS Service** on page 51
- **Configuring the WAN Setup Options** on page 52
- **Configuring Static Routes** on page 54

Using the LAN IP Setup Options

The LAN Setup screen allows configuration of LAN IP services such as Dynamic Host Configuration Protocol (DHCP) and Routing Information Protocol (RIP).

To configure LAN IP settings, select **LAN Setup** under Advanced in the main menu. The LAN Setup screen displays.
Configuring a Device Name

The device name is a user-friendly name for the router. This name is shown in the Network on Windows Vista and the Network Explorer on all Windows systems. The Device Name field cannot be blank. The default name is WNR1000v3h2.

Configuring LAN TCP/IP Setup Parameters

These are advanced settings that you might configure if you are a network administrator and your network contains multiple routers. The router is shipped preconfigured to use private IP addresses on the LAN side and to act as a DHCP server (see Using the Router as a DHCP Server on page 50).

Note: If you change the LAN IP address of the router while connected through the browser, you will be disconnected. You must then open a new connection to the new IP address and log in again.

The router’s default LAN IP configuration is:

- **LAN IP address.** 192.168.1.1
- **Subnet mask.** 255.255.255.0

These addresses are part of the designated private address range for use in private networks and should be suitable for most applications. If your network has a requirement to use a different IP addressing scheme, you can make those changes in this screen.

The LAN IP settings are:

- **IP Address.** The LAN IP address of the router.
- **IP Subnet Mask.** The LAN subnet mask of the router. Combined with the IP address, the IP subnet mask allows a device to know which other addresses are local to it, and which must be reached through a gateway or router.
- **RIP Direction.** RIP allows a router to exchange routing information with other routers. The RIP Direction selection controls how the router sends and receives RIP packets. **Both** is the default.
 - When set to **Both** or **In Only**, the router incorporates the RIP information that it receives.
 - When set to **Both** or **Out Only**, the router broadcasts its routing table periodically.
- **RIP Version.** This controls the format and the broadcasting method of the RIP packets sent by the router. (It recognizes both formats when receiving.) The default setting is **Disabled**.
 - **RIP-1** is universally supported. RIP-1 is usually adequate unless you have an unusual network setup.
 - **RIP-2B** carries more information than RIP-1 and uses subnet broadcasting.
- RIP-2M carries more information than RIP-1 and uses multicasting.

Using the Router as a DHCP Server

By default, the router functions as a DHCP server, allowing it to assign IP, DNS server, and default gateway addresses to all computers connected to the router’s LAN. The assigned default gateway address is the LAN address of the router. The router assigns IP addresses to the attached computers from a pool of addresses specified in this screen. Each pool address is tested before it is assigned to avoid duplicate addresses on the LAN.

Note: For most applications, the default DHCP and TCP/IP settings of the router are satisfactory. Click the link to the online document TCP/IP Networking Basics in Appendix B for an explanation of DHCP and information about how to assign IP addresses for your network.

To specify a pool of IP addresses to be assigned, set the starting IP address and ending IP address. These addresses should be part of the same IP address subnet as the router’s LAN IP address. Using the default addressing scheme, you should define a range between 192.168.1.2 and 192.168.1.254, although you might wish to save part of the range for devices with fixed addresses.

The router delivers the following parameters to any LAN device that requests DHCP:

- An IP address from the range you have defined
- Subnet mask
- Gateway IP address (the router’s LAN IP address)
- Primary DNS server (if you entered a primary DNS address in the Basic Settings screen; otherwise, the router’s LAN IP address)
- Secondary DNS server (if you entered a secondary DNS address in the Basic Settings screen)

To use another device on your network as the DHCP server, or to manually specify the network settings of all of your computers, clear the Use Router as DHCP Server check box. Otherwise, leave it selected. If this service is not selected and no other DHCP server is available on your network, you need to set your computers’ IP addresses manually or they will not be able to access the router.

Using Address Reservation

When you specify a reserved IP address for a computer on the LAN, that computer always receives the same IP address each time it accesses the router’s DHCP server. Reserved IP addresses should be assigned to computers or servers that require permanent IP settings.
To reserve an IP address:

1. Click **Add**.
2. In the **IP Address** field, enter the IP address to assign to the computer or server. (Choose an IP address from the router's LAN subnet, such as 192.168.1.x.)
3. Enter the MAC address of the computer or server.

 Tip: If the computer is already present on your network, you can copy its MAC address from the Attached Devices screen and paste it here.

4. Click **Apply** to enter the reserved address into the table.

Note: The reserved address is not assigned until the next time the computer contacts the router's DHCP server. Reboot the computer or access its IP configuration and force a DHCP release and renew.

To edit or delete a reserved address entry:

1. Click the button next to the reserved address you want to edit or delete.
2. Click **Edit** or **Delete**.

Using a Dynamic DNS Service

If your Internet Service Provider (ISP) gave you a permanently assigned IP address, you can register a domain name and have that name linked with your IP address by public Domain Name Servers (DNS). However, if your Internet account uses a dynamically assigned IP address, you do not know in advance what your IP address will be, and the address can change frequently. In this case, you can use a commercial Dynamic DNS service, which allows you to register your domain to their IP address, and forwards traffic directed at your domain to your frequently changing IP address.

Note: If your ISP assigns a private WAN IP address (such as 192.168.x.x or 10.x.x.x), the Dynamic DNS service will not work because private addresses are not routed on the Internet.
Your router contains a client that can connect to the Dynamic DNS service provided by
DynDNS.org. You must first visit their website at www.dyndns.org and obtain an account and
host name, which you specify in the router. Then, whenever your ISP-assigned IP address
changes, your router automatically contacts the Dynamic DNS service provider, logs in to
your account, and registers your new IP address. If your host name is hostname, for
example, you can reach your router at hostname.dyndns.org.

Select **Dynamic DNS** under Advanced in the main menu. The Dynamic DNS screen
displays.

To configure for a Dynamic DNS service:

1. Register for an account with one of the Dynamic DNS service providers whose names
appear in the **Service Provider** list. For example, for DynDNS.org, select
www.dyndns.org.
2. Select the **Use a Dynamic DNS Service** check box.
3. Select the name of your Dynamic DNS service provider.
4. Enter the host name (or domain name) that your Dynamic DNS service provider gave you.
5. Enter the user name for your Dynamic DNS account. This is the name that you use to log in
to your account, not your host name.
6. Enter the password (or key) for your Dynamic DNS account.
7. Click **Apply** to save your configuration.

Configuring the WAN Setup Options

The WAN Setup options let you configure a DMZ (demilitarized zone) server, change the
Maximum Transmit Unit (MTU) size, and enable the wireless router to respond to a ping on
the WAN (Internet) port. Select **WAN Setup** under Advanced in the main menu. The WAN
Setup screen displays.
Figure 4.

Disabling Port Scan and DoS Protection

The DoS firewall protects your network and computers against attacks and intrusions. A stateful packet firewall carefully inspects incoming traffic packets, looking for known exploits such as malformed, oversized, or out-of-sequence packets. The firewall should be disabled only in special circumstances, such as when you are troubleshooting application issues.

Setting Up a Default DMZ Server

The default DMZ server feature is helpful when you are using some online games and videoconferencing applications that are incompatible with Network Address Translation (NAT). The router is programmed to recognize some of these applications and to work correctly with them, but there are other applications that might not function well. In some cases, one local computer can run the application correctly if that computer's IP address is entered as the default DMZ server.

WARNING!

DMZ servers pose a security risk. A computer designated as the default DMZ server loses much of the protection of the firewall, and is exposed to exploits from the Internet. If compromised, the DMZ server computer can be used to attack other computers on your network.

Incoming traffic from the Internet is usually discarded by the router unless the traffic is a response to one of your local computers or a service that you have configured in the Port Forwarding/Port Triggering screen. Instead of discarding this traffic, you can have it forwarded to one computer on your network. This computer is called the default DMZ server.

The WAN Setup screen lets you configure a default DMZ server.
To assign a computer or server to be a default DMZ server:

1. Select the Default DMZ Server check box.
2. In the Default DMZ Server fields, enter the IP address for that computer or server.
3. Click Apply.

Responding to a Ping on the Internet (WAN) Port

If you want the router to respond to a ping from the Internet, select the Respond to Ping on Internet Port check box. This should be used only as a diagnostic tool, since it allows your router to be discovered by Internet scanners. Do not select this check box unless you have a specific reason to do so, such as when troubleshooting your connection.

Setting the MTU Size

The normal MTU value for most Ethernet networks is 1500 bytes, 1492 bytes for PPPoE connections, or 1450 for PPTP connections. For some ISPs, you might need to reduce the MTU size, but this is rarely required and should not be done unless you are sure it is necessary for your ISP connection. For more information, see Changing the MTU Size on page 73.

To change the MTU size:

1. In the MTU Size field, enter a new size between 64 and 1500.
2. Click Apply to save the new configuration.

Configuring NAT Filtering

Network Address Translation (NAT) determines how the router processes inbound traffic. Secured NAT provides a secured firewall to protect the computers on the LAN from attacks from the Internet, but might prevent some Internet games, point-to-point applications, or multimedia applications from functioning. Open NAT provides a much less secured firewall, but allows almost all Internet applications to function. For more information about NAT, see How Your Computer Accesses a Remote Computer through Your Router on page 58.

To change the NAT option:

1. In the NAT Filtering area, select either the Secured or the Open radio button.
2. Click Apply to save the new configuration.

Configuring Static Routes

Static routes provide additional routing information to your router. Under usual circumstances, the router has adequate routing information after it has been configured for Internet access, and you do not need to configure additional static routes. You must
configure static routes only for unusual cases such as multiple routers or multiple IP subnets located on your network.

As an example of when a static route is needed, consider the following case:

- Your primary Internet access is through a cable modem to an ISP.
- You have an ISDN router on your home network for connecting to the company where you are employed. This router’s address on your LAN is 192.168.1.100.
- Your company’s network address is 134.177.0.0.

When you first configured your router, two implicit static routes were created. A default route was created with your ISP as the gateway, and a second static route was created to your local network for all 192.168.1.x addresses. With this configuration, if you attempt to access a device on the 134.177.0.0 network, your router forwards your request to the ISP. The ISP forwards your request to the company where you are employed, and the request is likely to be denied by the company’s firewall.

In this case you must define a static route, telling your router that 134.177.0.0 should be accessed through the ISDN router at 192.168.1.100.

In this example:

- The Destination IP Address and IP Subnet Mask fields specify that this static route applies to all 134.177.x.x addresses.
- The Gateway IP Address field specifies that all traffic for these addresses should be forwarded to the ISDN router at 192.168.1.100.
- A Metric value of 1 will work.
- Private is selected only as a precautionary security measure in case RIP is activated.

To add or edit a static route:

1. Select Static Routes under Advanced in the main menu. The Static Routes screen displays.

 ![Static Routes Screen](image)

 Figure 5.

2. Click Add to expand the Static Routes screen.
3. In the **Route Name** field, enter a name for this static route. (This is for identification purposes only.)

4. Select the **Private** check box if you want to limit access to the LAN only. If Private is selected, the static route is not reported in RIP.

5. Select the **Active** check box to make this route effective.

6. In the **Destination IP Address** field, enter the IP address of the final destination.

7. In the **IP Subnet Mask** field, enter the IP subnet mask for this destination. If the destination is a single host, enter **255.255.255.255**.

8. In the **Gateway IP Address** field, enter the gateway IP address, which must be a router on the same LAN segment as the WNR1000v3 h2 router.

9. In the **Metric** field, enter a number between 1 and 15 as the metric value.

 This represents the number of routers between your network and the destination. Usually, a setting of 2 or 3 works, but if this is a direct connection, set it to 1.

10. Click **Apply** to have the static route entered into the table.
This chapter describes how to modify the configuration of the N150 Wireless Router to allow specific applications to access the Internet or to be accessed from the Internet, and how to make adjustments to enhance your network’s performance.

This chapter includes the following sections:

• **Allowing Inbound Connections to Your Network**
• **Configuring Port Forwarding to Local Servers** on page 61
• **Configuring Port Triggering** on page 64
• **Using Universal Plug and Play** on page 66
• **Configuring Port Triggering** on page 64
• **Using Universal Plug and Play** on page 66
• **Optimizing Wireless Performance** on page 67
• **Changing the MTU Size** on page 73
• **Using WMM for Wireless Multimedia Applications** on page 69
• **Quality of Service** on page 69
• **Overview of Home and Small Office Networking Technologies** on page 74

Allowing Inbound Connections to Your Network

By default, the WNR1000v3h2 router blocks any inbound traffic from the Internet to your computers except for replies to your outbound traffic. However, you might need to create exceptions to this rule for the following purposes:

• To allow remote computers on the Internet to access a server on your local network.
• To allow certain applications and games to work correctly when their replies are not recognized by your router.

Your router provides two features for creating these exceptions: port forwarding and port triggering. This section explains how a normal outbound connection works, followed by two examples explaining how port forwarding and port triggering operate and how they differ.
How Your Computer Accesses a Remote Computer through Your Router

When a computer on your network needs to access a computer on the Internet, your computer sends your router a message containing source and destination address and process information. Before forwarding your message to the remote computer, your router must modify the source information and must create and track the communication session so that replies can be routed back to your computer.

Here is an example of normal outbound traffic and the resulting inbound responses:

1. You open Internet Explorer, beginning a browser session on your computer. Invisible to you, your operating system assigns a service number (port number) to every communication process running on your computer. In this example, let’s say Windows assigns port number 5678 to this browser session.

2. You ask your browser to get a Web page from the Web server at www.example.com. Your computer composes a Web page request message with the following address and port information:
 - The source address is your computer’s IP address.
 - The source port number is 5678, the browser session.
 - The destination address is the IP address of www.example.com, which your computer finds by asking a DNS server.
 - The destination port number is 80, the standard port number for a Web server process.

 Your computer then sends this request message to your router.

3. Your router creates an entry in its internal session table describing this communication session between your computer and the Web server at www.example.com. Before sending the Web page request message to www.example.com, your router stores the original information and then modifies the source information in the request message, performing Network Address Translation (NAT):
 - The source address is replaced with your router’s public IP address. This is necessary because your computer uses a private IP address that is not globally unique and cannot be used on the Internet.
 - The source port number is changed to a number chosen by the router, such as 33333. This is necessary because two computers could independently be using the same session number.

 Your router then sends this request message through the Internet to the Web server at www.example.com.

4. The Web server at www.example.com composes a return message with the requested Web page data. The return message contains the following address and port information:
 - The source address is the IP address of www.example.com.
 - The source port number is 80, the standard port number for a Web server process.
 - The destination address is the public IP address of your router.
 - The destination port number is 33333.
The Web server then sends this reply message to your router.

5. Upon receiving the incoming message, your router checks its session table to determine whether there is an active session for port number 33333. Finding an active session, the router then modifies the message, restoring the original address information replaced by NAT. The message now contains the following address and port information:
 • The source address is the IP address of www.example.com.
 • The source port number is 80, the standard port number for a Web server process.
 • The destination address is your computer’s IP address.
 • The destination port number is 5678, the browser session that made the initial request.

Your router then sends this reply message to your computer, which displays the Web page from www.example.com.

6. When you finish your browser session, your router eventually senses a period of inactivity in the communications. Your router then removes the session information from its session table, and incoming traffic is no longer accepted on port number 33333.

How Port Triggering Changes the Communication Process

In the preceding example, requests are sent to a remote computer by your router from a particular service port number, and replies from the remote computer to your router are directed to that port number. If the remote server sends a reply back to a different port number, your router will not recognize it and will discard it. However, some application servers (such as FTP and IRC servers) send replies back to multiple port numbers. Using the port triggering function of your router, you can tell the router to open additional incoming ports when a particular outgoing port originates a session.

An example is Internet Relay Chat (IRC). Your computer connects to an IRC server at destination port 6667. The IRC server not only responds to your originating source port, but also sends an “identify” message to your computer on port 113. Using port triggering, you can tell the router, “When you initiate a session with destination port 6667, you must also allow incoming traffic on port 113 to reach the originating computer.” Using steps similar to the preceding example, the following sequence shows the effects of the port triggering rule you have defined:

1. You open an IRC client program, beginning a chat session on your computer.
2. Your IRC client composes a request message to an IRC server using a destination port number of 6667, the standard port number for an IRC server process. Your computer then sends this request message to your router.
3. Your router creates an entry in its internal session table describing this communication session between your computer and the IRC server. Your router stores the original information, performs Network Address Translation (NAT) on the source address and port, and sends this request message through the Internet to the IRC server.
4. Noting your port triggering rule, and having observed the destination port number of 6667, your router creates an additional session entry to send any incoming port 113 traffic to your computer.
5. The IRC server sends a return message to your router using the NAT-assigned source port (as in the previous example, let's say port 33333) as the destination port. The IRC server also sends an “identify” message to your router with destination port 113.

6. Upon receiving the incoming message to destination port 33333, your router checks its session table to determine whether there is an active session for port number 33333. Finding an active session, the router restores the original address information replaced by NAT and sends this reply message to your computer.

7. Upon receiving the incoming message to destination port 113, your router checks its session table and learns that there is an active session for port 113, associated with your computer. The router replaces the message’s destination IP address with your computer’s IP address and forwards the message to your computer.

8. When you finish your chat session, your router eventually senses a period of inactivity in the communications. The router then removes the session information from its session table, and incoming traffic is no longer accepted on port numbers 33333 or 113.

To configure port triggering, you need to know which inbound ports the application needs. Also, you need to know the number of the outbound port that will trigger the opening of the inbound ports. You can usually determine this information by contacting the publisher of the application, or user groups or newsgroups.

Note: Only one computer at a time can use the triggered application.

How Port Forwarding Changes the Communication Process

In both of the preceding examples, your computer initiates an application session with a server computer on the Internet. However, you might need to allow a client computer on the Internet to initiate a connection to a server computer on your network. Normally, your router ignores any inbound traffic that is not a response to your own outbound traffic. You can configure exceptions to this default rule by using the port forwarding feature.

A typical application of port forwarding can be shown by reversing the client-server relationship from our previous Web server example. In this case, a remote computer’s browser needs to access a Web server running on a computer in your local network. Using port forwarding, you can tell the router, “When you receive incoming traffic on port 80 (the standard port number for a Web server process), forward it to the local computer at 192.168.1.123.” The following sequence shows the effects of the port forwarding rule you have defined:

1. The user of a remote computer opens Internet Explorer and requests a Web page from www.example.com, which resolves to the public IP address of your router. The remote computer composes a Web page request message with the following destination information:
 - The destination address is the IP address of www.example.com, which is the address of your router.
 - The destination port number is 80, the standard port number for a Web server process.
The remote computer then sends this request message through the Internet to your router.

2. Your router receives the request message and looks in its rules table for any rules covering the disposition of incoming port 80 traffic. Your port forwarding rule specifies that incoming port 80 traffic should be forwarded to local IP address 192.168.1.123. Therefore, your router modifies the destination information in the request message:

 The destination address is replaced with 192.168.1.123.

Your router then sends this request message to your local network.

3. Your Web server at 192.168.1.123 receives the request and composes a return message with the requested Web page data. Your Web server then sends this reply message to your router.

4. Your router performs Network Address Translation (NAT) on the source IP address, and sends this request message through the Internet to the remote computer, which displays the Web page from www.example.com.

To configure port forwarding, you need to know which inbound ports the application needs. You usually can determine this information by contacting the publisher of the application or user groups or newsgroups.

How Port Forwarding Differs from Port Triggering

The following points summarize the differences between port forwarding and port triggering:

- Port triggering can be used by any computer on your network, although only one computer can use it at a time.
- Port forwarding is configured for a single computer on your network.
- Port triggering does not need to know the computer’s IP address in advance. The IP address is captured automatically.
- Port forwarding requires that you specify the computer’s IP address during configuration, and the IP address must never change.
- Port triggering requires specific outbound traffic to open the inbound ports, and the triggered ports are closed after a period of no activity.
- Port forwarding is always active and does not need to be triggered.

Configuring Port Forwarding to Local Servers

Using the port forwarding feature, you can allow certain types of incoming traffic to reach servers on your local network. For example, you might make a local Web server, FTP server, or game server visible and available to the Internet.

Use the Port Forwarding screen to configure the router to forward specific incoming protocols to computers on your local network. In addition to servers for specific applications, you can also specify a default DMZ server to which all other incoming protocols are forwarded. The DMZ server is configured in the WAN Setup screen, as discussed in Setting Up a Default DMZ Server on page 53.
Before starting, you need to determine which type of service, application, or game you will provide, and the local IP address of the computer that will provide the service. Be sure the computer's IP address never changes.

Tip: To ensure that your server computer always has the same IP address, use the reserved IP address feature of your WNR1000v3h2 router. See *Using Address Reservation* on page 50 for instructions on how to use reserved IP addresses.

To configure port forwarding to a local server:

1. Select **Port Forwarding/Port Triggering** under Advanced in the main menu. The Port Forwarding/Port Triggering screen displays

2. From the **Service Name** list, select the service or game that you will host on your network. If the service does not appear in the list, see the following section, *Adding a Custom Service*.

3. In the corresponding **Server IP Address** fields, enter the last digit of the IP address of your local computer that will provide this service.

4. To the right of Server IP Address, click **Add**. The service appears in the list in the screen.

Adding a Custom Service

To define a service, game, or application that does not appear in the Service Name list, you must first determine which port number or range of numbers is used by the application. You can usually determine this information by contacting the publisher of the application or user groups or newsgroups. When you have the port number information, follow these steps:

1. Select **Port Forwarding/Port Triggering** under Advanced in the main menu.

2. Click **Add Service** (see Figure on page 62). The Ports–Custom Services screen displays.
3. In the Service Name field, enter a descriptive name.
4. In the Service Type field, select the protocol. If you are unsure, select TCP/UDP.
5. In the Starting Port field, enter the beginning port number.
 - If the application uses only a single port, enter the same port number in the Ending Port field.
 - If the application uses a range of ports, enter the ending port number of the range in the Ending Port field.
6. In the Server IP Address field, enter the IP address of your local computer that will provide this service.
7. Click Apply. The service appears in the list in the Port Forwarding/Port Triggering screen.

Editing or Deleting a Port Forwarding Entry

To edit or delete a port forwarding entry:

1. In the table, select the button next to the service name.

2. Click Edit Service or Delete Service to make changes.
3. Click Apply.

Application Example: Making a Local Web Server Public

If you host a Web server on your local network, you can use port forwarding to allow Web requests from anyone on the Internet to reach your Web server.

To make a local Web server public:
1. Assign your Web server either a fixed IP address or a dynamic IP address using DHCP address reservation, as explained in Using Address Reservation on page 50. In this example, your router will always give your Web server an IP address of 192.168.1.33.

2. In the Port Forwarding screen, configure the router to forward the HTTP service to the local address of your Web server at 192.168.1.33. HTTP (port 80) is the standard protocol for Web servers.

3. (Optional) Register a host name with a Dynamic DNS service, and configure your router to use the name as described in Using a Dynamic DNS Service on page 51. To access your Web server from the Internet, a remote user must know the IP address that has been assigned by your ISP. However, if you use a Dynamic DNS service, the remote user can reach your server by a user-friendly Internet name, such as mynetgear.dyndns.org.

Configuring Port Triggering

Port triggering is a dynamic extension of port forwarding that is useful in these cases:

- More than one local computer needs port forwarding for the same application (but not simultaneously).
- An application needs to open incoming ports that are different from the outgoing port.

When port triggering is enabled, the router monitors outbound traffic looking for a specified outbound “trigger” port. When the router detects outbound traffic on that port, it remembers the IP address of the local computer that sent the data. The router then temporarily opens the specified incoming port or ports, and forwards incoming traffic on the triggered ports to the triggering computer.

While port forwarding creates a static mapping of a port number or range to a single local computer, port triggering can dynamically open ports to any computer that needs them and can close the ports when they are no longer needed.

Note: If you use applications such as multiplayer gaming, peer-to-peer connections, real-time communications such as instant messaging, or remote assistance (a feature in Windows XP), you should also enable Universal Plug and Play (UPnP) according to the instructions in Using Universal Plug and Play on page 66.

To configure port triggering, you need to know which inbound ports the application needs. Also, you need to know the number of the outbound port that will trigger the opening of the inbound ports. You can usually determine this information by contacting the publisher of the application or user groups or newsgroups.

To set up port triggering:

1. Select Port Forwarding/Port Triggering under Advanced in the main menu. The Forwarding/Port Triggering screen displays (see Figure on page 62).

2. Select the Port Triggering radio button. The port triggering information displays.
3. Clear the **Disable Port Triggering** check box.

Note: If the Disable Port Triggering check box is selected after you configure port triggering, port triggering is disabled. However, any port triggering configuration information you added to the router is retained even though it is not used.

4. In the **Port Triggering Timeout** field, enter a value up to 9999 minutes. This value controls the inactivity timer for the designated inbound ports. The inbound ports close when the inactivity time expires. This is required because the router cannot be sure when the application has terminated.

5. Click **Add**.
6. The Port Triggering–Services screen displays.

7. In the Service Name field, enter a descriptive service name.

8. In the Service User field, select Any (the default) to allow this service to be used by any computer on the Internet. Otherwise, select Single address, and enter the IP address of one computer to restrict the service to a particular computer.

9. Select the service type, either TCP or UDP.

10. In the Triggering Port field, enter the number of the outbound traffic port that will cause the inbound ports to be opened.

11. Enter the inbound connection port information in the Connection Type, Starting Port, and Ending Port fields.

12. Click Apply. The service appears in the Port Triggering Portmap table.

Figure 6.

Using Universal Plug and Play

Universal Plug and Play (UPnP) helps devices, such as Internet appliances and computers, to access the network and connect to other devices as needed. UPnP devices can automatically discover the services from other registered UPnP devices on the network.

Note: If you use applications such as multiplayer gaming, peer-to-peer connections, real-time communications such as instant messaging, or remote assistance (a feature in Windows XP), you should enable UPnP.

To turn on Universal Plug and Play:

1. Select UPnP under Advanced the main menu. The UPnP screen displays.
2. The available settings and information displayed in this screen are:
 • **Turn UPnP On.** UPnP can be enabled or disabled for automatic device configuration. The default setting for UPnP is disabled. If this check box is not selected, the router does not allow any device to automatically control the resources, such as port forwarding (mapping) of the router.

 • **Advertisement Period.** The advertisement period is how often the router broadcasts its UPnP information. This value can range from 1 to 1440 minutes. The default period is 30 minutes. Shorter durations ensure that control points have current device status at the expense of additional network traffic. Longer durations might compromise the freshness of the device status but can significantly reduce network traffic.

 • **Advertisement Time To Live.** The time to live for the advertisement is measured in hops (steps) for each UPnP packet sent. The time to live hop count is the number of steps a broadcast packet is allowed to propagate for each UPnP advertisement before it disappears. The number of hops can range from 1 to 255. The default value for the advertisement time to live is 4 hops, which should be fine for most home networks. If you notice that some devices are not being updated or reached correctly, then it might be necessary to increase this value.

 • **UPnP Portmap Table.** The UPnP Portmap Table displays the IP address of each UPnP device that is currently accessing the router and which ports (Internal and External) that device has opened. The UPnP Portmap Table also displays what type of port is open and whether that port is still active for each IP address.

3. Click **Apply** to save your settings.

Optimizing Wireless Performance

The speed and operating distance or range of your wireless connection can vary significantly based on the physical placement of the wireless router. You should choose a location for your router that will maximize the network speed.
The following list describes how to optimize wireless router performance.

- **Identify critical wireless links.**
 If your network has several wireless devices, decide which wireless devices need the highest data rate, and locate the router near them. Many wireless products have automatic data-rate fallback, which allows increased distances without loss of connectivity. This also means that devices that are farther away might be slower. Therefore, the most critical links in your network are those where the traffic is high and the distances are great. Optimize those first.

- **Choose placement carefully.**
 For best results, place your router:
 - Near the center of the area in which your computers will operate.
 - In an elevated location such as a high shelf where the wirelessly connected computers have line-of-sight access (even if through walls).
 - Avoid obstacles to wireless signals.
 - Keep wireless devices at least 2 feet from large metal fixtures such as file cabinets, refrigerators, pipes, metal ceilings, reinforced concrete, and metal partitions.
 - Keep away from large amounts of water such as fish tanks and water coolers.

- **Reduce interference.**
 - Avoid windows unless communicating between buildings.
 - Place wireless devices away from various electromagnetic noise sources, especially those in the 2400–2500 MHz frequency band. Common noise-creating sources are:
 - Computers and fax machines (no closer than 1 foot)
 - Copying machines, elevators, and cell phones (no closer than 6 feet)
 - Microwave ovens (no closer than 10 feet)

- **Choose your settings.**
 - Use a scanning utility to determine what other wireless networks are operating nearby, and choose an unused channel.
 - Turn off SSID broadcast, and change the default SSID. Other nearby devices might automatically try to connect to your network several times a second, which can cause significant performance reduction.

- Use WMM to improve the performance of voice and video traffic over the wireless link.
Using WMM for Wireless Multimedia Applications

The WNR1000v3h2 router supports Wi-Fi Multimedia (WMM) to prioritize wireless voice and video traffic over the wireless link. WMM provides prioritization of wireless data packets from different applications based on four access categories: voice, video, best effort, and background. For an application to receive the benefits of WMM, both it and the client running that application must be WMM enabled. Legacy applications that do not support WMM, and applications that do not require, are assigned to the best effort category, which receives a lower priority than voice and video. WMM QoS is enabled by default.

Quality of Service

Quality of Service (QoS) is an advanced feature that can be used to prioritize some types of traffic ahead of others. The WNR1000v3h2 router can provide QoS prioritization on the Internet connection. To configure QoS, use the QoS Setup screen.

From the main menu of the browser interface, under Advanced, select QoS Setup. The QoS Setup screen displays:

![QoS Setup Screen](image)

Figure 8.

Using WMM QoS for Wireless Multimedia Applications

The WNR1000v3h2 router supports Wi-Fi Multimedia Quality of Service (WMM QoS) to prioritize wireless voice and video traffic over the wireless link. WMM QoS provides prioritization of wireless data packets from different applications based on four access categories: voice, video, best effort, and background. For an application to receive the benefits of WMM QoS, both it and the client running that application must be WMM enabled. Legacy applications that do not support WMM, and applications that do not require QoS, are assigned to the best effort category, which receives a lower priority than voice and video.

WMM QoS is enabled by default. You can disable it in the QoS Setup screen, shown in Figure 8 on page 69, by clearing the Enable WMM check box and clicking Apply.
Configuring QoS for Internet Access

You can give prioritized Internet access to the following types of traffic:

- For specific applications
- For specific online games
- On individual Ethernet LAN ports of the router
- From a specific device by MAC address

To specify prioritization of traffic, you must create a policy for the type of traffic and add the policy to the QoS Policy table in the QoS Setup screen. For convenience, the QoS Policy table lists many common applications and online games that can benefit from QoS handling.

QoS for Applications and Online Gaming

To create a QoS policy for applications and online games:

1. From the main menu, under Advanced, select QoS Setup. The QoS Setup screen displays, as shown in Figure 8 on page 69.
2. Click Setup QoS Rule. The QoS Priority Rule List displays:

![QoS Priority Rule List](image)

Figure 9.
3. In the QoS Priority Rule List, select an existing item, or you can scroll to the bottom of the list and select **Add Priority Rule**.
 a. If you chose to add a new entry, the screen expands as shown:

![Figure 10. QoS - Priority rules screen](image)

 b. In the **QoS Policy for** field, enter a descriptive name for the new application or game.

 c. Select the packet type, either **TCP**, **UDP**, or both (**TCP/UDP**), and specify the port number or range of port numbers used by the application or game.

4. From the **Priority** drop-down list, select the priority that this traffic should receive relative to other applications and traffic when accessing the Internet. The options are Low, Normal, High, and Highest.

5. Click **Apply** to save this rule to the QoS Policy list and return to the QoS Setup screen.

6. In the QoS Setup screen, select the **Turn Internet Access QoS On** check box.

7. Click **Apply**.

QoS for a Router LAN Port

To create a QoS policy for a device connected to one of the router’s LAN ports:

1. From the main menu, under Advanced, select **QoS Setup**. The QoS Setup screen displays, as shown in **Figure 8** on page 69.

2. Click **Setup QoS Rule** and then click **Add Priority Rule**.

3. On the QoS - Priority Rules screen, go to the Priority Category field, and select **Ethernet LAN Port** from the drop-down list:
From the LAN port list, select the LAN port that will have a QoS policy.

5. From the Priority drop-down list, select the priority that this port’s traffic should receive relative to other applications and traffic when accessing the Internet. The options are Low, Normal, High, and Highest.

6. Click Apply to save this rule to the QoS Policy list and return to the QoS Setup screen.

7. Click Apply.

QoS for a MAC Address

To create a QoS policy for traffic from a specific MAC address:

1. From the main menu, under Advanced, select QoS Setup. The QoS Setup screen displays, as shown in Figure 8 on page 69.

2. Click Setup QoS Rule and then click Add Priority Rule.

3. On the QoS - Priority Rules screen, go to the Priority Category field, and select MAC Address from the drop-down list:

4. If the device to be prioritized appears in the MAC Device List, select it. The information from the MAC Device List is used to populate the policy name, MAC Address, and Device Name fields. If the device does not appear in the MAC Device List, click Refresh. If it still does not appear, you must complete these fields manually.
5. From the **Priority** drop-down list, select the priority that this device’s traffic should receive relative to other applications and traffic when accessing the Internet. The options are Low, Normal, High, and Highest.

6. Click **Apply** to save this rule to the QoS Policy list and return to the QoS Setup screen.

7. Click **Apply**.

Editing or Deleting an Existing QoS Policy

To edit or delete an existing QoS policy:

1. From the main menu, under Advanced, select **QoS Setup**. The QoS Setup screen displays, as shown in *Figure 8* on page 69.

2. **Click Setup QoS Rule.**

3. Select the radio button next to the QoS policy to be edited or deleted, and do one of the following:
 - Click **Delete** to remove the QoS policy.
 - Click **Edit** to edit the QoS policy. Follow the instructions in the preceding sections to change the policy settings.

4. Click **Apply** in the QoS Setup screen to save your changes.

Changing the MTU Size

The Maximum Transmission Unit (MTU) is the largest data packet a network device transmits. When one network device communicates across the Internet with another, the data packets travel through many devices along the way. If any device in the data path has a lower MTU setting than the other devices, the data packets must be split or “fragmented” to accommodate the one with the smallest MTU.

The best MTU setting for NETGEAR equipment is often just the default value, and changing the value might fix one problem but cause another. Leave MTU unchanged unless one of these situations occurs:

- You have problems connecting to your ISP, or other Internet service, and either the technical support of the ISP or of NETGEAR recommends changing the MTU size. These might require an MTU change:
 - A secure Web site that will not open, or displays only part of a Web page
 - Yahoo e-mail
 - MSN
 - America Online’s DSL service

- You use VPN and have severe performance problems.

- You used a program to optimize MTU for performance reasons, and now you have connectivity or performance problems.
Note: An incorrect MTU setting can cause Internet communication problems such as the inability to access certain Web sites, frames within Web sites, secure login pages, or FTP or POP servers.

If you suspect an MTU problem, a common solution is to change the MTU size to 1400. If you are willing to experiment, you can gradually reduce the MTU size from the maximum value of 1500 until the problem goes away. Table 1 describes common MTU sizes and applications.

<table>
<thead>
<tr>
<th>MTU</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>The largest Ethernet packet size and the default value. This is the typical setting for non-PPPoE, non-VPN connections, and is the default value for NETGEAR routers, adapters, and switches.</td>
</tr>
<tr>
<td>1492</td>
<td>Used in PPPoE environments.</td>
</tr>
<tr>
<td>1472</td>
<td>Maximum size to use for pinging. (Larger packets are fragmented.)</td>
</tr>
<tr>
<td>1468</td>
<td>Used in some DHCP environments.</td>
</tr>
<tr>
<td>1460</td>
<td>Usable by AOL if you do not have large e-mail attachments, for example.</td>
</tr>
<tr>
<td>1436</td>
<td>Used in PPTP environments or with VPN.</td>
</tr>
<tr>
<td>1400</td>
<td>Maximum size for AOL DSL.</td>
</tr>
<tr>
<td>576</td>
<td>Typical value to connect to dial-up ISPs.</td>
</tr>
</tbody>
</table>

To change the MTU size:

1. In the main menu, under Advanced, select **WAN Setup**.
2. In the **MTU Size** field, enter a new size between 64 and 1500.
3. Click **Apply** to save the new configuration.

Overview of Home and Small Office Networking Technologies

Common connection types and their speed and security considerations are:

- **Broadband Internet**. Your Internet connection speed is determined by your modem type, such as ADSL or cable modem, as well as the connection speed of the sites to which you connect, and general Internet traffic. ADSL and cable modem connections are asymmetrical, meaning they have a lower data rate to the Internet (upstream) than from the Internet (downstream). Keep in mind that when you connect to another site that also has an asymmetrical connection, the data rate between your sites is limited by each side’s upstream data rate. A typical residential ADSL or cable modem connection provides a downstream throughput of about 1 to 3 megabits per second (Mbps). Newer
technologies such as ADSL2+ and Fiber to the Home (FTTH) will increase the connection speed to tens of Mbps.

- **Wireless.** Your N150 Wireless Router provides a wireless data throughput of up to 150 Mbps. With the introduction of the newer WPA and WPA2 encryption and authentication protocols, wireless security is extremely strong.

To get the best performance, use RangeMax NEXT adapters such as the WN511B for your computers. Although the WNR1000v3h2 router is compatible with older 802.11b and 802.11g adapters, the use of these older wireless technologies in your network can result in lower throughput overall (typically less than 10 Mbps for 802.11b and less than 40 Mbps for 802.11g). In addition, many older wireless products do not support the latest security protocols, WPA and WPA2.

- **Powerline.** For connecting rooms or floors that are blocked by obstructions or are distant vertically, consider networking over your building’s AC wiring. NETGEAR’s Powerline HD family of products delivers up to 200 Mbps to any outlet, while the older-generation XE family of products delivers 14 Mbps or 85 Mbps. Data transmissions are encrypted for security, and you can configure an individual network password to prevent neighbors from connecting.

The Powerline HD family of products can coexist on the same network with older-generation XE family products or HomePlug 1.0 products, but they are not interoperable with these older products.

- **Wired Ethernet.** As gigabit-speed Ethernet ports (10/100/1000 Mbps) become common on newer computers, wired Ethernet remains a good choice for speed, economy, and security. Gigabit Ethernet can extend up to 100 meters with twisted-pair wiring of Cat 5e or better. A wired connection is not susceptible to interference, and eavesdropping would require a physical connection to your network.

Note: Actual data throughput will vary. Network conditions and environmental factors, including volume of network traffic, building materials and construction, and network overhead, can lower actual data throughput rate.

Assessing Your Speed Requirements

Because your Internet connection is likely to operate at a much lower speed than your local network, faster local networking technologies might not improve your Internet experience. However, many emerging home applications require high data rates. For example:

- Streaming HD video requires 10 to 30 Mbps per stream. Because latency and packet loss can disrupt your video, plan to provide at least twice the capacity you need.
- Streaming MP3 audio requires less than 1 Mbps per stream and does not strain most modern networks. Like video, however, streaming audio is also sensitive to latency and packet loss, so a congested network or a noisy link can cause problems.
• Backing up computers over the network has become popular due to the availability of inexpensive mass storage. *Table 2* shows the time to transfer 1 gigabyte (1 GB) of data using various networking technologies.

Table 2. Theoretical Transfer Time for 1 Gigabyte

<table>
<thead>
<tr>
<th>Network Connection</th>
<th>Theoretical Raw Transfer Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gigabit wired Ethernet</td>
<td>8 seconds</td>
</tr>
<tr>
<td>RangeMax NEXT Wireless-N</td>
<td>26 seconds</td>
</tr>
<tr>
<td>Powerline HD</td>
<td>40 seconds</td>
</tr>
<tr>
<td>100 Mbps wired Ethernet</td>
<td>80 seconds</td>
</tr>
<tr>
<td>802.11n wireless</td>
<td>45 seconds</td>
</tr>
<tr>
<td>802.11g wireless</td>
<td>150 seconds</td>
</tr>
<tr>
<td>802.11b wireless</td>
<td>700 seconds</td>
</tr>
<tr>
<td>10 Mbps wired Ethernet</td>
<td>800 seconds</td>
</tr>
<tr>
<td>Cable modem (3 Mbps)</td>
<td>2700 seconds</td>
</tr>
<tr>
<td>Analog modem (56 kbps)</td>
<td>144,000 seconds (40 hours)</td>
</tr>
</tbody>
</table>
Using Network Monitoring Tools

This chapter describes how to use the maintenance features of your N150 Wireless Router.

This chapter includes the following sections:

• Viewing Wireless Router Status Information
• Viewing a List of Attached Devices on page 82
• Managing the Configuration File in Chapter 6
• Updating the Router Firmware on page 84
• Enabling Remote Management Access on page 87
• Traffic Meter on page 89
Viewing Wireless Router Status Information

To view router status and usage information:

1. Select **Router Status** under Maintenance in the main menu. The Router Status screen displays.

![Router Status Screen]

Figure 1.

Table 1 describes the router status fields.

Table 1. Wireless Router Status Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware Version</td>
<td>The hardware version of the router.</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>The version of the current software installed in the router. This will change if you update your router.</td>
</tr>
<tr>
<td>Internet Port</td>
<td>The following settings apply to the Internet (WAN) port of the router.</td>
</tr>
</tbody>
</table>
Table 1. Wireless Router Status Fields (Continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC Address</td>
<td>The Media Access Control address. This is the unique physical address being used by the Internet (WAN) port of the router.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address being used by the Internet (WAN) port of the router. If no address is shown, or is 0.0.0.0, the router cannot connect to the Internet.</td>
</tr>
<tr>
<td>DHCP</td>
<td>If set to None, the router is configured to use a fixed IP address on the WAN. If set to DHCP Client, the router is configured to obtain an IP address dynamically from the ISP.</td>
</tr>
<tr>
<td>IP Subnet Mask</td>
<td>The IP subnet mask being used by the Internet (WAN) port of the router. For an explanation of subnet masks and subnet addressing, click the link to the online document TCP/IP Networking Basics in Appendix B.</td>
</tr>
<tr>
<td>Domain Name Server</td>
<td>The Domain Name Server addresses being used by the router. A Domain Name Server translates human-language URLs such as www.netgear.com into IP addresses.</td>
</tr>
</tbody>
</table>

LAN Port. The following settings apply to the Ethernet (LAN) port of the router.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC Address</td>
<td>The Media Access Control address. This is the unique physical address being used by the LAN port of the router.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address being used by the Ethernet (LAN) port of the router. The default is 192.168.1.1.</td>
</tr>
<tr>
<td>DHCP</td>
<td>Identifies whether the router’s built-in DHCP server is active for the LAN-attached devices.</td>
</tr>
<tr>
<td>IP Subnet Mask</td>
<td>The IP subnet mask being used by the Ethernet (LAN) port of the router. The default is 255.255.255.0.</td>
</tr>
</tbody>
</table>
Table 1. Wireless Router Status Fields (Continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless Port</td>
<td>The following settings apply to the wireless port of the router.</td>
</tr>
<tr>
<td>Name (SSID)</td>
<td>The wireless network name (SSID) being used by the wireless port of the router. The default is NETGEAR.</td>
</tr>
<tr>
<td>Region</td>
<td>The geographic region where the router is being used. It might be illegal to use the wireless features of the router in some parts of the world.</td>
</tr>
<tr>
<td>Channel</td>
<td>Identifies the channel of the wireless port being used. Click the link to the online document Wireless Networking Basics in Appendix B for the frequencies used on each channel.</td>
</tr>
<tr>
<td>Mode</td>
<td>Indicates the wireless communication mode:</td>
</tr>
<tr>
<td></td>
<td>• Up to 54 Mbps.</td>
</tr>
<tr>
<td></td>
<td>• Up to 72 Mbps.</td>
</tr>
<tr>
<td></td>
<td>• Up to 150 Mbps.</td>
</tr>
<tr>
<td>Wireless AP</td>
<td>Indicates whether the radio feature of the router is enabled. If not enabled, the Wireless LED on the front panel is off.</td>
</tr>
<tr>
<td>Broadcast Name</td>
<td>Indicates whether the router is broadcasting its SSID.</td>
</tr>
<tr>
<td>Wi-Fi Protected Setup</td>
<td>Indicates whether the router’s PIN is enabled and whether the router is configured for Push ‘N’ Connect (Wi-Fi Protected Setup). For more information, see Using Push ‘N’ Connect (Wi-Fi Protected Setup) on page 30.</td>
</tr>
</tbody>
</table>

2. **Click** **Connection Status** **to display the connection status.**

![Connection Status](image)

Figure 2.
Table 2 describes the connection status settings.

Table 2. Connection Status Settings

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>The IP address that is assigned to the router.</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>The subnet mask that is assigned to the router.</td>
</tr>
<tr>
<td>Default Gateway</td>
<td>The IP address for the default gateway that the router communicates with.</td>
</tr>
<tr>
<td>DHCP Server</td>
<td>The IP address for the Dynamic Host Configuration Protocol server that provides the TCP/IP configuration for all the computers that are connected to the router.</td>
</tr>
<tr>
<td>DNS Server</td>
<td>The IP address of the Domain Name Service server that provides translation of network names to IP addresses.</td>
</tr>
<tr>
<td>Lease Obtained</td>
<td>The date and time that the lease was obtained.</td>
</tr>
<tr>
<td>Lease Expires</td>
<td>The date and time that the lease will expire.</td>
</tr>
</tbody>
</table>

a. Click the Release button to release the connection status items (that is, all items return to 0).

b. Click the Renew button to renew to the connection status items (that is, all items are refreshed).

c. Click the Close Window button to close the Connection Status screen.

3. Click Show Statistics to display router usage statistics.

![System Up Time Screen](image)

Figure 3.

Table 3 describes the router statistics.

Table 3. Router Statistics

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Up Time</td>
<td>The time elapsed since the router was last restarted.</td>
</tr>
<tr>
<td>Port</td>
<td>The statistics for the WAN (Internet) and LAN (Ethernet) ports. For each port, the screen displays the following:</td>
</tr>
</tbody>
</table>
To change the polling frequency, enter a time in seconds in the **Poll Interval** field, and click **Set Interval**.
To stop the polling entirely, click **Stop**.

Viewing a List of Attached Devices

The Attached Devices screen contains a table of all IP devices that the router has discovered on the local network. Select **Attached Devices** under Maintenance in the main menu to view the table.

![Attached Devices](image)

Figure 4.

For each device, the table shows the IP address, NetBIOS host name or device name (if available), and the Ethernet MAC address. To force the router to look for attached devices, click **Refresh**.

Note: If the Wireless Router is rebooted, the table data is lost until the router rediscovers the devices.
Managing the Configuration File

The configuration settings of the WNR1000v3h2 router are stored within the router in a configuration file. You can back up this file to your computer, restore it, or reset it to the factory default settings.

Select **Backup Settings** under Maintenance in the main menu to display the Backup Settings.

![Backup Settings](image)

Figure 5.

The following sections describe the three available options.

Backing Up and Restoring the Configuration

The Restore and Backup options in the Settings Backup screen let you save and retrieve a file containing your Wireless Router’s configuration settings.

To save your settings, click **Backup**. Your browser extracts the configuration file from the Wireless Router and prompts you for a location on your computer to store the file. You can give the file a meaningful name at this time, such as comcast.cfg.

Tip: Before saving your configuration file, change the administrator password to the default, **password**. Then change it again after you have saved the configuration file. If you forget the password, you will need to reset the configuration to factory defaults.

To restore your settings from a saved configuration file, enter the full path to the file on your computer, or click **Browse** to browse to the file. When you have located it, click **Restore** to send the file to the router. The router then reboots automatically.

WARNING!

Do not interrupt the reboot process.
Erasing the Configuration

Under some circumstances (for example, if you move the router to a different network or if you have forgotten the password) you might want to erase the configuration and restore the factory default settings. After an erase, the router’s username is admin, the password is password, the LAN IP address is 192.168.1.1 (or www.routerlogin.net), and the router’s DHCP server is enabled.

To erase the configuration, click the Erase button in the Settings Backup screen.

To restore the factory default configuration settings when you do not know the login password or IP address, you must use the restore factory settings button on the rear panel of the router (see Restoring the Default Configuration and Password on page 100).

Updating the Router Firmware

The firmware of the WNR1000v3h2 router is stored in flash memory, and can be updated as NETGEAR releases new firmware. You can update your firmware by logging into the router and using one of these procedures:

• Enable the Check for Updated Firmware Upon Log-in check box. Each time you log in to the router, it will automatically detect a new version of the firmware and then install it. This check box is enabled in the router’s default state. See Logging In To Your Wireless Router on page 7.

• Use the Check button in the Router Upgrade screen. Instead of having the router check for new firmware every time you log in, you can use Router Upgrade, under Maintenance in the main menu. See Checking for New Firmware in the Router Upgrade Screen.

• Check for and update your firmware manually. You can compare versions, obtain new firmware from NETGEAR’s website, and then upload it. See Updating Manually to New Router Firmware on page 86.

Note: Before updating the router software, NETGEAR recommends that you save your configuration settings (see Backing Up and Restoring the Configuration on page 83). A firmware update might cause the router settings to revert to the factory defaults. If this happens, after completing the update, you can restore your settings from the backup.

Checking for New Firmware in the Router Upgrade Screen

To check for new firmware and allow the router to automatically install it:

1. Select Router Upgrade under Maintenance in the main menu. The Router Upgrade screen displays.
2. Check for new software versions by clicking the Check button.
 • If a new version is found, information about it appears.

3. To update your firmware, click Yes and follow the prompts

 WARNING!

 When updating firmware to the WNR1000v3h2 router, *do not* interrupt the Web browser by closing the window, clicking a link, or loading a new page. If the browser is interrupted, it could corrupt the firmware.

 When the upload is complete, your Wireless Router automatically restarts. The update process typically takes about 1 minute.
Updating Manually to New Router Firmware

To manually select, download, and install new software to your router:

1. Log in to your router, select **Router Status** under Maintenance on the main menu, and make note of the firmware version of your router.

 ![Router Status](image)

 Figure 9.

2. Go to the WNR1000v3h2 support page on the NETGEAR website at http://www.netgear.com/support.

3. Compare the version number of the most recent firmware offered to the firmware version of your router. If the version on the NETGEAR website is more recent, download the file from the WNR1000v3h2 support page to your computer.

4. Log in to your router and select **Router Upgrade** under Maintenance on the main menu.

5. Click **Browse**, and locate the firmware image that you downloaded to your computer (the file ends in .img or .chk).

6. Click **Upload** to send the firmware to the router.

WARNING!

When updating firmware to the WNR1000v3h2 router, **do not** interrupt the Web browser by closing the window, clicking a link, or loading a new page. If the browser is interrupted, it could corrupt the firmware.

When the upload is complete, your Wireless Router automatically restarts. The upgrade process typically takes about 1 minute.
Enabling Remote Management Access

Using the Remote Management feature, you can allow a user on the Internet to configure, upgrade, and check the status of your WNR1000v3h2 router. Select Remote Management under Advanced in the main menu.

![Remote Management](image)

Figure 10.

The Remote Management screen displays.

Note: Be sure to change the router’s default configuration password to a very secure password. The ideal password should contain no dictionary words from any language, and should be a mixture of letters (both uppercase and lowercase), numbers, and symbols. Your password can be up to 30 characters.

To configure your router for remote management:

1. Select the **Turn Remote Management On** check box.
2. Under Allow Remote Access By, specify what external IP addresses will be allowed to access the router’s remote management.

Note: For enhanced security, restrict access to as few external IP addresses as practical.
• To allow access from any IP address on the Internet, select **Everyone**.
• To allow access from a range of IP addresses on the Internet, select **IP Address Range**.
 Enter a beginning and ending IP address to define the allowed range.
• To allow access from a single IP address on the Internet, select **Only This Computer**.
 Enter the IP address that will be allowed access.

3. Specify the port number for accessing the management interface.

 Normal Web browser access uses the standard HTTP service port 80. For greater security, enter a custom port number for the remote management Web interface. Choose a number between 1024 and 65535, but do not use the number of any common service port. The default is 8080, which is a common alternate for HTTP.

4. Click **Apply** to have your changes take effect.

Note: When accessing your router from the Internet, enter your router’s WAN IP address into your browser’s address or location field, followed by a colon (:) and the custom port number. For example, if your external address is 134.177.0.123 and you use port number 8080, then enter `http://134.177.0.123:8080` in your browser.
Traffic Meter

Traffic Metering allows you to monitor the volume of Internet traffic passing through your router’s Internet port. With the Traffic Meter utility, you can set limits for traffic volume, set a monthly limit, and get a live update of traffic usage.

To monitor traffic on your router, do the following:

1. On the Advanced menu, click Traffic Meter.

2. To enable the Traffic Meter, click the Enable Traffic Meter check box.

![Traffic Meter Interface](image-url)
3. If you would like to record and restrict the volume of Internet traffic, click the **Traffic volume control by** radio button. You can select one of the following options for controlling the traffic volume:
 - No Limit – No restriction is applied when the traffic limit is reached.
 - Download only – The restriction is applied to incoming traffic only.
 - Both Directions – The restriction is applied to both incoming and outgoing traffic.

4. You can limit the amount of data traffic allowed per month:
 - By specifying how many Mbytes per month are allowed.
 - By specifying how many hours of traffic are allowed.

5. Set the **Traffic Counter** to begin at a specific time and date.

6. Set up **Traffic Control** to issue a warning message before the month limit of Mbytes or Hours is reached. You can select one of the following to occur when the limit is attained:
 - The Internet LED flashes green or amber.
 - The Internet connection is disconnected and disabled.

7. Set up **Internet Traffic Statistics** to monitor the data traffic.

8. Click the **Traffic Status** button if you want a live update on Internet traffic status on your router.

9. Click **Apply** to save your settings.
This chapter provides information about troubleshooting your N150 Wireless Router. After each problem description, instructions are provided to help you diagnose and solve the problem. As a first step, please review the Quick Tips.

Tip: NETGEAR provides helpful articles, documentation, and the latest software updates at http://www.netgear.com/support.

This chapter includes the following sections:

- Quick Tips
- Troubleshooting Basic Functions on page 92
- Login Problems on page 94
- Checking the Internet Service Connection on page 95
- Troubleshooting Your Network Using the Ping Utility on page 97
- Problems with Date and Time on page 99
- Problems with Wireless Adapter Connections on page 99
- Restoring the Default Configuration and Password on page 100

Quick Tips

This section describes tips for troubleshooting some common problems:

Be sure to restart your network in this sequence.

1. Turn off *and* unplug the modem.
2. Turn off the wireless router and computers.
3. Plug in the modem and turn it on. Wait 2 minutes.
4. Turn on the wireless router and wait 1 minute.
5. Turn on the computers.
Make sure that the Ethernet cables are securely plugged in.

- The Internet status light on the wireless router is on if the Ethernet cable connecting the wireless router and the modem is plugged in securely and the modem and wireless router are turned on.
- For each powered-on computer connected to the wireless router by an Ethernet cable, the corresponding numbered router LAN port light is on.

Make sure that the wireless settings in the computer and router match exactly.

- For a wirelessly connected computer, the wireless network name (SSID) and WEP or WPA security settings of the router and wireless computer must match exactly.
- If you have enabled the wireless router to restrict wireless access by MAC address, you must add the wireless computer’s MAC address to the router’s wireless card access list.

Make sure that the network settings of the computer are correct.

- LAN connected computers must be configured to obtain an IP address automatically using DHCP. For more information, see the links in Appendix B.
- Some cable modem services require you to use the MAC address of the computer registered on the account. If so, in the Router MAC Address section of the Basic Settings menu, select Use this Computer’s MAC Address. Click Apply to save your settings. Restart the network in the correct sequence.

Check the Test light to verify correct router operation.

If the Test light does not turn off within 2 minutes after you turn the router on, reset the router according to the instructions in Restoring the Default Configuration and Password on page 100.

Troubleshooting Basic Functions

After you turn on power to the router, the following sequence of events should occur:

1. When power is first applied, verify that the Power light is on.
2. Verify that the power light turns amber within a few seconds, indicating that the self-test procedure is running.
3. After approximately 1 minute, verify that:
 a. The color of the power light changes to green.
 b. The LAN port lights are lit for any local ports that are connected.
 If a port’s light is lit, a link has been established to the connected device. If a LAN port is connected to a 100 Mbps device, verify that the port’s light is green. If the port is 10 Mbps, the light will be amber.
 c. The Internet port is connected and its light is lit.
4. If you have enabled WPS security, verify that the push-button stops blinking and changes to green (otherwise the push-button light should be off).

If the correct behavior does not occur, see the appropriate following section.

The Power light is not on.

If the Power and other lights are off when your router is turned on:

- Make sure that the power cord is properly connected to your router and that the power adapter is properly connected to a functioning power outlet.
- Check that you are using the power adapter supplied by NETGEAR for this product.

If the error persists, you have a hardware problem and should contact Technical Support.

The Power light blinks green slowly and continuously.

The router firmware is corrupted.

To restore your firmware:

1. Make sure your PC is connected to your router and the router is powered on.
2. Insert the Resource CD that came with your router into your PC.
 a. The CD will automatically start and detect the language you are using on your PC. Select a different language option, if you prefer.
 b. If the CD does not automatically start, browse the CD and double-click on .
3. Click Supporting Software, then Netgear Firmware Recovery Utility, and follow the prompts for the recovery process.
4. After firmware recovery is completed, follow the prompts to restore your configuration settings.

The Power light stays amber.

When the router is turned on, the Power light turns amber for about 20 seconds and then turns green. If the light does not turn green, the router has a problem.

If the Power light is still amber 1 minute after turning on power to the router:

1. Turn the power off and back on to see if the router recovers.
2. Clear the router’s configuration to factory defaults. This will set the router’s IP address to www.routerlogin.net. This procedure is explained in Restoring the Default Configuration and Password on page 100.

If the error persists, you might have a hardware problem and should contact Technical Support.

The Internet light stays amber.

When the router is turned on, the Internet light turns amber for about 20 seconds and then turns green. If the light does not turn green, the router has a problem.

If the Internet light is still amber 1 minute after turning on power to the router:
1. The Internet is not accessible. Confirm that you have the correct internet setting.

2. Clear the router’s configuration to factory defaults. This will set the router’s IP address to www.routerlogin.net. This procedure is explained in Restoring the Default Configuration and Password on page 100.

3. Turn the power off and back on, and re-configure the router, to see if the router recovers.

The Internet or LAN port lights are not on.

If either the LAN or Internet lights do not light when the Ethernet connection is made, check the following:

1. Make sure that the Ethernet cable connections are secure at the router and at the computer.

2. Make sure that power is turned on to the connected computer.

3. Be sure you are using Ethernet cables like the cable that was supplied with the wireless router. See the NETGEAR Wireless Router Setup Manual for instructions.

The Push 'N' Connect (WPS) push-button blinks after setting WPS security.

If after using the WPS function the push-button blinks, check the following:

1. Make sure that you are using the push-button (see Using Push 'N' Connect (Wi-Fi Protected Setup) on page 30).

2. Make sure you have not pushed the push-button after disabling the WPS function (you logged into the router and disabled this previously).

3. Make sure you push the WPS button on the client device within 2 minutes after the WPS button on the router is pushed.

For more information on WPS, see Using Push 'N' Connect (Wi-Fi Protected Setup) on page 30.

Login Problems

If you are unable to log in to the wireless router, check the following:

- If you are using an Ethernet-connected computer, check the Ethernet connection between the computer and the router as described in the NETGEAR Wireless Router Setup Manual.

- Make sure you are using the correct login information. The factory default login name is admin and the password is password. Make sure that the Caps Lock is off when entering this information.

- Make sure your computer’s IP address is on the same subnet as the router. If your are using the recommended addressing scheme, your computer’s address should be in the range of 192.168.1.2 to 192.168.1.254. Refer to your computer’s documentation or see Preparing Your Network in Appendix B for help with configuring your computer.
Note: If your computer cannot reach a DHCP server, some operating systems will assign an IP address in the range 169.254.x.x. If your IP address is in this range, verify that you have a good connection from the computer to the router, then restart (reboot) your computer.

- If your router's IP address has been changed and you don't know the current IP address, see http://www.routerlogin.net.
- Make sure your browser has Java, JavaScript, or ActiveX enabled. If you are using Internet Explorer, click Refresh to be sure the Java applet is loaded. Try closing the browser and reopening it again.
- If you are attempting to set up your NETGEAR router as an additional router behind an existing router in your network, consider replacing the existing router instead. NETGEAR does not support such a configuration.
- If you are attempting to set up your NETGEAR router as a replacement for an ADSL gateway in your network, the router cannot perform many gateway services, for example, converting ADSL or Cable data into Ethernet networking information. NETGEAR does not support such a configuration.

Checking the Internet Service Connection

If you can access your router, but your router is unable to access the Internet, review the topics in this section:

- Obtaining an Internet IP Address
- Troubleshooting PPPoE
- Troubleshooting Internet Browsing

Obtaining an Internet IP Address

If your wireless router is unable to access the Internet, and your Internet light is amber, check the wireless router to see if it is able to get an Internet IP address from your service provider. Unless you have a static IP address, your wireless router automatically requests an IP address from your service provider.

To check your wireless router’s Internet IP address:

1. Log in to the wireless router.
2. Select Router Status, under Maintenance in the main menu, to check that an IP address is shown for the Internet Port. If 0.0.0.0 is shown, your wireless router has not obtained an IP address from your service provider.

If your router is unable to obtain an IP address from the your service provider, the problem might be one of the following:
• You might need to force your cable or DSL modem to recognize your new router by restarting your network, in the sequence described in the NETGEAR Wireless Router Setup Manual.

• Your service provider might require a login. Ask your service provider whether they require a PPP over Ethernet (PPPoE) login (see Troubleshooting PPPoE on page 96).

• You might have incorrectly set the service name, user name or password. Review your router's Basic Settings screen.

• Your service provider might check for your computer's host name. Assign the computer Host Name of your ISP account to the wireless router on the Basic Settings screen.

• Your service provider might only allow one Ethernet MAC address to connect to the Internet, and check for your computer's MAC address. If this is the case:
 - Inform your service provider that you have bought a new network device, and ask them to use the wireless router's MAC address, or
 - Configure your router to spoof your computer's MAC address. On the Basic Settings screen in the Router MAC Address section, select “Use this Computer’s MAC Address” and click Apply. Then restart your network in the correct sequence (see the NETGEAR Wireless Router Setup Manual for instructions).

Troubleshooting PPPoE

If you are using PPPoE, try troubleshooting your Internet connection.

To troubleshoot a PPPoE connection:

1. Log in to the wireless router.

2. Select Router Status under Maintenance on the main menu.

3. Click Connection Status. If all of the steps indicate “OK,” then your PPPoE connection is up and working.

 If any of the steps indicate “Failed,” you can attempt to reconnect by clicking Connect. The wireless router will continue to attempt to connect indefinitely.

 If you cannot connect after several minutes, you might be using an incorrect service name, user name, or password. There also might be a provisioning problem with your ISP.

 Note: Unless you connect manually, the wireless router will not authenticate using PPPoE until data is transmitted to the network.

Troubleshooting Internet Browsing

If your wireless router can obtain an IP address but your computer is unable to load any web pages from the Internet, check the following:
• **Your computer might not recognize any DNS server addresses.** A DNS server is a host on the Internet that translates Internet names (such as www addresses) to numeric IP addresses. Typically, your ISP will provide the addresses of one or two DNS servers for your use. If you entered a DNS address during the wireless router's configuration, restart your computer. Alternatively, you can configure your computer manually with a DNS address, as explained in the documentation for your computer.

• **Your computer might not have the wireless router configured as its default gateway.** Reboot the computer and verify that the wireless router address (www.routerlogin.net) is listed by your computer as the default gateway address.

• **You might be running login software that is no longer needed.** If your ISP provided a program to log you in to the Internet (such as WinPoET), you no longer need to run that software after installing your router. You might need to go to Internet Explorer and select **Tools > Internet Options**, click the Connections tab, and select **Never dial a connection**.

If the wireless router does not save changes you have made in the browser interface, check the following:

• When entering configuration settings, be sure to click **Apply** before moving to another screen or tab, or your changes could be lost.

• Click **Refresh** or **Reload** in the Web browser. The changes might have occurred, but the Web browser might be caching the old configuration.

Troubleshooting Your Network Using the Ping Utility

Most network devices and routers contain a ping utility that sends an echo request packet to the designated device. The device then responds with an echo reply. Troubleshooting a network is made very easy by using the ping utility in your computer or workstation. This section includes:

• **Testing the LAN Path to Your Router**

• **Testing the Path from Your Computer to a Remote Device**

Testing the LAN Path to Your Router

You can ping the router from your computer to verify that the LAN path to your router is set up correctly.

To ping the router from a running Windows PC:

1. From the Windows toolbar, click Start, and then select **Run**.

2. In the field provided, type **ping** followed by the IP address of the router, as in this example:
 - **ping www.routerlogin.net**

3. Click **OK**.

 You should see a message like this one:

 Pinging <IP address > with 32 bytes of data
If the path is working, you see this message:

Reply from < IP address >: bytes=32 time=NN ms TTL=xxx

If the path is not working, you see this message:

Request timed out

If the path is not functioning correctly, you could have one of the following problems:

- Wrong physical connections
 - For a wired connection, make sure that the numbered LAN port light is on for the port to which you are connected. If the light is off, follow the instructions in Troubleshooting Basic Functions on page 92.
 - Check that the appropriate LEDs are on for your network devices. If your router and computer are connected to a separate Ethernet switch, make sure that the link lights are on for the switch ports that are connected to your computer and router.

- Wrong network configuration
 - Verify that the Ethernet card driver software and TCP/IP software are both installed and configured on your computer.
 - Verify that the IP address for your router and your computer are correct and that the addresses are on the same subnet.

Testing the Path from Your Computer to a Remote Device

After verifying that the LAN path works correctly, test the path from your computer to a remote device.

1. From the Windows toolbar, click the Start button, and then select Run.
2. In the Windows Run window, type:

 ping -n 10 <IP address>

 where <IP address> is the IP address of a remote device such as your ISP’s DNS server.

 If the path is functioning correctly, replies like those shown in the previous section are displayed. If you do not receive replies:

1. Click the Start button, and select Run.
2. Type cmd, and press OK.
3. In the Command Prompt window, enter ipconfig and click Enter. This will display the default gateway, whether your PC is configured as a DHCP client or a static IP.
 - Check to see that the network address of your computer (the portion of the IP address specified by the subnet mask) is different from the network address of the remote device.
 - Check that your cable or DSL modem is connected and functioning.
 - If your ISP assigned a host name to your computer, enter that host name as the account name in the Basic Settings screen.
• Your ISP could be rejecting the Ethernet MAC addresses of all but one of your computers. Many broadband ISPs restrict access by allowing traffic only from the MAC address of your broadband modem, but some ISPs additionally restrict access to the MAC address of a single computer connected to that modem. If this is the case, you must configure your router to “clone” or “spoof” the MAC address from the authorized computer. For more information, see Using the Setup Manual on page 6.

Problems with Date and Time

Select E-mail under Content Filtering in the main menu to display a screen that shows the current date and time of day. The WNR1000v3h2 router uses the Network Time Protocol (NTP) to obtain the current time from one of several network time servers on the Internet. Each entry in the log is stamped with the date and time of day. Problems with the date and time function can include the following:

• Date shown is January 1, 2000.
 Cause: The router has not yet successfully reached a network time server. Check that your Internet access settings are correct. If you have just completed configuring the router, wait at least 5 minutes, and check the date and time again.

• Time is off by one hour.
 Cause: The router does not adjust for daylight savings time. In the E-mail screen, select the Automatically Adjust for Daylight Savings Time check box.

Problems with Wireless Adapter Connections

If your wireless adapter is unable to connect, check its connection settings.

To check the adapter’s connection settings:

1. open the adapter setup utility to check connections:
 • NETGEAR Smart Wizard utility. If you installed a NETGEAR wireless adapter in your computer, a Smart Wizard utility program is installed that can provide helpful information about your wireless network. You can find this program in your Windows Program menu or as an icon in your system tray. Other wireless card manufacturers might include a similar program.

 • Windows basic setup utility. If you have no specific wireless card setup program installed, you can use the basic setup utility in Windows:
 - Open the Windows Control Panel, and double-click Network Connections.
 - In the LAN section, double-click Wireless Network Connection.

2. Use the adapter’s setup program to scan for available wireless networks, looking for the network name (SSID) of NETGEAR, or your custom SSID if you have changed it.

3. If your wireless network appears and has good signal strength, configure and test with the simplest wireless connection possible.

If your wireless network does not appear, check these conditions:
• Is your router’s wireless radio enabled? See Viewing Advanced Wireless Settings on page 29.
• Is your router’s SSID broadcast enabled? See Viewing Advanced Wireless Settings on page 29.
• Is your router set to a wireless standard that is not supported by your wireless adapter? Check the Mode setting as described in Viewing and Configuring Basic Internet Settings on page 11.

If your wireless network appears, but the signal strength is weak, check these conditions:

• Is your router too far from your adapter, or too close? Place the computer that has the adapter near the router, but at least 6 feet away, and see whether the signal strength improves.
• Is your wireless signal obstructed by objects between the router and your adapter? See Optimizing Wireless Performance on page 67.

Restoring the Default Configuration and Password

This section explains how to restore the factory default configuration settings that reset the router’s user name to admin, the password to password, and the IP address to 192.168.1.1.

⚠️ **WARNING!**

These procedures erase all current configuration settings.

You can erase the current configuration and restore factory defaults in two ways:

• Use the Erase function of the router. To use the Erase function, see Erasing the Configuration on page 84.
• Use the restore factory settings button on the rear panel of the router. Use this method for cases when the administration password or IP address is not known.

To use the restore settings button:

1. Locate the restore factory settings button on the rear panel of the router.
2. Use a sharp object such as a pen or a paper clip to press and hold the restore factory settings button for about 5 seconds, until the Power light begins to blink.
3. Release the restore factory settings button, and wait for the router to restart, and for the Power light to stop blinking and become solid green.

 The factory default settings will be restored so that you can access the router from your Web browser using the factory defaults.

If the wireless router fails to restart, or the Power light continues to blink or turns solid amber, the unit might be defective. If the error persists, you might have a hardware problem and should contact Technical Support at http://www.netgear.com/support.
Default Configuration Settings

This appendix provides factory default settings and technical specifications for the N150 Wireless Router.

Table 1. WNR1000v3h2 Router Default Configuration Settings

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router Login</td>
<td></td>
</tr>
<tr>
<td>Router Login URL</td>
<td>http://www.routerlogin.net or http://www.routerlogin.com</td>
</tr>
<tr>
<td>Login Name (case-sensitive) printed on product label</td>
<td>admin</td>
</tr>
<tr>
<td>Login Password (case-sensitive) printed on product label</td>
<td>password</td>
</tr>
<tr>
<td>Internet Connection</td>
<td></td>
</tr>
<tr>
<td>WAN MAC Address</td>
<td>Default hardware address (on label)</td>
</tr>
<tr>
<td>MTU Size</td>
<td>1500</td>
</tr>
<tr>
<td>Local Network</td>
<td></td>
</tr>
<tr>
<td>Router LAN IP address printed on product label (also known as Gateway IP address)</td>
<td>192.168.1.1</td>
</tr>
<tr>
<td>Router Subnet</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>DHCP Server</td>
<td>Enabled</td>
</tr>
<tr>
<td>DHCP range</td>
<td>192.168.1.2 to 192.168.1.254</td>
</tr>
<tr>
<td>Time Zone</td>
<td>GMT - 8 for North America and GMT for the rest of the world</td>
</tr>
<tr>
<td>Time Zone Adjusted for Daylight Saving Time</td>
<td>Disabled</td>
</tr>
<tr>
<td>Disable Router’s PIN</td>
<td>No</td>
</tr>
</tbody>
</table>
Table 1. WNR1000v3h2 Router Default Configuration Settings (Continued)

<table>
<thead>
<tr>
<th>Wireless</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless Communication</td>
<td>Enabled</td>
</tr>
<tr>
<td>SSID Name</td>
<td>NETGEAR</td>
</tr>
<tr>
<td>Security</td>
<td>Disabled</td>
</tr>
<tr>
<td>Wireless Access List (MAC Filtering)</td>
<td>All wireless stations allowed</td>
</tr>
<tr>
<td>Broadcast SSID</td>
<td>Enabled</td>
</tr>
<tr>
<td>Transmission Speed</td>
<td>Auto*</td>
</tr>
<tr>
<td>Country/Region</td>
<td>United States (North America only; otherwise varies by country and region)</td>
</tr>
<tr>
<td>RF Channel</td>
<td>Auto</td>
</tr>
<tr>
<td>Operating Mode</td>
<td>Up to 72 Mbps</td>
</tr>
<tr>
<td>Data Rate</td>
<td>Best</td>
</tr>
<tr>
<td>Output Power</td>
<td>Full</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Firewall</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inbound (communications coming in from the Internet)</td>
<td>Disabled (bars all unsolicited requests)</td>
</tr>
<tr>
<td>Outbound (communications going out to the Internet)</td>
<td>Enabled (all)</td>
</tr>
</tbody>
</table>

* Maximum Wireless signal rate derived from IEEE Standard 802.11 specifications. Actual throughput will vary. Network conditions and environmental factors, including volume of network traffic, building materials and construction, and network overhead lower actual data throughput rate.
General Specifications

Table 2. WNR1000v3h2 Router General Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Protocol and Standards Compatibility</td>
<td></td>
</tr>
<tr>
<td>Data and Routing Protocols</td>
<td>TCP/IP, RIP-1, RIP-2, DHCP, PPPoE, PPTP, Bigpond, Dynamic DNS, and UPnP</td>
</tr>
<tr>
<td>Power Adapter</td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td>120V, 60 Hz, input</td>
</tr>
<tr>
<td>UK, Australia</td>
<td>240V, 50 Hz, input</td>
</tr>
<tr>
<td>Europe</td>
<td>230V, 50 Hz, input</td>
</tr>
<tr>
<td>Japan</td>
<td>100V, 50/60 Hz, input</td>
</tr>
<tr>
<td>All regions (output)</td>
<td>12V DC @ 1.0A, output</td>
</tr>
<tr>
<td>Physical</td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>28 x 175 x 119 mm (1.1 x 6.89 x 4.68 in.)</td>
</tr>
<tr>
<td>Weight</td>
<td>0.242 kg (0.534 lb)</td>
</tr>
<tr>
<td>Environmental</td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>0° to 40° C (32° to 104° F)</td>
</tr>
<tr>
<td>Operating humidity</td>
<td>90% maximum relative humidity, noncondensing</td>
</tr>
<tr>
<td>Electromagnetic Emissions</td>
<td></td>
</tr>
</tbody>
</table>
| Designed to conform to the following standards | FCC Part 15 Class B
EN 55022/24 (CISPR 22/24) Class B
EN 60950 (CE LVD) Class B |
| **Interface Specifications** | |
| LAN | 10BASE-T or 100BASE-Tx, RJ-45 |
| WAN | 10BASE-T or 100BASE-Tx, RJ-45 |
Related Documents

This appendix provides links to reference documents you can use to gain a more complete understanding of the technologies used in your NETGEAR product.

Table 1. Reference Documents

<table>
<thead>
<tr>
<th>Document</th>
<th>Link</th>
</tr>
</thead>
</table>

In addition, you can find initial setup instructions for your wireless router in the NETGEAR Wireless Router Setup Manual.
Notification of Compliance

NETGEAR Wireless Routers, Gateways, AP’s

Regulatory Compliance Information

This section includes user requirements for operating this product in accordance with National laws for usage of radio spectrum and operation of radio devices. Failure of the end-user to comply with the applicable requirements may result in unlawful operation and adverse action against the end-user by the applicable National regulatory authority.

Note: This product’s firmware limits operation to only the channels allowed in a particular Region or Country. Therefore, all options described in this user's guide may not be available in your version of the product.

FCC Requirements for Operation in the United States

FCC Information to User
This product does not contain any user serviceable components and is to be used with approved antennas only. Any product changes or modifications will invalidate all applicable regulatory certifications and approvals.

FCC Guidelines for Human Exposure
This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance of 20 cm between the radiator and your body. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

FCC Declaration of Conformity
We, NETGEAR, Inc., 350 East Plumeria Drive, San Jose, CA 95134, declare under our sole responsibility that the N150 Wireless Router complies with Part 15 Subpart B of FCC CFR47 Rules. Operation is subject to the following two conditions:
• This device may not cause harmful interference, and
• This device must accept any interference received, including interference that may cause undesired operation.

FCC Radio Frequency Interference Warnings & Instructions
This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following methods:
• Reorient or relocate the receiving antenna.
• Increase the separation between the equipment and the receiver.
• Connect the equipment into an electrical outlet on a circuit different from that which the radio receiver is connected.
• Consult the dealer or an experienced radio/TV technician for help.
FCC Caution

- Any changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate this equipment.
- This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
- For product available in the USA market, only channel 1~11 can be operated. Selection of other channels is not possible.
- This device and its antenna(s) must not be co-located or operation in conjunction with any other antenna or transmitter.

Canadian Department of Communications Radio Interference Regulations

This digital apparatus, N150 Wireless Router, does not exceed the Class B limits for radio-noise emissions from digital apparatus as set out in the Radio Interference Regulations of the Canadian Department of Communications.

Europe – EU Declaration of Conformity

This equipment meets the following conformance standards:

- EN300 328 (2.4Ghz), EN301 489-17, EN301 893 (5Ghz), EN60950-1
- This device is a 2.4 GHz wideband transmission system (transceiver), intended for use in all EU member states and EFTA countries, except in France and Italy where restrictive use applies.
- In Italy, the end-user should apply for a license at the national spectrum authorities in order to obtain authorization to use the device for setting up outdoor radio links and/or for supplying public access to telecommunications and/or network services.
- This device may not be used for setting up outdoor radio links in France, and in some areas the RF output power may be limited to 10 mW EIRP in the frequency range of 2454 – 2483.5 MHz. For detailed information contact the national spectrum authority in France.

For complete DoC, visit the NETGEAR EU Declarations of Conformity website at:

http://kb.netgear.com/app/answers/detail/a_id/11621/

Table 2. EDOC in Languages of the European Community

<table>
<thead>
<tr>
<th>Language</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cesky [Czech]</td>
<td>NETGEAR Inc. tímto prohlašuje, že tento Radiolan je ve shode se základními požadavky a dalšími príslušnými ustanoveními smernice 1999/5/ES.</td>
</tr>
<tr>
<td>Dansk [Danish]</td>
<td>Undertegnede NETGEAR Inc. erklærer herved, at følgende udstyr Radiolan overholder de væsentlige krav og øvrige relevante krav i direktiv 1999/5/EF.</td>
</tr>
</tbody>
</table>
Table 2. EDOC in Languages of the European Community

<table>
<thead>
<tr>
<th>Language</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Hereby, NETGEAR Inc. declares that this Radiolan is in compliance with the essential requirements and other relevant provisions of Directive 1999/5/EC.</td>
</tr>
<tr>
<td>Español [Spanish]</td>
<td>Por medio de la presente NETGEAR Inc. declara que el Radiolan cumple con los requisitos esenciales y cualesquiera otras disposiciones aplicables o exigibles de la Directiva 1999/5/CE.</td>
</tr>
<tr>
<td>Ελληνική [Greek]</td>
<td>ΜΕ ΤΗΝ ΠΑΡΟΥΣΑ NETGEAR Inc. ΔΗΛΩΝΕΙ ΟΤΙ Radiolan ΣΥΜΜΟΡΦΩΝΕΤΑΙ ΠΡΟΣ ΤΙΣ ΟΥΣΙΩΔΕΙΣ ΑΠΑΙΤΗΣΕΙΣ ΚΑΙ ΤΙΣ ΛΟΙΠΕΣ ΣΧΕΤΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΤΗΣ ΟΔΗΓΙΑΣ 1999/5/ΕΚ.</td>
</tr>
<tr>
<td>Français [French]</td>
<td>Par la présente NETGEAR Inc. déclare que l'appareil Radiolan est conforme aux exigences essentielles et aux autres dispositions pertinentes de la directive 1999/5/CE.</td>
</tr>
<tr>
<td>Italiano [Italian]</td>
<td>Con la presente NETGEAR Inc. dichiara che questo Radiolan è conforme ai requisiti essenziali ed alle altre disposizioni pertinenti stabilite dalla direttiva 1999/5/CE.</td>
</tr>
<tr>
<td>Nederlands [Dutch]</td>
<td>Hierbij verklaart NETGEAR Inc. dat het toestel Radiolan in overeenstemming is met de essentiële eisen en de andere relevante bepalingen van richtlijn 1999/5/EG.</td>
</tr>
<tr>
<td>Malti [Maltese]</td>
<td>Hawnhekk, NETGEAR Inc., jiddikjara li dan Radiolan jikkonforma mal-htigijiet essenzjali u ma provvedimenti ohrajn relevanti li hemm fid-Dirrettiva 1999/5/EC.</td>
</tr>
<tr>
<td>Magyar [Hungarian]</td>
<td>Alulírott, NETGEAR Inc. nyilatkozom, hogy a Radiolan megfelel a vonatkozó alapvető követelményeknek és az 1999/5/EC irányelv egyéb előírásainak.</td>
</tr>
<tr>
<td>Polski [Polish]</td>
<td>Niniejszym NETGEAR Inc. oświadcza, że Radiolan jest zgodny z zasadniczymi wymogami oraz pozostałymi stosownymi postanowieniami Dyrektywy 1999/5/EC.</td>
</tr>
<tr>
<td>Português [Portuguese]</td>
<td>NETGEAR Inc. declara que este Radiolan está conforme com os requisitos essenciais e outras disposições da Directiva 1999/5/CE.</td>
</tr>
<tr>
<td>Slovensko [Slovenian]</td>
<td>NETGEAR Inc. izjavlja, da je ta Radiolan v skladu z bistvenimi zahtevami in ostalimi relevantnimi določili direktive 1999/5/ES.</td>
</tr>
<tr>
<td>Slovensky [Slovak]</td>
<td>NETGEAR Inc. týmto vyhlasuje, že Radiolan splňa základné požiadavky a všetky príslušné ustanovenia Smernice 1999/5/ES.</td>
</tr>
</tbody>
</table>
Table 2. EDOC in Languages of the European Community

<table>
<thead>
<tr>
<th>Language</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svenska [Swedish]</td>
<td>Härmmed intygar NETGEAR Inc. att denna Radiolan står i överensstämmelse med de väsentliga egenskapskrav och övriga relevanta bestämmelser som framgår av direktiv 1999/5/EG.</td>
</tr>
<tr>
<td>Íslenska [Icelandic]</td>
<td>Hér með lýsir NETGEAR Inc. yfir því að Radiolan er í samræmi við grunnkröfur og aðrar kröfur, sem gerðar eru í tilskipun 1999/5/EC.</td>
</tr>
<tr>
<td>Norsk [Norwegian]</td>
<td>NETGEAR Inc. erklærer herved at utstyret Radiolan er i samsvar med de grunnleggende krav og øvrige relevante krav i direktiv 1999/5/EF.</td>
</tr>
</tbody>
</table>

Interference Reduction Table

The table below shows the Recommended Minimum Distance between NETGEAR equipment and household appliances to reduce interference (in feet and meters).

Table 3. Interference Reduction Table

<table>
<thead>
<tr>
<th>Household Appliance</th>
<th>Recommended Minimum Distance (in feet and meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microwave ovens</td>
<td>30 feet / 9 meters</td>
</tr>
<tr>
<td>Baby Monitor - Analog</td>
<td>20 feet / 6 meters</td>
</tr>
<tr>
<td>Baby Monitor - Digital</td>
<td>40 feet / 12 meters</td>
</tr>
<tr>
<td>Cordless phone - Analog</td>
<td>20 feet / 6 meters</td>
</tr>
<tr>
<td>Cordless phone - Digital</td>
<td>30 feet / 9 meters</td>
</tr>
<tr>
<td>Bluetooth devices</td>
<td>20 feet / 6 meters</td>
</tr>
<tr>
<td>ZigBee</td>
<td>20 feet / 6 meters</td>
</tr>
</tbody>
</table>
Index

A

access
 blocking 41
 remote 87
 restricting by MAC address 35
 to a remote computer 58
 to the router 7
 viewing logs 45
access control
 turning off 18
 turning on 36
account name 12
adding
 custom service 62
 priority rules 70
 reserved IP addresses 50
 static routes 55
 wireless clients 30, 34, 80
See also configuring
administrator password, changing 38
advanced wireless settings 29
advertisement period 67
AES (Advanced Encryption Standard) encryption 28
applications, QoS for 70
attached devices 82
authentication, required by mail server 47
automatic logout 9

B

backing up configuration file 83
backing up, transfer time 76
basic settings 24
Big Pond 15
blocking
 access 41
 inbound traffic 57
 broadband Internet 74
 broadcast status 80

C

cables, checking 92
channel, frequency 25
channel, wireless port 80
clients, adding 30, 34, 80
communication mode 25, 80
compatibility, protocol and standards 103
compliance, wireless 105
configuration file
 backing up 83
 erasing 84
 managing 83
configuring
 advanced security 29
 basic security 24
 DMZ server 53
 Dynamic DNS 52
 LAN IP settings 48
 NAT 54
 port forwarding 61
 port triggering 64
 WPA security 28
 WPS 33
See also adding
connection mode 15
connection status settings 81
connection types 74
content filtering 41
CTS/RTS Threshold 30
custom service (port forwarding) 62

d

data packets, fragmented 73
date and time, troubleshooting 99
daylight savings time 47, 99
default DMZ server 53
default factory settings
 listed 101
 restoring 100
default gateway 81
default LAN IP configuration 49
deleting configuration 84
device name 49
DHCP server 50, 81
DHCP setting 79
disabling
 router PIN 34
DMZ server 53
DNS servers 58
Documentation Web page 9
documents, reference 104
domain name 12
Domain Name Server (DNS) addresses
 current 79
 entering 12, 16
Dynamic DNS 51
dynamic IP addresses 12
DynDNS.org 52

E
electromagnetic emissions 103
e-mailing logs 46
current 79
environmental specifications 103
erasing configuration 84
Ethernet MAC address 82

F
 factory default settings
 listed 101
 restoring 100
 filtering content 41
 firewalls
 default settings 102
 overview 40
 firmware
 restoring 93
 updating 7, 78, 84
 fixed IP addresses 12
 Fragmentation Threshold 30
 fragmented data packets 73
 frequency, channel 25

G
games, QoS for 70
generating encryption keys 27
 Gigabit Ethernet 75
 Guest Networks 37

H
 hardware version 78
 host name 12, 82

I
 idle time-out 15
 inbound traffic, allowing or blocking 57
 interface specifications 103
 interference, reducing 68
 Internet connection
 default settings 101
 Internet port, status 78
 Internet Relay Chat (IRC) 59
 Internet services, blocking access 42
 interval, poll 82
 IP addresses
 blocking access by 44
 current 79
 dynamic or static 12
 LAN 49
 registering domain name 51
 reserved 50
 IP subnet mask 49, 79
 ISP settings, basic 11

K
 keys, encryption 27
 keywords, blocking by 41
 knowledge base 9

L
 LAN IP setup 48
 LAN path, troubleshooting 97
 LAN port
 QoS for 71
 LAN port settings 79
 language, screen display 9
 lease, DHCP 81
 Legacy mode 25
 local network, default settings 101
 local servers, port forwarding to 61
 logging in 7
 login required 14
 login settings 101
 logout, automatic 9
logs
 sending 46
 time-stamping entries 47
 viewing 45

M
MAC addresses
 attached devices 82
 current 79
 entering 13
 QoS for 72
 restricting access by 35
 spoofing 96
mail server, outgoing 46
managing router remotely 87
metric value 56
mixed mode encryption 22, 28
mode, communication 25, 80
MTU size 54, 73

N
NAT (Network Address Translation) 53, 54, 58
NetBIOS host name 82
Network Time Protocol (NTP) 47, 99

O
obstructions, connecting through 75
online games, QoS for 70
Open System authentication 26
optimizing performance 67
outgoing mail server 46

P
passphrases 27, 28
password
 changing 38
 restoring 100
path, testing 98
performance, optimizing 67
physical push button (WPS) 31
physical specifications 103
PIN 32, 34
ping 54, 97
placement, router 68
poll interval 82
port filtering 42
port forwarding
 configuring 61
 example 60
port numbers 43
port status 81
port triggering
 configuring 64
 example 59
portmap table 67
power adapter specifications 103
Power light, troubleshooting and 92
Powerline HD products 75
PPPoE (PPP over Ethernet) 15
PPTP (Point to Point Tunneling Protocol) 15
Preamble mode 30
primary DNS server 12, 16
prioritizing traffic 69
protocols, compatibility 103
Push ‘N’ Connect 30, 80, 94
push button configuration (WPS) 31

Q
QoS (Quality of Service) 69

R
radio, wireless 18, 30, 80
range, router 67
reducing interference 68
reference documents 104
region of operation 25
releasing connection status 81
remote devices, testing path 98
remote management 87
renewing connection status 81
requirements, speed 75
reserved IP addresses 50
Resource CD 6
restarting network 91
restoring
 configuration 83
 default factory settings 100
restoring firmware 93
restricting access by MAC address 35
RIP (Router Information Protocol) direction 49
route name 56
router PIN 32, 34
router status, viewing 78
S
scheduling blocking 44
screen display language 9
selecting 9
secondary DNS server 12, 16
security
 options, compared 20
 setting up 20
security PIN 32, 34
service name 15
service numbers 44
services, blocking 42
setting time 47
settings, default. See default factory settings
setup information, gathering 23
Setup Manual 6
Setup Wizard 11
Shared Key authentication 23, 27
SMTP server 46
software push button configuration (WPS) 31
specifications
 technical 101
speed requirements 75
spoofing MAC addresses 13, 96
SSID 16, 25, 80
SSID broadcast 18, 30
standards, compatibility 103
static IP addresses 12
static routes 54
statistics, usage 81
status, viewing 78
streaming video and audio 75
subnet mask 49, 79
system up time 81
T
TCP/IP network, troubleshooting 97
technical specifications 101
technical support 2
telstra bigpond 15
time of day, troubleshooting 99
time to live, advertisement 67
time, setting 47
time-out
 idle 15
 port triggering 65
TKIP (Temporal Key Integrity Protocol) encryption 28
trademarks 2
traffic metering 89
traffic, prioritizing 69
transfer time (backing up) 76
troubleshooting 91
trusted user 42
U
Universal Plug and Play (UPnP) 66
up time, system 81
updating firmware 7, 78, 84
usage statistics 81
V
version
 firmware 78, 84
 RIP (Router Information Protocol) 49
viewing
 advanced wireless settings 29
 attached devices 82
 basic security settings 24
 logs 45
 status 78
W
WAN setup 52
WEP encryption 22, 26
Wi-Fi Protected Setup (WPS) 30, 80, 94
Wireless Card Access List 35, 36
wireless client PIN 33
wireless clients, adding 30, 34, 80
wireless connection type 75
wireless network name 16, 25, 80
wireless port settings 80
wireless radio 18, 30, 80
wireless security, setting up 20
wireless settings
 advanced 29
 basic 24
 default, listed 102
 gathering information 23
 WMM (Wi-Fi Multimedia) 69
 WPA2-PSK encryption 22, 28
 WPA-PSK + WPA2-PSK encryption 22, 28
 WPA-PSK encryption 22, 28