Support and Community
Visit netgear.com/support to get your questions answered and access the latest downloads.
You can also check out our NETGEAR Community for helpful advice at community.netgear.com.

Regulatory and Legal
Si ce produit est vendu au Canada, vous pouvez accéder à ce document en français canadien à https://www.netgear.com/support/download/.

(If this product is sold in Canada, you can access this document in Canadian French at https://www.netgear.com/support/download/.)

For regulatory compliance information including the EU Declaration of Conformity, visit https://www.netgear.com/about/regulatory/.

See the regulatory compliance document before connecting the power supply.

For NETGEAR’s Privacy Policy, visit https://www.netgear.com/about/privacy-policy.

By using this device, you are agreeing to NETGEAR’s Terms and Conditions at https://www.netgear.com/about/terms-and-conditions. If you do not agree, return the device to your place of purchase within your return period.

Trademarks
© NETGEAR, Inc., NETGEAR, and the NETGEAR Logo are trademarks of NETGEAR, Inc. Any non-NETGEAR trademarks are used for reference purposes only.

Revision History

<table>
<thead>
<tr>
<th>Publication Part Number</th>
<th>Publish Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>202-12041-03</td>
<td>August 2020</td>
<td>We made multiple changes and corrections.</td>
</tr>
<tr>
<td>202-12041-02</td>
<td>April 2020</td>
<td>We made multiple changes and corrections.</td>
</tr>
<tr>
<td>202-12041-01</td>
<td>September 2019</td>
<td>First publication.</td>
</tr>
</tbody>
</table>
3.3.2. Using the Service Port or Network Interface for Remote Management........ 79
3.3.2.1. Configuring Service Port Information ... 80
3.3.2.2. Configuring the In-Band Network Interface 80
3.3.2.3. Firmware Image Update... 81

4. COMMAND LINE INTERFACE STRUCTURE AND MODE-BASED CLI........... 82
 4.1. CLI Command Format ... 82
 4.2. CLI Mode-based Topology ... 83
 4.2.1. Parameters ... 83
 4.2.2. Values ... 83
 4.2.3. Conventions ... 84
 4.2.4. Annotations ... 84

5. SWITCHING COMMANDS... 86
 5.1. System Information and Statistics Commands .. 86
 5.1.1. show arp .. 86
 5.1.2. show calendar .. 86
 5.1.3. show process cpu ... 87
 5.1.4. show process cpu threshold ... 88
 5.1.5. show eventlog .. 88
 5.1.6. show running-config ... 89
 5.1.7. show sysinfo .. 90
 5.1.8. POST Diagnostic Commands ... 92
 5.1.8.1. show system self-test ... 92
 5.1.8.2. run system self-test ... 92
 5.1.9. show system ... 93
 5.1.10. show tech-support ... 93
 5.1.11. show hardware .. 94
 5.1.12. show version ... 95
 5.1.13. show logingsessin ... 96
 5.1.14. show command filter ... 96
 5.1.15. show transceiver device .. 98
 5.1.16. show transceiver interface ... 98
 5.1.17. show process memory ... 99
 5.1.18. show process app-list ... 100
 5.1.19. show process app-resource-list.. 101
5.1.20. show process proc-list ... 102
5.1.21. show environment ... 102
5.1.22. show configuration files .. 104
5.1.23. process cpu threshold ... 104
5.1.24. memory free low-watermark processor 105
5.1.25. show supported cardtype .. 106
5.1.26. show supported cardtype <cardindex> 106
5.1.27. pager .. 107
5.1.28. show pager ... 107
5.2. Device Configuration Commands ... 108
5.2.1. Interface commands ... 108
5.2.1.1. show interface status ... 108
5.2.1.1.1. show interface status ... 108
5.2.1.1.2. show interface status <slot/port> .. 109
5.2.1.1.3. show interface status err-disabled 110
5.2.1.1.4. show interface status loopback <0-63> 110
5.2.1.1.5. show interface status port-channel <1-64> 111
5.2.1.1.6. show interface status tunnel <0-7> 112
5.2.1.1.7. show interface status vlan <1-4093> 112
5.2.1.2. show interface counters ... 113
5.2.1.2.1. show interface counters .. 114
5.2.1.2.2. show interface counters detailed 115
5.2.1.2.3. show interface counters detailed switchport 119
5.2.1.3. show interface dampening ... 121
5.2.1.4. show interface loopback .. 121
5.2.1.5. show interface port-channel .. 122
5.2.1.6. show interface port-mode ... 123
5.2.1.7. show interface priority flow control 124
5.2.1.8. show interface switch .. 125
5.2.1.9. show interface switchport ... 126
5.2.1.10. show interface tunnel .. 128
5.2.1.11. show interface description .. 129
5.2.1.12. show interface fec .. 129
5.2.1.13. show interface advertise .. 130
5.2.1.14. Interface configuration commands 131
5.2.1.14.1... interface ...131
5.2.1.14.2... description ..132
5.2.1.14.3... no description ...132
5.2.1.14.4... flowcontrol ..132
5.2.1.14.5... no flowcontrol ...133
5.2.1.14.6... mtu ...133
5.2.1.14.7... no mtu ...133
5.2.1.14.8... port-mode ...133
5.2.1.14.9... no port-mode ..134
5.2.1.14.10... shutdown ..134
5.2.1.14.11... shutdown all ...135
5.2.1.14.12... fec ...135
5.2.1.14.13... negotiate ...135
5.2.1.15... show port status all ..136
5.2.1.16... Show flowcontrol ..136

5.2.2. Show BMC Commands ..138
5.2.2.1... show bmc ...138
5.2.2.2... bmc account password ...139
5.2.2.3... bmc ip ...139
5.2.2.4... bmc watchdog ...139

5.2.3. L2 MAC Address and Multicast Forwarding Database Tables140
5.2.3.1... show mac-addr-table ..140
5.2.3.2... show mac-addr-table count140
5.2.3.3... show mac-addr-table interface141
5.2.3.4... show mac-address-table igmp-snooping141
5.2.3.5... show mac-address-table multicast142
5.2.3.6... show mac-address-table status142
5.2.3.7... show mac-addr-table agetime143
5.2.3.8... mac-addr-table aging-time143
5.2.3.9... no mac-addr-table aging-time143
5.2.3.10... clear mac-addr-table dynamic143

5.2.4. VLAN Commands ..144
5.2.4.1... vlan database ..144
5.2.4.2... vlan ...144
5.2.4.3... no vlan ...144
5.2.4.4. vlan makestatic... 144
5.2.4.5. vlan name ... 145
5.2.4.6. no vlan name ... 145
5.2.4.7. switchport acceptable-frame-types............................ 145
5.2.4.8. no switchport acceptable-frame-types 145
5.2.4.9. switchport acceptable-frame-type all 146
5.2.4.10. no switchport acceptable-frame-types all 146
5.2.4.11. switchport ingress-filtering 146
5.2.4.12. no switchport ingress-filtering 146
5.2.4.13. switchport ingress-filtering all 147
5.2.4.14. no switchport ingress-filtering all 147
5.2.4.15. switchport native vlan ... 147
5.2.4.16. no switchport native vlan 147
5.2.4.17. switchport native vlan all 148
5.2.4.18. no switchport native vlan all 148
5.2.4.19. switchport allowed vlan .. 148
5.2.4.20. switchport allowed vlan all 148
5.2.4.21. switchport tagging .. 148
5.2.4.22. no switchport tagging .. 149
5.2.4.23. switchport tagging all ... 149
5.2.4.24. no switchport tagging all 149
5.2.4.25. show vlan ... 149
5.2.4.26. show vlan id .. 150
5.2.4.27. show vlan internal usage ... 151
5.2.4.28. show interface switchport 151
5.2.4.29. show vlan private-vlan .. 152
5.2.4.30. show vlan remote-span .. 152

5.2.5. Private VLAN Commands .. 152
5.2.5.1. switchport private-vlan ... 153
5.2.5.2. no switchport private-vlan 153
5.2.5.3. switchport mode private-vlan 153
5.2.5.4. no switchport mode private-vlan 154
5.2.5.5. private-vlan .. 154
5.2.5.6. no private-vlan .. 154
Switch Ports

5.2.6.1. switchport mode ... 154
5.2.6.2. no switchport mode ... 155
5.2.6.3. switchport trunk allowed vlan ... 155
5.2.6.4. no switchport trunk allowed vlan ... 156
5.2.6.5. switchport trunk native vlan ... 156
5.2.6.6. no switchport trunk native vlan .. 156
5.2.6.7. switchport access vlan ... 156
5.2.6.8. no switchport access vlan ... 157
5.2.6.9. show interfaces switchport .. 157

Double VLAN Commands

5.2.7.1. dvlan-tunnel ethertype ... 157
5.2.7.2. no dvlan-tunnel ethertype .. 158
5.2.7.3. dot1q-tunnel ethertype ... 158
5.2.7.4. no dot1q-tunnel ethertype .. 158
5.2.7.5. mode dot1q-tunnel .. 158
5.2.7.6. no mode dot1q-tunnel ... 159
5.2.7.7. mode dvlan-tunnel .. 159
5.2.7.8. no mode dvlan-tunnel ... 159
5.2.7.9. show dot1q-tunnel .. 159
5.2.7.10. show dvlan-tunnel .. 160

IGMP snooping commands

5.2.8.1. ip igmp snooping ... 161
5.2.8.2. no ip igmp snooping ... 161
5.2.8.3. clear igmp snooping ... 162
5.2.8.4. ip igmp snooping interfacemode .. 163
5.2.8.5. no ip igmp snooping interfacemode 162
5.2.8.6. ip igmp snooping interfacemode all 162
5.2.8.7. no ip igmp snooping interfacemode all 163
5.2.8.8. ip igmp snooping fast-leave ... 163
5.2.8.9. no ip igmp snooping fast-leave ... 163
5.2.8.10. ip igmp snooping groupmembershipinterval 163
5.2.8.11. no ip igmp snooping groupmembershipinterval 164
5.2.8.12. ip igmp snooping mctrexpiretime 164
5.2.8.13. no ip igmp snooping mcrtrexpiretime .. 164
5.2.8.14. ip igmp snooping mrouter ... 164
5.2.8.15. no ip igmp snooping mrouter ... 165
5.2.8.16. set igmp ... 165
5.2.8.17. no set igmp .. 165
5.2.8.18. set igmp fast-leave .. 165
5.2.8.19. no set igmp fast-leave ... 166
5.2.8.20. set igmp groupmembership-interval .. 166
5.2.8.21. no set igmp groupmembership-interval .. 166
5.2.8.22. set igmp maxresponse ... 166
5.2.8.23. no set igmp maxresponse .. 167
5.2.8.24. set igmp mcrtrexpiretime ... 167
5.2.8.25. no set igmp mcrtrexpiretime ... 167
5.2.8.26. set igmp report-suppression .. 167
5.2.8.27. no set igmp report-suppression ... 168
5.2.8.28. set snoop-vlan-block .. 168
5.2.8.29. no set snoop-vlan-block .. 168
5.2.8.30. ip igmp snooping static ... 168
5.2.8.31. no ip igmp snooping static .. 169
5.2.8.32. ip igmp snooping router-alert-check ... 169
5.2.8.33. no ip igmp snooping router-alert-check .. 169
5.2.8.34. show ip igmp snooping ... 169
5.2.8.35. show ip igmp snooping mrouter interface 171
5.2.8.36. show ip igmp snooping mrouter vlan .. 171
5.2.8.37. show ip igmp snooping static .. 171
5.2.8.38. show mac-address-table igmpsnooping ... 172
5.2.8.39. show ip igmp snooping ssm entries ... 172
5.2.8.40. show ip igmp snooping ssm groups .. 173
5.2.8.41. show ip igmp snooping ssm stats .. 173
5.2.8.42. ip igmp snooping maxresponse ... 173
5.2.8.43. no ip igmp snooping maxresponse ... 174

5.2.9. IGMP snooping querier commands .. 174
5.2.9.1. ip igmp snooping querier ... 174
5.2.9.2. no ip igmp snooping querier .. 174
5.2.9.3. ip igmp snooping querier address.. 174
5.2.9.4. no ip igmp snooping querier address.. 175
5.2.9.5. ip igmp snooping querier query-interval .. 175
5.2.9.6. no ip igmp snooping querier query-interval .. 175
5.2.9.7. ip igmp snooping querier querier-expiry-interval..................................... 175
5.2.9.8. no ip igmp snooping querier querier-expiry-interval............................... 176
5.2.9.9. ip igmp snooping querier version ... 176
5.2.9.10. no ip igmp snooping querier version .. 176
5.2.9.11. ip igmp snooping querier vlan.. 176
5.2.9.12. no ip igmp snooping querier vlan <vlan-id> ... 176
5.2.9.13. ip igmp snooping querier vlan address ... 177
5.2.9.14. no ip igmp snooping querier vlan address ... 177
5.2.9.15. ip igmp snooping querier vlan election participate 177
5.2.9.16. no ip igmp snooping querier vlan election participate 177
5.2.9.17. show ip igmp snooping querier ... 178
5.2.9.18. show ip igmp snooping querier vlan .. 178
5.2.9.19. show ip igmp snooping querier detail ... 179
5.2.10. **MLD Snooping Commands**.. 180
 5.2.10.1. show ipv6 mld snooping... 180
 5.2.10.2. show ipv6 mld snooping mrouter interface ... 181
 5.2.10.3. show ipv6 mld snooping mrouter vlan .. 181
 5.2.10.4. show ipv6 mld snooping static... 182
 5.2.10.5. show mac-address-table mldsnooping ... 182
 5.2.10.6. show ipv6 mld snooping ssm entries .. 182
 5.2.10.7. show ipv6 mld snooping ssm groups .. 183
 5.2.10.8. show ipv6 mld snooping ssm stats... 183
 5.2.10.9. ipv6 mld snooping .. 183
 5.2.10.10. no ipv6 mld snooping ... 184
 5.2.10.11. clear mld snooping ... 184
 5.2.10.12. ipv6 mld snooping interfacemode ... 184
 5.2.10.13. no ipv6 mld snooping interfacemode ... 184
 5.2.10.14. ipv6 mld snooping interfacemode all ... 185
 5.2.10.15. no ipv6 mld snooping interfacemode all 185
 5.2.10.16. ipv6 mld snooping fast-leave ... 185
5.2.11.1. show ipv6 mld snooping querier ... 190
5.2.11.2. show ipv6 mld snooping querier vlan 191
5.2.11.3. show ipv6 mld snooping querier detail 191
5.2.11.4. ipv6 mld snooping querier .. 192
5.2.11.5. no ipv6 mld snooping querier ... 192
5.2.11.6. ipv6 mld snooping querier address 192
5.2.11.7. no ipv6 mld snooping querier address 192
5.2.11.8. ipv6 mld snooping querier query-interval 193
5.2.11.9. no ipv6 mld snooping querier querier-interval 193
5.2.11.10. ipv6 mld snooping querier querier-expiry-interval 193
5.2.11.11. no ipv6 mld snooping querier querier-expiry-interval 193
5.2.11.12. ipv6 mld snooping querier vlan .. 194
5.2.11.13. no ipv6 mld snooping querier vlan 194
5.2.11.14. ipv6 mld snooping querier vlan address 194

5.2.11. MLD Snooping Querier Commands 190

5.2.10.17. no ipv6 mld snooping fast-leave ... 185
5.2.10.18. ipv6 mld snooping groupmembershipinterval 186
5.2.10.19. no ipv6 mld snooping groupmembershipinterval 186
5.2.10.20. ipv6 mld snooping mcrtrexpiretime 186
5.2.10.21. no ipv6 mld snooping mcrtrexpiretime 186
5.2.10.22. ipv6 mld snooping mrouter ... 187
5.2.10.23. no ipv6 mld snooping mrouter ... 187
5.2.10.24. ipv6 mld snooping static ... 187
5.2.10.25. no ipv6 mld snooping static .. 187
5.2.10.26. set mld .. 188
5.2.10.27. no set mld .. 188
5.2.10.28. set mld fast-leave ... 188
5.2.10.29. no set mld fast-leave .. 188
5.2.10.30. set mld groupmembership-interval 189
5.2.10.31. no set mld groupmembership-interval 189
5.2.10.32. set mld maxresponse ... 189
5.2.10.33. no set mld maxresponse .. 189
5.2.10.34. set mld mcrtrexpiretime .. 190
5.2.10.35. no set mld mcrtrexpiretime ... 190

NETGEAR M4500 Series Switches CLI Command Reference Manual
5.2.12. Port-Channel/LAG (802.3ad) Commands ... 195
5.2.12.1. show interface port-channel brief ... 196
5.2.12.2. show interface port-channel ... 197
5.2.12.3. show interface port-channel system priority ... 200
5.2.12.4. show lacp actor ... 201
5.2.12.5. show lacp interface ... 201
5.2.12.6. interface port-channel ... 201
5.2.12.7. staticcapability ... 202
5.2.12.8. no staticcapability ... 202
5.2.12.9. port-channel linktrap .. 202
5.2.12.10. no port-channel linktrap ... 202
5.2.12.11. port-channel load-balance ... 203
5.2.12.12. no port-channel load-balance ... 203
5.2.12.13. load-balance ... 203
5.2.12.14. no load-balance .. 204
5.2.12.15. port-channel system priority .. 204
5.2.12.16. no port-channel system priority .. 205
5.2.12.17. lacp ... 205
5.2.12.18. no lacp .. 205
5.2.12.19. lacp all .. 205
5.2.12.20. no lacp .. 205
5.2.12.21. lacp admin key ... 206
5.2.12.22. no lacp admin key ... 206
5.2.12.23. lacp actor admin key ... 206
5.2.12.24. no lacp actor admin key ... 206
5.2.12.25. lacp actor admin state ... 207
5.2.12.26. no lacp actor admin state ... 207
5.2.12.27. lacp actor port priority ... 207
5.2.12.28. no lacp actor port priority ... 208
5.2.12.29. min-links .. 208
5.2.12.30. no min-links .. 208
5.2.12.31. lACP fallback... ... 208
5.2.12.32. no lACP fallback .. 209
5.2.12.33. lACP fallback timeout .. 209
5.2.12.34. no lACP fallback timeout ... 209
5.2.12.35. channel-group ... 209
5.2.12.36. no channel-group ... 210
5.2.12.37. delete-channel-group ... 210
5.2.12.38. port lacp mode enable all ... 210
5.2.12.39. port lacp timeout ... 210

5.2.13. Storm Control ... 211
5.2.13.1. show storm-control ... 211
5.2.13.2. storm-control Configuration .. 213
5.2.13.3. storm-control broadcast .. 213
5.2.13.4. no storm-control broadcast ... 213
5.2.13.5. storm-control broadcast action .. 214
5.2.13.6. no storm-control broadcast action 214
5.2.13.7. storm-control broadcast rate .. 214
5.2.13.8. no storm-control broadcast rate 215
5.2.13.9. storm-control broadcast level .. 215
5.2.13.10. no storm-control broadcast level 215
5.2.13.11. storm-control multicast .. 216
5.2.13.12. no storm-control multicast ... 216
5.2.13.13. storm-control multicast action 216
5.2.13.14. no storm-control multicast action 217
5.2.13.15. storm-control multicast level ... 217
5.2.13.16. no storm-control multicast level 217
5.2.13.17. storm-control multicast rate ... 217
5.2.13.18. no storm-control multicast rate 218
5.2.13.19. storm-control unicast .. 218
5.2.13.20. no storm-control unicast ... 218
5.2.13.21. storm-control unicast action ... 219
5.2.13.22. no storm-control unicast action 219
5.2.13.23. storm-control unicast level .. 219
5.2.13.24. no storm-control unicast level .. 220
5.2.14. **Port Mirror Commands** ... 221
 5.2.14.1. show port-mirror session ... 221
 5.2.14.2. port-monitor session source .. 222
 5.2.14.3. no port-monitor session source ... 223
 5.2.14.4. port-monitor session destination ... 223
 5.2.14.5. no port-monitor session destination 224
 5.2.14.6. port-monitor session filter .. 224
 5.2.14.7. no port-monitor session filter ... 225
 5.2.14.8. port-monitor session mode .. 225
 5.2.14.9. no port-monitor session mode ... 225
 5.2.14.10. no port-monitor session ... 225
 5.2.14.11. no port-monitor .. 226
5.2.15. **Link State** ... 226
 5.2.15.1. show link state ... 226
 5.2.15.2. link state group action ... 227
 5.2.15.3. link state group ... 227
5.2.16. **Port-backup Commands** ... 228
 5.2.16.1. show port-backup .. 228
 5.2.16.2. port-backup ... 228
 5.2.16.3. no port-backup ... 228
 5.2.16.4. port-backup group ... 229
 5.2.16.5. no port-backup group ... 229
 5.2.16.6. port-backup group active .. 229
 5.2.16.7. no port-backup group active ... 229
 5.2.16.8. port-backup group backup ... 229
 5.2.16.9. no port-backup group backup ... 230
 5.2.16.10. port-backup group enable ... 230
 5.2.16.11. port-backup group mac-move-update 230
 5.2.16.12. no port-backup group mac-move-update 230
 5.2.16.13. port-backup group failback-time 231
 5.2.16.14. no port-backup group failback-time 231
5.3. **Provisioning (IEEE 802.1p) Commands** 232
5.3.1. switchport priority all ... 232
5.3.2. no switchport priority all .. 232
5.3.3. switchport priority ... 232
5.3.4. no switchport priority .. 232
5.4. Management Commands ... 233
5.4.1. Network Commands ... 233
5.4.1.1. show ip interface ... 233
5.4.1.2. show ip filter ... 233
5.4.1.3. mtu .. 234
5.4.1.4. no mtu .. 234
5.4.1.5. interface vlan ... 234
5.4.1.6. ip address ... 234
5.4.1.7. no ip address ... 235
5.4.1.8. ip default-gateway ... 235
5.4.1.9. ip address dhcp .. 236
5.4.1.10. no ip address dhcp ... 236
5.4.1.11. ip filter ... 236
5.4.1.12. no ip filter ... 237
5.4.1.13. ip filter <name> {ipv4 | ipv6}<ipAddr>[<mask>] 237
5.4.1.14. no ip filter<name> .. 237
5.4.2. Serial Interface Commands ... 237
5.4.2.1. show line console .. 237
5.4.2.2. line console ... 238
5.4.2.3. baudrate ... 238
5.4.2.4. no baudrate ... 239
5.4.2.5. exec-timeout ... 239
5.4.2.6. no exec-timeout .. 239
5.4.2.7. password-threshold ... 239
5.4.2.8. no password-threshold ... 240
5.4.2.9. silent-time ... 240
5.4.2.10. no silent-time .. 240
5.4.2.11. terminal length .. 240
5.4.2.12. line password .. 241
5.4.3. Telnet Session Commands ... 241
5.4.3.1. telnet .. 241
5.4.3.2. show line vty... 242
5.4.3.3. line vty .. 242
5.4.3.4. exec-timeout ... 242
5.4.3.5. no exec-time out ... 243
5.4.3.6. password-threshold .. 243
5.4.3.7. no password-threshold .. 244
5.4.3.8. maxsessions... 244
5.4.3.9. no maxsessions ... 244
5.4.3.10. server enable ... 244
5.4.3.11. no server enable ... 245
5.4.3.12. sessions ... 245
5.4.3.13. no sessions .. 245
5.4.3.14. telnet sessions ... 245
5.4.3.15. no telnet sessions ... 246
5.4.3.16. telnet maxsessions ... 246
5.4.3.17. no telnet maxsessions .. 246
5.4.3.18. telnet exec-timeout .. 246
5.4.3.19. no telnet exec-timeout .. 247
5.4.3.20. show telnet ... 247

5.4.4. **SNMP Server Commands** ... 247
5.4.4.1. show snmp ... 247
5.4.4.2. snmp-server sysname .. 249
5.4.4.3. snmp-server location .. 249
5.4.4.4. snmp-server contact ... 250
5.4.4.5. snmp-server community ... 250
5.4.4.6. no snmp-server community <community-string> 251
5.4.4.7. snmp-server community-group ... 251
5.4.4.8. no snmp-server community-group <community-string> 251
5.4.4.9. show snmp engineid .. 251
5.4.4.10. snmp-server engineid ... 252
5.4.4.11. no snmp-server engineid ... 252
5.4.4.12. show snmp filters ... 253
5.4.4.13. snmp-server filter .. 253
5.4.4.23. no snmp-server filter <filter-name> [<oid-tree>] ... 254
5.4.4.24. show snmp user ... 254
5.4.4.25. snmp-server user .. 255
5.4.4.26. no snmp-server user ... 255
5.4.4.27. show snmp group ... 255
5.4.4.28. snmp-server group ... 257
5.4.4.29. no snmp-server group .. 257
5.4.4.30. show snmp views .. 257
5.4.4.31. snmp-server view .. 258
5.4.4.32. no snmp-server view ... 259

5.4.5. **SNMP Trap Commands** ... 259
5.4.5.1. snmp-server host <host-addr> traps ... 259
5.4.5.2. no snmp-server host <host-addr> ... 260
5.4.5.3. *show* trapflags ... 260
5.4.5.4. snmp trap link-status all ... 261
5.4.5.5. no snmp trap link-status all ... 262
5.4.5.6. snmp-server enable traps acl-trapflags ... 262
5.4.5.7. no snmp-server enable traps acl-trapflags ... 262
5.4.5.8. snmp-server enable traps authentication ... 262
5.4.5.9. no snmp-server enable traps authentication ... 263
5.4.5.10. snmp-server enable traps bgp state-changes limited .. 263
5.4.5.11. no snmp-server enable traps bgp state-changes limited ... 263
5.4.5.12. snmp-server enable traps fan ... 263
5.4.5.13. no snmp-server enable traps fan ... 263
5.4.5.14. snmp-server enable traps linkmode .. 264
5.4.5.15. no snmp-server enable traps linkmode .. 264
5.4.5.16. snmp-server enable traps multiusers .. 264
5.4.5.17. snmp-server enable traps ospf .. 265
5.4.5.18. no snmp-server enable traps ospf ... 265
5.4.5.19. snmp-server enable traps ospfv3 ... 265
5.4.5.20. no snmp-server enable traps ospfv3 ... 265
5.4.5.21. snmp-server enable traps pim .. 266
5.4.5.22. no snmp-server enable traps pim ... 266
5.4.5.23. snmp-server enable traps powersupply ... 266
5.4.5.24. no snmp-server enable traps powersupply ... 266
5.4.5.25. snmp-server enable traps stpmode ... 267
5.4.5.26. no snmp-server enable traps stpmode ... 267
5.4.5.27. snmp-server enable traps temperature .. 267
5.4.5.28. no snmp-server enable traps temperature .. 267
5.4.5.29. snmp-server enable traps transceiver .. 267
5.4.5.30. no snmp-server enable traps transceiver .. 268
5.4.5.31. snmp-server enable traps violation .. 268
5.4.5.32. no snmp-server enable traps violation .. 268
5.4.5.33. show snmp source-interface ... 268
5.4.5.34. snmptrap source-interface ... 269
5.4.5.35. no snmptrap source-interface ... 270
5.4.5.36. snmp trap link-status .. 270
5.4.5.37. no snmp trap link-status ... 270
5.4.6. SNMP Inform Commands .. 270
 5.4.6.1. snmp-server host <host-addr> informs .. 270
 5.4.6.2. no snmp-server host <host-addr> ... 271
 5.4.7. Secure Shell (SSH) Commands .. 271
 5.4.7.1. show ip ssh .. 271
 5.4.7.2. show ip ssh user-public-key current-user .. 272
 5.4.7.3. show ip ssh user-public-key who-has-key .. 272
 5.4.7.4. ip ssh .. 273
 5.4.7.5. no ip ssh .. 273
 5.4.7.6. ip ssh maxsessions ... 273
 5.4.7.7. no ip ssh maxsessions ... 273
 5.4.7.8. ip ssh port .. 274
 5.4.7.9. no ip ssh port ... 274
 5.4.7.10. ip ssh timeout .. 274
 5.4.7.11. no ip ssh timeout ... 274
 5.4.7.12. ip ssh user-password-auth ... 274
 5.4.7.13. no ip ssh user-password-auth ... 275
 5.4.7.14. ip ssh user-public-key-auth ... 275
 5.4.7.15. no ip ssh user-public-key-auth .. 275
5.4.8. Management Security Commands ... 275
5.4.9. DHCP Client Commands ... 276
5.4.9.1. dhcp client vendor-id-option 276
5.4.9.2. no dhcp client vendor-id-option 277
5.4.9.3. dhcp client vendor-id-option-string 277
5.4.9.4. no dhcp client vendor-id-option-string 277
5.4.9.5. show dhcp client vendor-id-option 277
5.4.9.6. show dhcp lease .. 278
5.4.10. sFlow Commands .. 278
5.4.10.1. show sflow agent .. 278
5.4.10.2. show sflow pollers ... 279
5.4.10.3. show sflow receivers ... 279
5.4.10.4. show sflow samplers .. 280
5.4.10.5. show sflow source-interface 281
5.4.10.6. sflow receiver maximum datagram 281
5.4.10.7. no sflow receiver maxdatagram <index> 281
5.4.10.8. sflow receiver owner ... 281
5.4.10.9. no sflow receiver <index> 282
5.4.10.10. sflow receiver ip ... 282
5.4.10.11. no sflow receiver <index> ip 282
5.4.10.12. sflow receiver port .. 283
5.4.10.13. no sflow receiver <index> port 283
5.4.10.14. sflow poller interval ... 283
5.4.10.15. no sflow poller interval 284
5.4.10.16. sflow sampler index .. 284
5.4.10.17. no sflow sampler ... 284
5.4.10.18. sflow poller index .. 284
5.4.10.19. no sflow poller .. 284
5.4.10.20. sflow source-interface 285
5.4.10.21. no sflow source-interface 285
5.4.10.22. sflow sampler rate ... 285
5.4.10.23. no sflow sampler rate ... 286
5.4.10.24. sflow sampler maxheadersize .. 286
5.4.10.25. no sflow sampler maxheadersize ... 286

5.4.12.9. no periodic ... 286
5.4.12.8. periodic .. 286
5.4.12.7. no time .. 286
5.4.12.6. time .. 286
5.4.12.5. show time ... 286
5.4.12.4. absolute .. 286
5.4.12.3. no absolute ... 286
5.4.12.2. time-range ... 286
5.4.12.1. show time-range ... 286

5.4.13. Command Scheduler Commands .. 286
5.4.13.1. kron occurrence ... 286
5.4.13.2. no kron occurrence <name> .. 286
5.4.13.3. policy-list <name> ... 286
5.4.13.4. no policy-list <name> ... 286
5.4.13.5. kron policy-list ... 286

5.4.11. Service Port Commands .. 286
5.4.11.1. show serviceport ... 286
5.4.11.2. show serviceport ipv6 dhcp statistics 286
5.4.11.3. show serviceport ipv6 neighbors ... 286
5.4.11.4. serviceport ip .. 290
5.4.11.5. serviceport protocol .. 290
5.4.11.6. serviceport ipv6 enable ... 290
5.4.11.7. no serviceport ipv6 enable .. 291
5.4.11.8. serviceport ipv6 address ... 291
5.4.11.9. no serviceport ipv6 address ... 292
5.4.11.10. serviceport ipv6 gateway .. 292
5.4.11.11. no serviceport ipv6 gateway ... 292
5.4.11.12. clear serviceport ipv6 dhcp statistics 292
5.4.11.13. serviceport ipv6 neighbor .. 293
5.4.11.14. no serviceport ipv6 neighbor ... 293

5.4.12. Time Range Commands .. 293
5.4.12.1. show time-range ... 293
5.4.12.2. time-range ... 294
5.4.12.3. no time-range .. 294
5.4.12.4. time-range <name> ... 294
5.4.12.5. no time-range <name> ... 295
5.4.12.6. absolute .. 295
5.4.12.7. no absolute .. 295
5.4.12.8. periodic .. 296
5.4.12.9. no periodic ... 296
5.4.14. **Switch Database Management Template Commands** ... 299
5.4.14.1. show sdm prefer .. 299
5.4.14.2. sdm prefer .. 300
5.4.14.3. no sdm prefer .. 301
5.4.15. **Remote Monitoring Commands** ... 301
5.4.15.1. show rmon alarms .. 301
5.4.15.2. show rmon collection history 303
5.4.15.3. show rmon events .. 304
5.4.15.4. show rmon history ... 305
5.4.15.5. show rmon log .. 308
5.4.15.6. show rmon statistics interfaces 309
5.4.15.7. show rmon hcalarms ... 311
5.4.15.8. rmon alarm ... 313
5.4.15.9. no rmon alarm .. 314
5.4.15.10. rmon hcalarm .. 314
5.4.15.11. no rmon hcalarm .. 315
5.4.15.12. rmon event .. 315
5.4.15.13. no rmon event .. 316
5.4.15.14. rmon collection history 316
5.4.15.15. no rmon collection history 317
5.4.16. **Statistics Application Commands** .. 317
5.4.16.1. stats group (Global Config) 317
5.4.16.2. stats flow-based (Global Config) 319
5.4.16.3. stats flow-based reporting 320
5.4.16.4. stats group (Interface Config) 320
5.4.16.5. stats flow-based (Interface Config) 321
5.4.16.6. show stats group .. 321
5.4.16.7. show stats flow-based ... 323
5.5. **Spanning Tree Protocol Commands** ... 326
5.5.1. show spanning-tree .. 326
5.5.2. show spanning-tree interface 327
show spanning-tree vlan ... 327
show spanning-tree mst detailed .. 328
show spanning-tree mst summary .. 328
show spanning-tree mst port detailed .. 329
show spanning-tree mst port summary .. 330
show spanning-tree summary .. 331
show spanning-tree brief .. 331
spanning-tree ... 332
no spanning-tree ... 332
spanning-tree bpdu-forwarding ... 332
no spanning-tree bpdu-forwarding ... 332
spanning-tree protocol-migration .. 333
spanning-tree configuration name .. 333
no spanning-tree configuration name ... 333
spanning-tree configuration revision .. 333
no spanning-tree configuration revision 334
spanning-tree mode .. 334
no spanning-tree mode ... 334
spanning-tree forward-time ... 334
no spanning-tree forward-time ... 335
spanning-tree max-age .. 335
no spanning-tree max-age .. 335
spanning-tree forward-time max-age .. 335
spanning-tree max-hops ... 336
no spanning-tree max-hops .. 336
spanning-tree hold-count .. 336
no spanning-tree hold-count .. 336
spanning-tree mst instance .. 336
no spanning-tree mst instance ... 337
spanning-tree mst priority .. 337
no spanning-tree mst priority ... 338
spanning-tree mst vlan ... 338
no spanning-tree mst vlan ... 338
spanning-tree mst ... 338
5.5.37. no spanning-tree mst ... 339
5.5.38. spanning-tree port mode ... 339
5.5.39. no spanning-tree port mode ... 340
5.5.40. spanning-tree port model all .. 340
5.5.41. no spanning-tree port mode all ... 340
5.5.42. spanning-tree auot-edge ... 340
5.5.43. no spanning-tree auto-edge ... 341
5.5.44. spanning-tree cost ... 341
5.5.45. no spanning-tree cost .. 341
5.5.46. spanning-tree edgeport .. 341
5.5.47. no spanning-tree edgeport ... 342
5.5.48. spanning-tree edgeport bpduguard .. 342
5.5.49. no spanning-tree edgeport bpduguard 342
5.5.50. spanning-tree bpduguard .. 342
5.5.51. no spanning-tree bpduguard ... 343
5.5.52. spanning-tree guard ... 343
5.5.53. no spanning-tree guard .. 343
5.5.54. spanning-tree tcnguard .. 343
5.5.55. no spanning-tree tcnguard ... 344
5.6. System Log Commands ... 345
5.6.1. show logging ... 345
5.6.2. show logging buffered .. 345
5.6.3. logging buffered ... 347
5.6.4. logging buffered threshold ... 347
5.6.5. logging buffered severity level .. 347
5.6.6. logging buffered wrap .. 348
5.6.7. clear logging buffered ... 348
5.6.8. show logging traplogs .. 348
5.6.9. show logging hosts .. 349
5.6.10. logging host ... 350
5.6.11. logging host remove ... 350
5.6.12. logging host reconfigure ... 351
5.6.13. logging syslog ... 351
5.6.14. logging syslog port ... 351
<table>
<thead>
<tr>
<th>Section</th>
<th>Command Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.15</td>
<td>logging syslog facility</td>
<td>352</td>
</tr>
<tr>
<td>5.6.16</td>
<td>logging syslog source-interface</td>
<td>352</td>
</tr>
<tr>
<td>5.6.17</td>
<td>logging console</td>
<td>352</td>
</tr>
<tr>
<td>5.6.18</td>
<td>logging console severity level</td>
<td>353</td>
</tr>
<tr>
<td>5.6.19</td>
<td>logging monitor</td>
<td>353</td>
</tr>
<tr>
<td>5.6.20</td>
<td>logging monitory severity level</td>
<td>353</td>
</tr>
<tr>
<td>5.6.21</td>
<td>show logging cli-command-log</td>
<td>354</td>
</tr>
<tr>
<td>5.6.22</td>
<td>logging cli-command</td>
<td>355</td>
</tr>
<tr>
<td>5.6.23</td>
<td>clear cli-command-log</td>
<td>355</td>
</tr>
<tr>
<td>5.7</td>
<td>Email Alert and Mail Server Commands</td>
<td>356</td>
</tr>
<tr>
<td>5.7.1</td>
<td>show logging email config</td>
<td>356</td>
</tr>
<tr>
<td>5.7.2</td>
<td>show logging email statistics</td>
<td>357</td>
</tr>
<tr>
<td>5.7.3</td>
<td>show mail-server config</td>
<td>357</td>
</tr>
<tr>
<td>5.7.4</td>
<td>logging email</td>
<td>358</td>
</tr>
<tr>
<td>5.7.5</td>
<td>logging email urgent and non-urgent</td>
<td>358</td>
</tr>
<tr>
<td>5.7.6</td>
<td>logging email logtime</td>
<td>359</td>
</tr>
<tr>
<td>5.7.7</td>
<td>logging email message-type and subject</td>
<td>359</td>
</tr>
<tr>
<td>5.7.8</td>
<td>logging email message-type and to-addr</td>
<td>359</td>
</tr>
<tr>
<td>5.7.9</td>
<td>logging email from-addr</td>
<td>360</td>
</tr>
<tr>
<td>5.7.10</td>
<td>mail-server configuration</td>
<td>360</td>
</tr>
<tr>
<td>5.7.11</td>
<td>mail-server security</td>
<td>361</td>
</tr>
<tr>
<td>5.7.12</td>
<td>mail-server port</td>
<td>361</td>
</tr>
<tr>
<td>5.7.13</td>
<td>mail-server username</td>
<td>361</td>
</tr>
<tr>
<td>5.7.14</td>
<td>mail-server password</td>
<td>362</td>
</tr>
<tr>
<td>5.7.15</td>
<td>clear logging email statistics</td>
<td>362</td>
</tr>
<tr>
<td>5.8</td>
<td>Script Management Commands</td>
<td>363</td>
</tr>
<tr>
<td>5.8.1</td>
<td>script apply</td>
<td>363</td>
</tr>
<tr>
<td>5.8.2</td>
<td>script delete</td>
<td>363</td>
</tr>
<tr>
<td>5.8.3</td>
<td>script list</td>
<td>363</td>
</tr>
<tr>
<td>5.8.4</td>
<td>script show</td>
<td>364</td>
</tr>
<tr>
<td>5.8.5</td>
<td>script validate</td>
<td>366</td>
</tr>
<tr>
<td>5.9</td>
<td>User Account Management Commands</td>
<td>368</td>
</tr>
<tr>
<td>5.9.1</td>
<td>show users</td>
<td>368</td>
</tr>
<tr>
<td>5.9.2</td>
<td>show users long</td>
<td>368</td>
</tr>
</tbody>
</table>
5.9.3. show users accounts .. 369
5.9.4. show passwords configuration ... 371
5.9.5. show passwords result ... 372
5.9.6. username ... 373
5.9.7. no username ... 374
5.9.8. username <username> unlock .. 374
5.9.9. passwords aging .. 374
5.9.10. no passwords aging ... 374
5.9.11. passwords history .. 375
5.9.12. no passwords history .. 375
5.9.13. passwords lock-out ... 375
5.9.14. no passwords lock-out .. 376
5.9.15. passwords min-length .. 376
5.9.16. no passwords min-length ... 376
5.9.17. passwords strength-check ... 376
5.9.18. no passwords strength-check .. 377
5.9.19. passwords strength maximum 377
5.9.20. no passwords strength maximum 377
5.9.21. passwords strength minimum 377
5.9.22. no passwords strength minimum 378
5.9.23. passwords strength exclude-keyword 378
5.9.24. no passwords strength exclude-keyword 378
5.9.25. show users login-history ... 378
5.9.26. user password override-complexity-check 379
5.9.27. user role .. 380
5.10. Port-based Network Access Control Commands 381
5.10.1. show authentication methods ... 381
5.10.2. show dot1x ... 382
5.10.3. show dot1x authentication-history 387
5.10.4. show dot1x clients ... 388
5.10.5. show dot1x users .. 389
5.10.6. aaa authentication dot1x default 389
5.10.7. no aaa authentication dot1x default 390
5.10.8. clear dot1x statistics ... 390
5.10.9. clear dot1x authentication-history ... 390
5.10.10. clear RADIUS statistics .. 390
5.10.11. dot1x eapoflood ... 391
5.10.12. no dot1x eapoflood .. 391
5.10.13. dot1x dynamic-vlan enable ... 391
5.10.14. no dot1x dynamic-vlan enable .. 391
5.10.15. dot1x guest-vlan ... 392
5.10.16. no dot1x guest-vlan ... 392
5.10.17. dot1x initialize ... 392
5.10.18. dot1x mac-auth-bypass ... 392
5.10.19. no dot1x mac-auth-bypass ... 393
5.10.20. dot1x max-req ... 393
5.10.21. no dot1x max-req .. 393
5.10.22. dot1x max-users ... 393
5.10.23. no dot1x max-users ... 394
5.10.24. dot1x port-control .. 394
5.10.25. no dot1x port-control .. 394
5.10.26. dot1x port-control all .. 394
5.10.27. no dot1x port-control all ... 395
5.10.28. dot1x re-authenticate ... 395
5.10.29. dot1x re-authentication ... 395
5.10.30. no dot1x re-authentication .. 395
5.10.31. dot1x system-auth-control ... 396
5.10.32. no dot1x system-auth-control .. 396
5.10.33. dot1x timeout ... 396
5.10.34. no dot1x timeout .. 397
5.10.35. dot1x unauthenticated-vlan ... 397
5.10.36. no dot1x unauthenticated-vlan .. 398
5.10.37. dot1x user ... 398
5.10.38. no dot1x user .. 398
5.11. AAA Commands ... 399
5.11.1. show accounting ... 399
5.11.2. show accounting methods ... 399
5.11.3. aaa authentication login .. 400
5.11.4. no aaa authentication login ... 401
5.11.5. aaa accounting .. 401
5.11.6. no aaa accounting ... 402
5.11.7. accounting .. 403
5.11.8. no aaa accounting ... 403
5.11.9. clear aaa ias-users ... 403
5.11.10. clear accounting statistics ... 404
5.12. RADIUS Commands .. 405
5.12.1. show radius .. 405
5.12.2. show radius accounting ... 406
5.12.3. show radius servers .. 409
5.12.4. show radius statistics .. 413
5.12.5. show radius source-interface ... 415
5.12.6. authentication network radius .. 415
5.12.7. no authorization network radius .. 415
5.12.8. clear radius dynamic-author statistics ... 415
5.12.9. radius accounting mode .. 416
5.12.10. no radius accounting mode ... 416
5.12.11. radius server attribute 4 ... 416
5.12.12. no radius server attribute 4 ... 417
5.12.13. radius server attribute 95 .. 417
5.12.14. no radius server attribute 95 ... 417
5.12.15. radius server attribute mschapv2 .. 417
5.12.16. no radius server attribute mschapv2 ... 418
5.12.17. radius server deadtime ... 418
5.12.18. no radius server deadtime ... 418
5.12.19. radius server host .. 418
5.12.20. no radius server host ... 419
5.12.21. radius server host link-local ... 420
5.12.22. no radius server host link-local ... 421
5.12.23. radius server key .. 421
5.12.24. radius server primary .. 421
5.12.25. radius server retransmit ... 422
5.12.26. no radius server retransmit ... 422
5.12.27. radius server timeout ... 422
5.12.28. no radius server timeout .. 422
5.12.29. radius source-interface ... 423
5.12.30. no radius source-interface ... 423
5.13. TACACS+ Commands ... 424
5.13.1. show tacacs .. 424
5.13.2. show tacacs source-interface ... 425
5.13.3. tacacs-server host ... 425
5.13.4. tacacs-server host link-local ... 426
5.13.5. no tacacs-server host link-local .. 426
5.13.6. tacacs-server key ... 426
5.13.7. no tacacs-server key ... 426
5.13.8. tacacs-server keystore .. 427
5.13.9. tacacs-server timeout .. 427
5.13.10. no tacacs-server timeout ... 427
5.13.11. key ... 428
5.13.12. no key .. 428
5.13.13. keystore .. 428
5.13.14. port ... 428
5.13.15. no port .. 429
5.13.16. priority ... 429
5.13.17. no priority .. 429
5.13.18. timeout .. 429
5.13.19. no timeout ... 430
5.13.20. tacacs-server source-interface .. 430
5.13.21. no tacacs-server source-interface ... 430
5.13.22. clear tacacs .. 431
5.14. Security Commands ... 432
5.14.1. show port-security ... 432
5.14.2. show port-security dynamic ... 433
5.14.3. show port-security static .. 433
5.14.4. show port-security violation ... 434
5.14.5. port-security .. 435
5.14.6. no port-security .. 435
5.14.7. port-security max-dynamic ... 435
5.14.8. no port-security max-dynamic ... 435
5.14.9. port-security max-static ... 436
5.14.10. no port-security max-static ... 436
5.14.11. port-security mac-address ... 436
5.14.12. no port-security mac-address ... 436
5.14.13. port-security mac-address move .. 437
5.14.14. port-security mac-address sticky ... 437
5.14.15. no port-security mac-address sticky ... 437
5.14.16. port-security violation shutdown ... 438
5.14.17. no port-security violation ... 438
5.15. LLDP (Link Layer Discovery Protocol) Commands 439
5.15.1. showlldp ... 439
5.15.2. showlldp interface ... 439
5.15.3. showlldp statistics ... 440
5.15.4. showlldp remote-device ... 441
5.15.5. showlldp remote-device detail .. 442
5.15.6. showlldp local-device ... 443
5.15.7. showlldp local-device detail ... 444
5.15.8. showlldp dcbx interface ... 445
5.15.9. showlldp tlv-select interface .. 447
5.15.10. showlldp remote-comparison .. 447
5.15.11. lldp notification ... 448
5.15.12. no lldp notification ... 448
5.15.13. lldp notification-interval .. 448
5.15.14. no lldp notification-interval ... 448
5.15.15. lldp receive ... 449
5.15.16. no lldp receive ... 449
5.15.17. lldp transmit ... 449
5.15.18. no lldp transmit ... 449
5.15.19. lldp transmit-mgmt ... 450
5.15.20. no lldp transmit-mgmt ... 450
5.15.21. lldp transmit-tlv ... 450
5.15.22. no lldp transmit-tlv ... 450
5.15.23. Ildp timers.. 451
5.15.24. no Ildp timers... 451
5.15.25. Ildp tx-delay ... 451
5.15.26. no Ildp tx-delay .. 451
5.15.27. Ildp dcbx version .. 452
5.15.28. no Ildp dcbx version ... 452
5.15.29. Ildp dcbx port-role .. 453
5.15.30. no Ildp dcbx port-role ... 453
5.15.31. Ildp tlv-select dcbxp ... 454
5.15.32. no Ildp tlv-select ... 454
5.15.33. Ildp mgmt-address .. 454
5.15.34. no Ildp mgmt-address ... 455
5.15.35. Ildp portid-subtype .. 455
5.15.36. no Ildp portid-subtype ... 456
5.15.37. data-center-bridging ... 456
5.16. System Utilities .. 457
 5.16.1. Clear .. 457
 5.16.1.1. clear arp.. 457
 5.16.1.2. clear traplog .. 457
 5.16.1.3. clear eventlog ... 457
 5.16.1.4. clear logging buffered ... 457
 5.16.1.5. clear config .. 458
 5.16.1.6. clear pass ... 458
 5.16.1.7. clear counters ... 458
 5.16.1.8. clear vlan .. 458
 5.16.1.9. clear igmp snooping .. 459
 5.16.1.10. clear ip filter .. 459
 5.16.1.11. clear dot1x authentication-history ... 459
 5.16.1.12. clear radius statistics ... 459
 5.16.1.13. clear host ... 460
 5.16.1.14. clear port-security dynamic ... 460
 5.16.1.15. clear ip arp-cache ... 460
 5.16.1.16. clear Ildp statistics .. 460
 5.16.1.17. clear Ildp remote-data .. 461
5.16.1.18. clear ipv6 neighbors .. 461
5.16.1.19. clear ipv6 statistics .. 461
5.16.1.20. clear ipv6 dhcp statistics ... 461
5.16.1.21. clear ipv6 dhcp statistics per interface ... 462
5.16.1.22. enable password ... 462
5.16.1.23. clear cpu-traffic counters ... 463
5.16.1.24. clear cpu-traffic traces ... 463
5.16.1.25. clear default interface .. 463
5.16.1.26. clear network ipv6 dhcp statistics ... 464
5.16.2. copy .. 464
5.16.2.1. copy source <url> .. 464
5.16.2.2. copy <url> destination ... 465
5.16.2.3. copy running-config .. 466
5.16.2.4. copy {startup-config backup-config | backup-config startup-config} 466
5.16.3. delete ... 466
5.16.4. erase application .. 466
5.16.5. erase startup-config .. 467
5.16.6. erase user public key .. 467
5.16.7. dir .. 467
5.16.8. show bootvar .. 468
5.16.9. Ping Commands ... 469
5.16.9.1. ping ... 469
5.16.9.2. ping ipv6 .. 469
5.16.9.3. ping ipv6 interface ... 470
5.16.10. Traceroute .. 471
5.16.10.1. traceroute .. 471
5.16.10.2. traceroute ipv6 ... 472
5.16.11. reload ... 472
5.16.12. configure .. 473
5.16.13. disconnect ... 473
5.16.14. hostname .. 473
5.16.15. quit ... 474
5.16.16. AutoInstall commands ... 474
5.16.16.1. show autoinstall .. 474
5.16.16.2. boot-system autoinstall ... 475
5.16.16.3. boot-system host autoinstall ... 475
5.16.16.4. no boot-system host autoinstall .. 475
5.16.16.5. boot-system host autosave ... 475
5.16.16.6. no boot-system host autosave .. 476
5.16.16.7. boot-system host autoreboot ... 476
5.16.16.8. no boot-system host autoreboot ... 476
5.16.16.9. boot-system host upgrade .. 476
5.16.16.10. no boot-system host upgrade .. 477
5.16.16.11. boot-system host retrycount .. 477

5.16.17. Capture CPU packet commands .. 477

5.16.17.1. show capture ... 477
5.16.17.2. capture start .. 478
5.16.17.3. capture stop ... 478
5.16.17.4. capture {file | remote | line} .. 479
5.16.17.5. capture remote port .. 479
5.16.17.6. capture file size ... 480
5.16.17.7. capture line wrap .. 480
5.16.17.8. no capture line wrap ... 480

5.16.18. set clibanner ... 480

5.16.19. no set clibanner .. 481

5.16.20. show clibanner ... 481

5.16.21. Link-Flap commands ... 481

5.16.21.1. show link-flap ... 481
5.16.21.2. link-flap .. 482

5.16.22. Loop Detection commands .. 482

5.16.22.1. show loop-detection ... 482
5.16.22.2. show loop-detection statistics .. 482
5.16.22.3. loop-detection (Global Config) .. 483
5.16.22.4. loop-detection (Interface Config) ... 484
5.16.22.5. loop-detection action ... 484

5.16.23. In-Service Software Upgrade ... 484

5.16.23.1. show issu status .. 485
5.16.23.2. show issu status details .. 485
5.16.24. file verify

5.17. DHCP Snooping Commands

5.17.1. show ip dhcp snooping

5.17.2. show ip dhcp snooping per interface

5.17.3. show ip dhcp snooping binding

5.17.4. show ip dhcp snooping database

5.17.5. show ip dhcp snooping information all

5.17.6. show ip dhcp snooping information statistics

5.17.7. show ip dhcp snooping information agent-option

5.17.8. show ip dhcp snooping information per vlan

5.17.9. show ip dhcp snooping information circuit-id

5.17.10. show ip dhcp snooping information remote-id

5.17.11. show ip dhcp snooping information interface

5.17.12. ip dhcp snooping

5.17.13. ip dhcp snooping vlan

5.17.14. ip dhcp snooping verify mac-address

5.17.15. ip dhcp snooping database

5.17.16. ip dhcp snooping database write-delay

5.17.17. ip dhcp snooping binding

5.17.18. ip dhcp snooping information option

5.17.19. ip dhcp snooping information option circuit-id

5.17.20. ip dhcp snooping information option remote-id

5.17.21. ip dhcp snooping information option vlan

5.17.22. ip dhcp snooping information option trust

5.17.23. ip dhcp snooping limit

5.17.24. ip dhcp snooping log-invalid

5.17.25. ip dhcp snooping trust

5.17.26. ip dhcp snooping trust

5.17.27. clear ip dhcp snooping binding

5.17.28. clear ip dhcp snooping statistics

5.17.29. clear ip dhcp snooping information statistics

5.18. IP Source Guard (ISG) Commands
5.20.2. Configuration commands ... 502
 5.20.2.1. ip verify source .. 502
 5.20.2.2. ip verify binding .. 502
5.19. Dynamic ARP Inspection (DAI) Command ... 504
 5.19.1. Show commands ... 504
 5.19.1.1. show ip arp inspection statistics .. 504
 5.19.1.2. show ip arp inspection ... 505
 5.19.1.3. show ip arp inspection interfaces ... 505
 5.19.1.4. show arp access-list ... 506
 5.19.2. Configuration commands ... 506
 5.19.2.1. ip arp inspection validate .. 506
 5.19.2.2. ip arp inspection vlan .. 506
 5.19.2.3. ip arp inspection vlan logging ... 507
 5.19.2.4. ip arp inspection filter .. 507
 5.19.2.5. ip arp inspection trust ... 508
 5.19.2.6. ip arp inspection limit .. 508
 5.19.2.7. arp access-list .. 508
 5.19.2.8. permit ip host mac host ... 509
 5.19.2.9. clear ip arp inspection statistics ... 509
5.20. Differentiated Service Commands ... 510
 5.20.1. General commands .. 511
 5.20.1.1. diffserv .. 511
 5.20.1.2. no diffserv ... 511
 5.20.2. Class commands .. 512
 5.20.2.1. class-map .. 512
 5.20.2.2. no class-map ... 513
 5.20.2.3. rename ... 513
 5.20.2.4. match any .. 513
 5.20.2.5. match class-map .. 514
 5.20.2.6. no match class-map ... 514
 5.20.2.7. match cos .. 515
 5.20.2.8. match secondary-cos .. 515
5.20.2.9. match destination-address mac ... 515
5.20.2.10. match dstip ... 516
5.20.2.11. match dstl4port ... 516
5.20.2.12. match ethertype .. 517
5.20.2.13. match ip dscp ... 517
5.20.2.14. match ip precedence ... 518
5.20.2.15. match ip tos ... 518
5.20.2.16. match protocol ... 519
5.20.2.17. match source-address mac .. 519
5.20.2.18. match scrip .. 520
5.20.2.19. match srcI4port ... 520
5.20.2.20. match vlan ... 521
5.20.2.21. match secondary-vlan ... 521
5.20.2.22. match dstipv6 .. 522
5.20.2.23. match srcipv6 .. 522
5.20.2.24. match ip6flowlbl ... 522

5.20.3. Policy commands ... 523
5.20.3.1. assign-queue ... 523
5.20.3.2. drop ... 524
5.20.3.3. mirror .. 524
5.20.3.4. redirect .. 524
5.20.3.5. conform-color .. 525
5.20.3.6. mark cos .. 525
5.20.3.7. mark cos-as-sec-cos ... 526
5.20.3.8. class ... 526
5.20.3.9. no class .. 526
5.20.3.10. mark ip-dscp .. 527
5.20.3.11. mark ip-precedence ... 527
5.20.3.12. police-simple .. 527
5.20.3.13. police-single-rate ... 528
5.20.3.14. police-two-rate ... 529
5.20.3.15. policy-map ... 530
5.20.3.16. policy-map rename ... 530

5.20.4. Service commands ... 531
5.20.4.1. service-policy ... 531
5.20.4.2. no service-policy .. 532
5.20.5. Show commands ... 532
5.20.5.1. show class-map ... 532
5.20.5.2. show diffserv ... 533
5.20.5.3. show diffserv service .. 534
5.20.5.4. show diffserv service brief .. 535
5.20.5.5. show policy-map .. 535
5.20.5.6. show policy-map interface .. 537
5.20.5.7. show service-policy ... 538
5.21. ACL Commands ... 539
5.21.1. Show commands ... 539
5.21.1.1. show mac access-lists name 539
5.21.1.2. show mac access-lists ... 540
5.21.1.3. show ip access-lists .. 541
5.21.1.4. show access-lists interface 542
5.21.1.5. show access-lists vlan .. 543
5.21.2. Configuration commands ... 544
5.21.2.1. mac access-list extended ... 544
5.21.2.2. mac access-list extended rename 544
5.21.2.3. mac access-list resequence 544
5.21.2.4. mac access-list ... 545
5.21.2.5. mac access-group ... 547
5.21.2.6. ip access-list ... 548
5.21.2.7. ip access-list rename ... 548
5.21.2.8. ip access-list resequence ... 549
5.21.2.9. access-list (ip) ... 549
5.21.2.10. no access-list .. 553
5.21.2.11. ip access-group ... 553
5.21.2.12. no ip access-group ... 554
5.21.2.13. {deny|permit} .. 555
5.22. IPv6 ACL Commands .. 558
5.22.1. Show commands ... 558
5.22.1.1. show ipv6 access-lists .. 558
5.25. Domain Name Server Client Commands ... 580
5.25.1. show hosts ... 580
5.25.2. ip host .. 581
5.25.3. no ip host ... 581
5.25.4. clear host .. 582
5.25.5. ip domain-name ... 582
5.25.6. no ip domain-name .. 582
5.25.7. ip domain-list .. 582
5.25.8. no ip domain-list .. 583
5.25.9. ip name-server .. 583
5.25.10. no ip name-server ... 583
5.25.11. ip name-server source-interface .. 584
5.25.12. no ip name-server source-interface ... 584
5.25.13. ip domain-lookup ... 584
5.25.14. no ip domain-lookup .. 585
5.25.15. ip domain-retry .. 585
5.25.16. no ip domain-retry .. 585
5.25.17. ip domain-retry-timeout ... 585
5.25.18. no ip domain-retry-timeout .. 586
5.25.19. ipv6 host .. 586
5.25.20. no ipv6 host ... 586
5.26. Unidirectional Link Detection Commands .. 587
5.26.1. udld enable (Global Config) .. 587
5.26.2. no udld enable (Global Config) ... 587
5.26.3. udld message time .. 587
5.26.4. no udld message time ... 587
5.26.5. udld timeout interval .. 588
5.26.6. no udld timeout interval .. 588
5.26.7. udld enable (Interface Config) ... 588
5.26.8. no udld enable (Interface Config) .. 588
5.26.9. udld port .. 589
5.26.10. udld reset .. 589
5.26.11. show udld ... 589
5.27. Multi-chassis Link Aggregation Commands .. 592
5.27.1. mlag.. 592
5.27.2. no mlag.. 592
5.27.3. mlag domain ... 592
5.27.4. no mlag domain .. 593
5.27.5. mlag system-mac .. 593
5.27.6. no mlag system-mac .. 593
5.27.7. mlag system-priority ... 593
5.27.8. no mlag system-priority .. 594
5.27.9. mlag role priority .. 594
5.27.10. no mlag role priority .. 594
5.27.11. mlag peer-link ... 594
5.27.12. no mlag peer-link ... 595
5.27.13. mlag id .. 595
5.27.14. no mlag id .. 595
5.27.15. mlag peer detection interval ... 595
5.27.16. no mlag peer detection interval .. 596
5.27.17. mlag peer-keepalive destination .. 596
5.27.18. no mlag peer-keepalive destination ... 596
5.27.19. mlag peer-keepalive enable ... 596
5.27.20. no mlag peer-keepalive enable .. 597
5.27.21. mlag peer-keepalive timeout ... 597
5.27.22. no mlag peer-keepalive timeout .. 597
5.27.23. show mlag brief ... 597
5.27.24. show mlag ... 600
5.27.25. show mlag role .. 600
5.27.26. show mlag consistency-parameters ... 602
5.27.27. show mlag peer-keepalive ... 603
5.27.28. show mlag statistics .. 603
5.27.29. show mlag core-config ... 605
5.27.30. clear mlag statistics ... 605
5.28. Control Plane Policing Commands .. 606
5.28.1. interface control-plane ... 606
5.28.2. show access-lists interface control-plane 607
5.29. VXLAN and RIOT Commands ... 608
5.29.1. vxlan mode ... 608
5.29.2. no vxlan mode .. 608
5.29.3. vxlan source-interface .. 608
5.29.4. no vxlan source-interface .. 609
5.29.5. vxlan udp-port .. 609
5.29.6. no vxlan udp-port ... 610
5.29.7. vxlan unicast-group ... 610
5.29.8. no vxlan unicast-group ... 610
5.29.9. default vxlan multicast-group 611
5.29.10. no vxlan default-multicast-group 611
5.29.11. vxlan vni multicast-group .. 611
5.29.12. no vxlan vni multicast-group 612
5.29.13. vxlan vlan vni .. 612
5.29.14. no vxlan vlan vni ... 612
5.29.15. interface vxlan ... 613
5.29.16. show vxlan ... 613
5.29.17. show vxlan vtep .. 614
5.29.18. show vxlan address-table ... 614
5.29.19. vxlan riot ... 615
5.29.20. no vxlan riot ... 615
5.29.21. vxlan riot-physical-loopback 615
5.29.22. no vxlan riot-physical-loopback 616
5.30. Interface Error Disable and Auto Recovery 617
5.30.1. errdisable recovery cause .. 617
5.30.2. no errdisable recovery cause .. 617
5.30.3. errdisable recovery interval ... 617
5.30.4. no errdisable recovery interval 618
5.30.5. show errdisable recovery .. 618
5.30.6. show interfaces status err-disabled 619
5.31. Role-Based Access Control ... 620
5.31.1. role based access control enable 621
5.31.2. no role based access control enable 621
5.31.3. role name ... 621
5.31.4. no role name ... 622
5.31.5. role description ... 622
5.31.6. no role description .. 622
5.31.7. rule command .. 623
5.31.8. no rule (to delete a rule of command string) 623
5.31.9. rule feature ... 624
5.31.10. no rule (to delete a rule of feature) 624
5.31.11. rule feature group .. 624
5.31.12. no rule (to delete a rule of feature group) 625
5.31.13. rule <rule-id> <deny | permit> <read | read-write> 625
5.31.14. no rule (to delete a rule of read-write commands) 625
5.31.15. rule renumber ... 625
5.31.16. role feature-group name .. 626
5.31.17. no role feature-group name ... 626
5.31.18. feature ... 626
5.31.19. no feature ... 627
5.31.20. username role ... 627
5.31.21. no username role ... 627
5.31.22. show role .. 627
5.31.23. show role feature ... 628
5.31.24. show role feature group ... 628
5.31.25. show role user ... 629
5.32. Application Commands ... 631
5.32.1. show application ... 631
5.32.2. show application files ... 631
5.32.3. application install ... 632
5.32.4. application start ... 633
5.32.5. application stop ... 633
5.33. Precision Time Protocol Transparant Clock Commands 634
5.33.1. ptp clock e2e-transparent ... 634
5.33.2. show ptp clock e2e-transparent .. 634

6. ROUTING COMMANDS .. 636
6.1. Address Resolution Protocol (ARP) Commands 636
6.1.1. Show commands .. 636
6.1.1.1. show ip arp .. 636
<table>
<thead>
<tr>
<th>Section</th>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.2.1</td>
<td>show ip arp brief</td>
<td>637</td>
</tr>
<tr>
<td>6.1.2.3</td>
<td>show ip arp static</td>
<td>638</td>
</tr>
<tr>
<td>6.2.</td>
<td>Configuraton commands</td>
<td>638</td>
</tr>
<tr>
<td>6.2.1.1</td>
<td>arp</td>
<td>638</td>
</tr>
<tr>
<td>6.2.1.2</td>
<td>ip proxy-arp</td>
<td>639</td>
</tr>
<tr>
<td>6.2.1.3</td>
<td>ip local-proxy-arp</td>
<td>639</td>
</tr>
<tr>
<td>6.2.1.4</td>
<td>arp cashesize</td>
<td>639</td>
</tr>
<tr>
<td>6.2.1.5</td>
<td>arp dynamicrenew</td>
<td>640</td>
</tr>
<tr>
<td>6.2.1.6</td>
<td>arp resptime</td>
<td>640</td>
</tr>
<tr>
<td>6.2.1.7</td>
<td>arp retries</td>
<td>641</td>
</tr>
<tr>
<td>6.2.1.8</td>
<td>arp timeout</td>
<td>641</td>
</tr>
<tr>
<td>6.2.1.9</td>
<td>arp access-list</td>
<td>641</td>
</tr>
<tr>
<td>6.2.1.10</td>
<td>permit ip host mac host</td>
<td>642</td>
</tr>
<tr>
<td>6.2.1.11</td>
<td>clear ip arp-cache</td>
<td>642</td>
</tr>
<tr>
<td>6.2.</td>
<td>IP Routing Commands</td>
<td>643</td>
</tr>
<tr>
<td>6.2.1.</td>
<td>Show commands</td>
<td>643</td>
</tr>
<tr>
<td>6.2.1.12</td>
<td>show ip brief</td>
<td>643</td>
</tr>
<tr>
<td>6.2.1.13</td>
<td>show ip interface port</td>
<td>643</td>
</tr>
<tr>
<td>6.2.1.14</td>
<td>show ip interface vlan</td>
<td>645</td>
</tr>
<tr>
<td>6.2.1.15</td>
<td>show ip interface lookback</td>
<td>646</td>
</tr>
<tr>
<td>6.2.1.16</td>
<td>show ip interface brief</td>
<td>647</td>
</tr>
<tr>
<td>6.2.1.17</td>
<td>show ip route</td>
<td>648</td>
</tr>
<tr>
<td>6.2.1.18</td>
<td>show ip route bestroutes</td>
<td>649</td>
</tr>
<tr>
<td>6.2.1.19</td>
<td>show ip route entry</td>
<td>650</td>
</tr>
<tr>
<td>6.2.1.20</td>
<td>show ip route connected</td>
<td>651</td>
</tr>
<tr>
<td>6.2.1.21</td>
<td>show ip route ospf</td>
<td>651</td>
</tr>
<tr>
<td>6.2.1.22</td>
<td>show ip route static</td>
<td>652</td>
</tr>
<tr>
<td>6.2.1.23</td>
<td>show ip route ecmp-groups</td>
<td>653</td>
</tr>
<tr>
<td>6.2.1.24</td>
<td>show ip route hw-failure</td>
<td>653</td>
</tr>
<tr>
<td>6.2.1.25</td>
<td>show ip route summary</td>
<td>654</td>
</tr>
<tr>
<td>6.2.1.26</td>
<td>clear ip route counters</td>
<td>656</td>
</tr>
<tr>
<td>6.2.1.27</td>
<td>show ip route preferences</td>
<td>656</td>
</tr>
<tr>
<td>6.2.1.28</td>
<td>show ip stats</td>
<td>657</td>
</tr>
<tr>
<td>6.2.1.29</td>
<td>show routing heap summary</td>
<td>657</td>
</tr>
</tbody>
</table>
6.2.2. Configuration commands ... 659
6.2.2.1. routing .. 659
6.2.2.2. ip routing ... 660
6.2.2.3. ip address ... 660
6.2.2.4. ip address dhcp ... 661
6.2.2.5. ip default-gateway .. 661
6.2.2.6. ip load-sharing .. 662
6.2.2.7. ip route ... 662
6.2.2.8. ip route default ... 663
6.2.2.9. ip route distance .. 663
6.2.2.10. ip route static bfd ... 664
6.2.2.11. ip route vrf static bfd 665
6.2.2.12. ip mtu ... 665
6.2.2.13. ip unnumbered gratuitous-arp accept 666
6.2.2.14. ip unnumbered loopback 666
6.2.2.15. encapsulation ... 666
6.2.2.16. fpti .. 667

6.3. Open Shortest Path First (OSPF) Commands 668

6.3.1. Show commands .. 668
6.3.1.1. show ip ospf .. 668
6.3.1.2. show ip ospf abr .. 671
6.3.1.3. show ip ospf area ... 672
6.3.1.4. show ip ospf asbr .. 673
6.3.1.5. show ip ospf database 673
6.3.1.6. show ip ospf database database-summary 675
6.3.1.7. show ip ospf interface 676
6.3.1.8. show ip ospf interface brief 677
6.3.1.9. show ip ospf interface stats 678
6.3.1.10. show ip ospf neighbor 679
6.3.1.11. show ip ospf range .. 681
6.3.1.12. show ip ospf statistics 682
6.3.1.13. show ip ospf stub table 683

show commands
6.3.2.29. show ip ospf traffic ... 683
6.3.2.28. show ip ospf virtual-link ... 684
6.3.2.27. show ip ospf virtual-link brief ... 685
6.3.2.26. show ip ospf ls-group ... 685
6.3.2.23. Configuration commands .. 686
6.3.2.21. router ospf ... 686
6.3.2.20. enable ... 686
6.3.2.19. network area ... 687
6.3.2.18. ip ospf area ... 687
6.3.2.17. 1583compatibility ... 687
6.3.2.16. area default-cost ... 688
6.3.2.15. area nssa ... 688
6.3.2.14. area nssa default-into-originate ... 688
6.3.2.13. area nssa no-redistribute .. 688
6.3.2.12. area nssa no-summary .. 689
6.3.2.11. area nssa translator-role .. 689
6.3.2.10. area nssa translator-stab-intv ... 689
6.3.2.9. area range ... 690
6.3.2.8. area stub ... 691
6.3.2.7. area stub no-summary ... 691
6.3.2.6. area virtual-link .. 691
6.3.2.5. area virtual-link authentication .. 691
6.3.2.4. area virtual-link dead-interval ... 692
6.3.2.3. area virtual-link hello-interval ... 692
6.3.2.2. area virtual-link retransmit-interval 693
6.3.2.1. area virtual-link transmit-delay .. 693
6.3.2.22. auto-cost reference-bandwidth .. 693
6.3.2.23. bfd .. 694
6.3.2.24. capability opaque ... 694
6.3.2.25. clear ip ospf .. 694
6.3.2.26. clear ip ospf configuration .. 695
6.3.2.27. clear ip ospf counters .. 695
6.3.2.28. clear ip ospf neighbor ... 695
6.3.2.29. clear ip ospf neighbor interface .. 696
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>clear ip ospf redistribution</code></td>
<td>Clear redistribution of OSPF routes</td>
</tr>
<tr>
<td><code>clear ip ospf stub-router</code></td>
<td>Clear IP OSPF stub router information</td>
</tr>
<tr>
<td><code>default-information originate</code></td>
<td>Enable default route injection</td>
</tr>
<tr>
<td><code>default-metric</code></td>
<td>Set default metric for redistributed routes</td>
</tr>
<tr>
<td><code>distance ospf</code></td>
<td>Set the default administrative distance for redistributed routes</td>
</tr>
<tr>
<td><code>distribute-list out</code></td>
<td>Apply a filter to the OSPF redistribution process</td>
</tr>
<tr>
<td><code>exit-overflow-interval</code></td>
<td>Set the overflow interval for OSPF packets</td>
</tr>
<tr>
<td><code>external-lsdb-limit</code></td>
<td>Set the maximum number of external LSDB entries</td>
</tr>
<tr>
<td><code>ip ospf authentication</code></td>
<td>Enable OSPF authentication for OSPF neighbors</td>
</tr>
<tr>
<td><code>ip ospf cost</code></td>
<td>Set the cost of an OSPF link</td>
</tr>
<tr>
<td><code>ip ospf dead-interval</code></td>
<td>Set the dead interval for OSPF neighbors</td>
</tr>
<tr>
<td><code>ip ospf hello-interval</code></td>
<td>Set the initial hello interval for OSPF neighbors</td>
</tr>
<tr>
<td><code>ip ospf network</code></td>
<td>Set the IP address of the OSPF network</td>
</tr>
<tr>
<td><code>ip ospf prefix-suppression</code></td>
<td>Suppress IP prefixes from being advertised</td>
</tr>
<tr>
<td><code>ip ospf priority</code></td>
<td>Set the priority for the OSPF router</td>
</tr>
<tr>
<td><code>ip ospf retransmit-interval</code></td>
<td>Set the retransmit interval for OSPF packets</td>
</tr>
<tr>
<td><code>ip ospf mtu-ignore</code></td>
<td>Ignore MTU mismatch for OSPF packets</td>
</tr>
<tr>
<td><code>ip ospf transmit-interval</code></td>
<td>Set the initial transmit interval for OSPF packets</td>
</tr>
<tr>
<td><code>ip ospf retransmit</code></td>
<td>Set the retransmit time for OSPF packets</td>
</tr>
<tr>
<td><code>ip ospf priority</code></td>
<td>Set the priority for the OSPF router</td>
</tr>
<tr>
<td><code>ip ospf prefix</code></td>
<td>Set the prefix for the OSPF network</td>
</tr>
<tr>
<td><code>ip ospf networ</code></td>
<td>Set the IP address of the OSPF network</td>
</tr>
<tr>
<td><code>ip ospf hello</code></td>
<td>Set the initial hello time for OSPF neighbors</td>
</tr>
<tr>
<td><code>ip ospf dead</code></td>
<td>Set the dead time for OSPF neighbors</td>
</tr>
<tr>
<td><code>ip ospf cost</code></td>
<td>Set the cost of an OSPF link</td>
</tr>
<tr>
<td><code>ip ospf authentication</code></td>
<td>Enable OSPF authentication for OSPF neighbors</td>
</tr>
<tr>
<td><code>ip ospf bfd</code></td>
<td>Enable OSPF BFD for link state tracking</td>
</tr>
<tr>
<td><code>router-id</code></td>
<td>Set the router identifier for the OSPF router</td>
</tr>
<tr>
<td><code>redistribute</code></td>
<td>Redistribute routes from other routing protocols</td>
</tr>
<tr>
<td><code>maximum-paths</code></td>
<td>Set the maximum number of equal-cost paths</td>
</tr>
<tr>
<td><code>passive-interface default</code></td>
<td>Set the default passive flag for an interface</td>
</tr>
<tr>
<td><code>passive-interface</code></td>
<td>Disable OSPF on an interface</td>
</tr>
<tr>
<td><code>timers spf</code></td>
<td>Set the SPF calculation interval for OSPF</td>
</tr>
<tr>
<td><code>max-metric</code></td>
<td>Set the maximum metric for non-active links</td>
</tr>
<tr>
<td><code>log-adjacency-changes</code></td>
<td>Log OSPF adjacency state changes</td>
</tr>
<tr>
<td><code>prefix-suppression</code></td>
<td>Suppress IP prefixes from being advertised</td>
</tr>
<tr>
<td><code>nsf helper</code></td>
<td>Enable NSF helper mode for OSPF routes</td>
</tr>
<tr>
<td><code>nsf helper strict-lsa-checking</code></td>
<td>Enable strict LSA checking for NSF routes</td>
</tr>
<tr>
<td><code>bandwidth</code></td>
<td>Set the bandwidth for an OSPF link</td>
</tr>
</tbody>
</table>

6.4. BOOTP/DHCP Relay Commands

6.4.1. Show commands

- `show bootpdhcprelay`
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.2.</td>
<td>Configuration commands</td>
<td>708</td>
</tr>
<tr>
<td>6.4.2.1.</td>
<td>bootpdhcprelay cidoptmode</td>
<td>708</td>
</tr>
<tr>
<td>6.4.2.2.</td>
<td>bootpdhcprelay maxhopcount</td>
<td>709</td>
</tr>
<tr>
<td>6.4.2.3.</td>
<td>bootpdhcprelay minwaittime</td>
<td>709</td>
</tr>
<tr>
<td>6.5.</td>
<td>IP Helper Commands</td>
<td>710</td>
</tr>
<tr>
<td>6.5.1.</td>
<td>Show commands</td>
<td>710</td>
</tr>
<tr>
<td>6.5.1.1.</td>
<td>show ip helper-address</td>
<td>710</td>
</tr>
<tr>
<td>6.5.1.2.</td>
<td>show ip helper statistics</td>
<td>710</td>
</tr>
<tr>
<td>6.5.2.</td>
<td>Configuration commands</td>
<td>711</td>
</tr>
<tr>
<td>6.5.2.1.</td>
<td>ip helper-address (Global Config)</td>
<td>711</td>
</tr>
<tr>
<td>6.5.2.2.</td>
<td>ip helper-address (Interface Config)</td>
<td>712</td>
</tr>
<tr>
<td>6.5.2.3.</td>
<td>ip helper-address discard</td>
<td>713</td>
</tr>
<tr>
<td>6.5.2.4.</td>
<td>ip helper enable</td>
<td>714</td>
</tr>
<tr>
<td>6.5.2.5.</td>
<td>clear ip helper statistics</td>
<td>714</td>
</tr>
<tr>
<td>6.6.</td>
<td>Router Discovery Protocol Commands</td>
<td>715</td>
</tr>
<tr>
<td>6.6.1.</td>
<td>Show commands</td>
<td>715</td>
</tr>
<tr>
<td>6.6.1.1.</td>
<td>show ip irdp</td>
<td>715</td>
</tr>
<tr>
<td>6.7.</td>
<td>VLAN Routing Commands</td>
<td>716</td>
</tr>
<tr>
<td>6.7.1.</td>
<td>Configuration commands</td>
<td>716</td>
</tr>
<tr>
<td>6.7.1.1.</td>
<td>interface vlan</td>
<td>716</td>
</tr>
<tr>
<td>6.8.1.</td>
<td>Show commands</td>
<td>717</td>
</tr>
<tr>
<td>6.8.1.1.</td>
<td>show ip vrrp</td>
<td>717</td>
</tr>
<tr>
<td>6.8.1.2.</td>
<td>show ip vrrp brief</td>
<td>717</td>
</tr>
<tr>
<td>6.8.1.3.</td>
<td>show ip vrrp interface</td>
<td>718</td>
</tr>
<tr>
<td>6.8.1.4.</td>
<td>show ip vrrp interface stats</td>
<td>719</td>
</tr>
<tr>
<td>6.8.1.5.</td>
<td>clear ip vrrp interface stat</td>
<td>720</td>
</tr>
<tr>
<td>6.8.2.</td>
<td>Configuration commands</td>
<td>720</td>
</tr>
<tr>
<td>6.8.2.1.</td>
<td>ip vrrp</td>
<td>720</td>
</tr>
<tr>
<td>6.8.2.2.</td>
<td>ip vrrp master-backup</td>
<td>721</td>
</tr>
<tr>
<td>6.8.2.3.</td>
<td>ip vrrp <vrid></td>
<td>721</td>
</tr>
<tr>
<td>6.8.2.4.</td>
<td>ip vrrp ip</td>
<td>721</td>
</tr>
<tr>
<td>6.8.2.5.</td>
<td>ip vrrp mode</td>
<td>722</td>
</tr>
<tr>
<td>6.8.2.6.</td>
<td>ip vrrp accept-mode</td>
<td>722</td>
</tr>
</tbody>
</table>
6.8.2.7. ip vrrp authentication ... 723
6.8.2.8. ip vrrp preempt ... 723
6.8.2.9. ip vrrp priority ... 723
6.8.2.10. ip vrrp timers advertise ... 724
6.8.2.11. ip vrrp track interface ... 724
6.8.2.12. ip vrrp track ip route .. 725
6.9. Policy Based Routing (PBR) Commands ... 727
6.9.1. Show commands ... 727
6.9.1.1. show ip policy ... 727
6.9.1.2. show ip prefix-list ... 727
6.9.1.3. show ipv6 prefix-list .. 728
6.9.1.4. show route-map ... 728
6.9.2. Configuration commands ... 729
6.9.2.1. ip policy route-map ... 729
6.9.2.2. ip prefix-list ... 729
6.9.2.3. ip prefix-list description ... 730
6.9.2.4. ipv6 prefix-list ... 731
6.9.2.5. route-map ... 732
6.9.2.6. match as-path ... 733
6.9.2.7. match community ... 733
6.9.2.8. match ip address prefix-list .. 734
6.9.2.9. match ip address <acl-id | acl-name> 734
6.9.2.10. match ipv6 address ... 735
6.9.2.11. match length ... 735
6.9.2.12. match mac-list ... 736
6.9.2.13. set as-path ... 736
6.9.2.14. set comm-list delete .. 737
6.9.2.15. set community ... 737
6.9.2.16. set interface ... 738
6.9.2.17. set ip next-hop ... 739
6.9.2.18. set ip default next-hop ... 739
6.9.2.19. set ip precedence .. 740
6.9.2.20. set ipv6 next-hop .. 740
6.9.2.21. set local-preference ... 741
6.10. Border Gateway Protocol (BGP) Commands .. 743

6.10.1. Show commands ... 743

6.10.1.1. show ip bgp ... 743
6.10.1.2. show ip bgp <prefix/length> ... 744
6.10.1.3. show ip bgp aggregate-address 745
6.10.1.4. show ip bgp community .. 746
6.10.1.5. show ip bgp community-list ... 747
6.10.1.6. show ip bgp filter-list .. 749
6.10.1.7. show ip bgp neighbors .. 750
6.10.1.8. show ip bgp prefix-list .. 753
6.10.1.9. show ip bgp route-reflection 754
6.10.1.10. show ip bgp summary ... 755
6.10.1.11. show ip bgp template .. 756
6.10.1.12. show ip bgp traffic ... 756
6.10.1.13. show ip bgp update-group ... 757
6.10.1.14. show bgp ipv6 ... 759
6.10.1.15. show bgp ipv6 <ipv6-prefix/prefix-length> 760
6.10.1.16. show bgp ipv6 aggregate-address 762
6.10.1.17. show bgp ipv6 community .. 762
6.10.1.18. show bgp ipv6 community-list 764
6.10.1.19. show ip bgp vpnv4 ... 765
6.10.1.20. show ip bgp listen range .. 766
6.10.1.21. show ip protocols bgp ... 767
6.10.1.22. show bgp ipv6 filter-list .. 768
6.10.1.23. show bgp ipv6 neighbors .. 769
6.10.1.24. show bgp ipv6 route-reflection 772
6.10.1.25. show bgp ipv6 statistics .. 773
6.10.1.26. show bgp ipv6 summary .. 773
6.10.1.27. show bgp ipv6 update-group 774
6.10.1.28. show ipv6 protocols bgp ... 776
6.10.1.29. show bgp ipv6 listen range 777

set metric ... 741
clear ip prefix-list ... 742
clear ipv6 prefix-list ... 742
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.10.2.1.</td>
<td>router bgp</td>
<td>778</td>
</tr>
<tr>
<td>6.10.2.2.</td>
<td>enable</td>
<td>778</td>
</tr>
<tr>
<td>6.10.2.3.</td>
<td>aggregate-address</td>
<td>778</td>
</tr>
<tr>
<td>6.10.2.4.</td>
<td>bgp aggregate-different-meds</td>
<td>779</td>
</tr>
<tr>
<td>6.10.2.5.</td>
<td>bgp always-compare-med</td>
<td>780</td>
</tr>
<tr>
<td>6.10.2.6.</td>
<td>bgp bestpath as-path ignore</td>
<td>780</td>
</tr>
<tr>
<td>6.10.2.7.</td>
<td>bgp client-to-client reflection</td>
<td>781</td>
</tr>
<tr>
<td>6.10.2.8.</td>
<td>bgp cluster-id</td>
<td>781</td>
</tr>
<tr>
<td>6.10.2.9.</td>
<td>bgp default local-preference</td>
<td>781</td>
</tr>
<tr>
<td>6.10.2.10.</td>
<td>bgp fast-external-failover</td>
<td>782</td>
</tr>
<tr>
<td>6.10.2.11.</td>
<td>bgp fast-internal-failover</td>
<td>782</td>
</tr>
<tr>
<td>6.10.2.12.</td>
<td>bgp log-neighbor-changes</td>
<td>782</td>
</tr>
<tr>
<td>6.10.2.13.</td>
<td>bgp router-id</td>
<td>783</td>
</tr>
<tr>
<td>6.10.2.14.</td>
<td>bgp maxas-limit</td>
<td>783</td>
</tr>
<tr>
<td>6.10.2.15.</td>
<td>bgp graceful-restart</td>
<td>784</td>
</tr>
<tr>
<td>6.10.2.16.</td>
<td>bgp graceful-restart-helper</td>
<td>784</td>
</tr>
<tr>
<td>6.10.2.17.</td>
<td>bgp graceful-restart restart-time <restart-time></td>
<td>784</td>
</tr>
<tr>
<td>6.10.2.18.</td>
<td>bgp graceful-restart stalepath-time <stalepath-time></td>
<td>785</td>
</tr>
<tr>
<td>6.10.2.19.</td>
<td>bgp listen</td>
<td>785</td>
</tr>
<tr>
<td>6.10.2.20.</td>
<td>exit</td>
<td>786</td>
</tr>
<tr>
<td>6.10.2.21.</td>
<td>timers bgp</td>
<td>786</td>
</tr>
<tr>
<td>6.10.2.22.</td>
<td>neighbor default-originate route-map</td>
<td>786</td>
</tr>
<tr>
<td>6.10.2.23.</td>
<td>neighbor inherit peer</td>
<td>787</td>
</tr>
<tr>
<td>6.10.2.24.</td>
<td>neighbor local-as</td>
<td>788</td>
</tr>
<tr>
<td>6.10.2.25.</td>
<td>neighbor update-source</td>
<td>789</td>
</tr>
<tr>
<td>6.10.2.26.</td>
<td>neighbor description</td>
<td>789</td>
</tr>
<tr>
<td>6.10.2.27.</td>
<td>neighbor ebgp-multihop</td>
<td>790</td>
</tr>
<tr>
<td>6.10.2.28.</td>
<td>neighbor password</td>
<td>791</td>
</tr>
<tr>
<td>6.10.2.29.</td>
<td>neighbor connect-retry-interval</td>
<td>791</td>
</tr>
<tr>
<td>6.10.2.30.</td>
<td>neighbor maximum-prefix</td>
<td>792</td>
</tr>
<tr>
<td>6.10.2.31.</td>
<td>neighbor next-hop-self</td>
<td>793</td>
</tr>
<tr>
<td>6.10.2.32.</td>
<td>neighbor filter-list</td>
<td>794</td>
</tr>
<tr>
<td>6.10.2.33.</td>
<td>neighbor prefix-list</td>
<td>795</td>
</tr>
</tbody>
</table>
6.10.2.68. address-family ipv6 817
6.10.2.69. address-family vpnv4 817
6.10.2.70. neighbor allowas-in 817
6.11. VRRPv3 Commands .. 819
6.11.1. Show commands .. 819
6.11.1.1. show vrrp .. 819
6.11.1.2. show vrrp brief 820
6.11.1.3. show vrrp statistics 821
6.11.2. Configuration commands 822
6.11.2.1. fhrp version vrrp v3 822
6.11.2.2. vrrp ... 822
6.11.2.3. preempt ... 823
6.11.2.4. accept-mode 823
6.11.2.5. priority ... 824
6.11.2.6. timers advertise 824
6.11.2.7. shutdown 824
6.11.2.8. address ... 825
6.11.2.9. track interface 825
6.11.2.10. track ip route 826
6.11.2.11. clear vrrp statistics 826
6.12. Virtual Router Commands 828
6.12.1. Show commands 828
6.12.1.1. show ip vrf 828
6.12.2. Configuration commands 828
6.12.2.1. ip vrf ... 828
6.12.2.2. maximum routes 829
6.12.2.3. description 829
6.12.2.4. ip vrf forwarding 829
6.13.1. Show commands 831
6.13.1.1. show bhd status 831
6.13.2. Configuration commands 831
6.13.2.1. bhd spine-port enable 831
6.13.2.2. bhd enable 832
7. IP MULTICAST COMMANDS ... 834

7.1. Internet Group Management Protocol (IGMP) Commands ... 834

7.1.1. Show commands ... 834
7.1.1.1. show ip igmp ... 834
7.1.1.2. show ip igmp groups .. 834
7.1.1.3. show ip igmp interface .. 836
7.1.1.4. show ip igmp interface membership ... 837
7.1.1.5. show ip igmp interface stats .. 838

7.1.2. Configuration commands .. 839
7.1.2.1. ip igmp .. 839
7.1.2.2. ip igmp router-alert-check ... 839
7.1.2.3. ip igmp version .. 840
7.1.2.4. ip igmp last-member-query-count ... 840
7.1.2.5. ip igmp last-member-query-interval .. 841
7.1.2.6. ip igmp query-interval .. 841
7.1.2.7. ip igmp query-max-response-time .. 841
7.1.2.8. ip igmp robustness .. 842
7.1.2.9. ip igmp startup-query-count ... 842
7.1.2.10. ip igmp startup-query-interval .. 843

7.2. MLD Commands ... 844

7.2.1. Show commands .. 844
7.2.1.1. show ipv6 mld groups .. 844
7.2.1.2. show ipv6 mld interface ... 845
7.2.1.3. show ipv6 mld traffic ... 847

7.2.2. Configuration commands ... 848
7.2.2.1. ipv6 mld query-interval .. 848
7.2.2.2. ipv6 mld query-max-response-time ... 848
7.2.2.3. ipv6 mld last-member-query-interval .. 848
7.2.2.4. ipv6 mld last-member-query-count .. 849
7.2.2.5. ipv6 mld router ... 849
7.2.2.6. clear ipv6 mld counters ... 850
7.2.2.7. clear ipv6 mld traffic ... 850
7.2.2.8. ipv6 mld version ... 850
7.2.2.9. ipv6 mld reset-status ... 851
7.2.2.10. ipv6 mld startup-query-count .. 851
7.2.2.11. ipv6 mld startup-query-interval .. 851
7.2.2.12. ipv6 mld unsolicit-rprt-interval ... 852
7.3. **Multicast Commands** .. 853
7.3.1. **Show commands** .. 853
7.3.1.1. show ip mcast ... 853
7.3.1.2. show ip mcast boundary ... 854
7.3.1.3. show ip mcast interface ... 854
7.3.1.4. show ip mcast mroute .. 855
7.3.1.5. show ip mcast mroute group ... 856
7.3.1.6. show ip mcast mroute source ... 857
7.3.1.7. show ip mcast mroute static ... 858
7.3.1.8. show ipv6 mroute .. 859
7.3.1.9. show ipv6 mroute group ... 861
7.3.1.10. show ipv6 mroute source .. 861
7.3.1.11. show ipv6 mroute static .. 862
7.3.1.12. clear ip mroute .. 863
7.3.1.13. clear ipv6 mroute .. 863
7.3.2. **Configuration commands** .. 863
7.3.2.1. ip multicast ... 863
7.3.2.2. ip mcast boundary ... 864
7.3.2.3. ip multicast ttl-threshold ... 864
7.4. **IPv4 Protocol Independent Multicast (PIM) Commands** 865
7.4.1. **Show commands** ... 865
7.4.1.1. show ip pim ... 865
7.4.1.2. show ip pim bsr-router .. 865
7.4.1.3. show ip pim interface ... 866
7.4.1.4. show ip pim neighbor .. 867
7.4.1.5. show ip pim rp mapping ... 868
7.4.1.6. show ip pim rp-hash .. 868
7.5.2.6. show ip pim ssm ... 869
7.5.2.4. show ip pim statistic ... 869
7.5.2.2. show ip mfc .. 870
7.5.2.1. clear ip pim statistics ... 871
7.5.2. Configuration commands .. 872
6.4.2.1. ip pim bsr-candidate ... 872
7.4.2.2. ip pim rp-address .. 872
7.4.2.3. ip pim rp-candidate .. 873
7.4.2.4. ip pim sparse ... 874
7.4.2.5. ip pim-spt-threshold .. 874
7.4.2.6. ip pim ssm ... 875
7.4.2.7. ip pim .. 875
7.4.2.8. ip pim bsr-border .. 875
7.4.2.9. ip pim dr-priority .. 876
7.4.2.10. ip pim hello-interval .. 876
7.4.2.11. ip pim join-prune-interval ... 877
7.5. IPv6 Protocol Independent Multicast (PIM) Commands 878
6.5.1. Show commands ... 878
6.5.1.1. show ipv6 pim ... 878
6.5.1.2. show ipv6 pim ssm ... 878
6.5.1.3. show ipv6 pim interface ... 879
6.5.1.4. show ipv6 pim neighbor ... 880
6.5.1.5. show ipv6 pim bsr-router ... 880
6.5.1.6. show ipv6 pim rp-hash .. 881
6.5.1.7. show ipv6 pim rp-mapping .. 882
6.5.1.8. show ipv6 pim statistic .. 882
6.5.1.9. clear ipv6 pim statistics .. 883
6.5.2. Configuration commands .. 884
6.5.2.1. ipv6 pim sparse ... 884
6.5.2.2. ipv6 pim ... 884
6.5.2.3. ipv6 pim hello-interval ... 884
6.5.2.4. ipv6 pim bsr-border .. 885
6.5.2.5. ipv6 pim bsr-candidate ... 885
6.5.2.6. ipv6 pim dr-priority .. 886
8. IPV6 COMMANDS ... 890

8.1. Tunnel Interface Commands ... 890
8.1.1. Show commands .. 890
8.1.1.1. show interface tunnel .. 890
8.1.2. Configuration commands ... 892
8.1.2.1. interface tunnel ... 892
8.1.2.2. tunnel source ... 892
8.1.2.3. tunnel destination ... 892
8.1.2.4. tunnel mode ... 893
8.2. Loopback Interface Commands .. 894
8.2.1. Show commands ... 894
8.2.1.1. show interface loopback ... 894
8.2.2. Configuration commands ... 895
8.2.2.1. interface loopback .. 895
8.3. IPv6 Routing Commands .. 896
8.3.1. Show commands ... 896
8.3.1.1. show ipv6 brief .. 896
8.3.1.2. show ipv6 interface ... 897
8.3.1.3. show ipv6 interface neighbors 899
8.3.1.4. show ipv6 protocols ... 900
8.3.1.5. show ipv6 route ... 902
8.3.1.6. show ipv6 route ecmp-groups 904
8.3.1.7. show ipv6 route hw-failure .. 904
8.3.1.8. show ipv6 route preferences .. 904
8.3.1.9. show ipv6 route summary ... 905
8.3.1.10. show ipv6 traffic .. 907
8.3.2. Configuration commands ... 912
8.3.2.1. ipv6 hop-limit ... 912
8.3.2.2. ipv6 unicast-routing .. 912
8.3.2.3. ipv6 enable ... 912
8.3.2.4. ipv6 address .. 913
8.3.2.5. ipv6 address autoconfig ... 914
8.3.2.6. ipv6 address dhcp ... 914
8.3.2.7. ipv6 route ... 915
8.3.2.8. ipv6 route distance ... 915
8.3.2.9. ipv6 mtu ... 916
8.3.2.10. ipv6 nd dad attempts ... 916
8.3.2.11. ipv6 nd managed-config-flag ... 916
8.3.2.12. ipv6 nd ns-interval .. 917
8.3.2.13. ipv6 nd other-config-flag .. 917
8.3.2.14. ipv6 nd ra-interval .. 917
8.3.2.15. ipv6 nd ra-lifetime .. 918
8.3.2.16. ipv6 nd reachable-time ... 918
8.3.2.17. ipv6 nd router-preference .. 919
8.3.2.18. ipv6 nd suppress-ra ... 919
8.3.2.19. ipv6 nd prefix .. 919
8.3.2.20. ipv6 neighbor ... 920
8.3.2.21. ipv6 neighbor dynamicrenew ... 920
8.3.2.22. ipv6 nud .. 921
8.3.2.23. ipv6 unreachables ... 921
8.3.2.24. ipv6 unresolved-traffic rate-limit ... 922
8.3.2.25. ipv6 icmp error-interval .. 922
8.3.2.26. clear ipv6 route counters ... 922
8.3.2.27. ipv6 nd mtu .. 923
8.4. OSPFv3 Commands ... 924
8.4.1. Show commands .. 924
8.4.1.1. show ipv6 ospf ... 924
8.4.1.2. show ipv6 ospf abr .. 926
8.4.1.3. show ipv6 ospf area .. 927
8.4.1.4. show ipv6 ospf asbr ... 928
8.4.1.5. show ipv6 ospf database ... 929
8.4.1.6. show ipv6 ospf database database-summary ... 930
8.4.1.7. show ipv6 ospf interface ... 931
8.4.2. **Configuration commands** ... 942
8.4.2.1. ipv6 ospf ... 942
8.4.2.2. ipv6 ospf area .. 942
8.4.2.3. ipv6 ospf bfd .. 943
8.4.2.4. ipv6 ospf cost .. 943
8.4.2.5. ipv6 ospf dead-interval .. 943
8.4.2.6. ipv6 ospf hello-interval .. 944
8.4.2.7. ipv6 ospf link-lsa-suppression 944
8.4.2.8. ipv6 ospf mtu-ignore .. 945
8.4.2.9. ipv6 ospf network ... 945
8.4.2.10. ipv6 ospf prefix-suppression ... 946
8.4.2.11. ipv6 ospf priority ... 946
8.4.2.12. ipv6 ospf retransmit-interval 946
8.4.2.13. ipv6 ospf transmit-delay .. 947
8.4.2.14. ipv6 router ospf ... 947
8.4.2.15. area default-cost ... 948
8.4.2.16. area nssa ... 948
8.4.2.17. area nssa default-info-originate 948
8.4.2.18. area nssa no-redistribute .. 949
8.4.2.19. area nssa no-summry .. 949
8.4.2.20. area nssa translator-role .. 950
8.4.2.21. area nssa translator-stab-intv 950
8.4.2.22. area range .. 951
8.4.2.23. area stub .. 951
8.4.2.24. area stub no-summary ... 952
8.4.2.25. area virtual-link ... 952
8.4.2.26. area virtual-link dead-interval .. 953
8.4.2.27. area virtual-link hello-interval .. 953
8.4.2.28. area virtual-link retransmit-interval 954
8.4.2.29. area virtual-link transmit-delay 954
8.4.2.30. auto-cost reference-bandwidth .. 955
8.4.2.31. bfd ... 955
8.4.2.32. default-information originate .. 956
8.4.2.33. default-metric ... 956
8.4.2.34. distance ospf .. 957
8.4.2.35. enable.. 957
8.4.2.36. exit-overflow-interval .. 957
8.4.2.37. external-isdb-limit ... 958
8.4.2.38. max-metric .. 958
8.4.2.39. maximum-paths .. 959
8.4.2.40. passive-interface default ... 959
8.4.2.41. passive-interface ... 960
8.4.2.42. prefix-suppression ... 960
8.4.2.43. redistribute .. 961
8.4.2.44. router-id ... 961
8.4.2.45. clear ipv6 ospf .. 961
8.4.2.46. clear ipv6 ospf configuration .. 962
8.4.2.47. clear ipv6 ospf counters ... 962
8.4.2.48. clear ipv6 ospf neighbor ... 962
8.4.2.49. clear ipv6 ospf neighbor interface 963
8.4.2.50. clear ipv6 ospf redistribution ... 963
8.4.2.51. clear ipv6 ospf stub-router .. 963
8.5. Routing Policy Commands ... 964
8.5.1. Show commands ... 964
8.5.1.1. show ipv6 prefix-list ... 964
8.5.2. Configuration commands ... 965
8.5.2.1. ipv6 prefix-list ... 965
8.5.2.2. match ipv6 address ... 966
8.5.2.3. set ipv6 next-hop ... 967
8.5.2.4. clear ipv6 prefix-list ... 967
8.6. DHCPv6 Snooping Commands .. 968
 8.6.1. show ipv6 dhcp snooping .. 968
 8.6.2. show ipv6 dhcp snooping per interface 969
 8.6.3. show ipv6 dhcp snooping binding 969
 8.6.4. show ipv6 dhcp snooping database 970
 8.6.5. ipv6 dhcp snooping .. 971
 8.6.6. ipv6 dhcp snooping vlan .. 971
 8.6.7. ipv6 dhcp snooping verify mac-address 971
 8.6.8. ipv6 dhcp snooping database .. 971
 8.6.9. ipv6 dhcp snooping database write-delay 972
 8.6.10. ipv6 dhcp snooping binding ... 972
 8.6.11. ipv6 dhcp snooping limit ... 972
 8.6.12. ipv6 dhcp snooping log-invalid 973
 8.6.13. ipv6 dhcp snooping trust ... 973
 8.6.14. clear ipv6 dhcp snooping binding 974
 8.6.15. clear ipv6 dhcp snooping statistics 974
 8.6.16. show ipv6 dhcp snooping statistics 974
 8.6.17. show ipv6 dhcp binding ... 975
 8.6.18. clear ipv6 dhcp binding ... 975
8.7. DHCPv6 Commands .. 976
 8.7.1. show ipv6 dhcp interface ... 976
 8.7.2. show ipv6 dhcp statistics .. 976
 8.7.3. ipv6 dhcp relay destination ... 977
 8.7.4. ipv6 dhcp relay interface ... 977
 8.7.5. service dhcpv6 ... 978
9. DATA CENTER BRIDGING COMMANDS ... 979
 9.1. FIP Snooping .. 979
 9.1.1. show fip-snooping ... 979
 9.1.2. show fip-snooping enode ... 979
 9.1.3. show fip-snooping sessions .. 980
 9.1.4. show fip-snooping fcf .. 983
 9.1.5. show fip-snooping vlan ... 984
9.1.6. show fip-snooping statistics ... 985
9.1.7. feature fip-snooping ... 986
9.1.8. fip-snooping enable ... 987
9.1.9. fip-snooping fc-map .. 987
9.1.10. fip-snooping port-mode fcf .. 988
9.1.11. clear fip-snooping statistics ... 988
9.2. Priority-based Flow Control ... 990
9.2.1. show interface priority-flow-control .. 990
9.2.2. priority-flow-control mode .. 991
9.2.3. priority-flow-control priority .. 992
9.2.4. clear priority-flow-control statistics 992
9.3. OpenFlow ... 993
9.3.1. show openflow ... 993
9.3.2. show openflow configured controller 993
9.3.3. show openflow installed flows .. 994
9.3.4. show openflow installed groups ... 995
9.3.5. show openflow table-status ... 996
9.3.6. openflow enable ... 997
9.3.7. openflow static-ip ... 997
9.3.8. openflow controller ... 998
9.3.9. openflow ip-mode ... 998
9.3.10. openflow passive-mode ... 998
9.3.11. openflow failmode ... 999
9.3.12. clear openflow ca-cert .. 999

10. FLUENTD COMMANDS .. 1000
10.1. Show Commands ... 1000
10.1.1. show fluentd .. 1000
10.2. Configuration Commands ... 1002
10.2.1. fluentd .. 1002
10.2.2. fluentd <fluentd-entry> .. 1002
10.2.3. enable ... 1002
10.2.4. sourcetag .. 1003
10.2.5. syslog ... 1003
10.2.6. localsyslog ... 1003
10.2.7. dstat ... 1004
10.2.8. exec .. 1004
10.2.9. matchpattern .. 1005
10.2.10. forward ... 1005
10.2.11. webhdfs ... 1006
10.2.12. elasticsearch .. 1007
11. SDVOE COMMANDS .. 1009
11.1. Show Commands for an SDVoE Environment 1009
11.1.1. show igmp-snooping group 1009
11.1.2. show igmp-snooping fast-leave 1010
11.2. Configuration Commands for an SDVoE Environment 1011
11.2.1. igmp-plus <vlan-id> .. 1011
11.2.2. set igmp flood-report <vlan-id> 1011
11.2.3. set igmp exclude-mrouter-intf <vlan-id> 1011
11.2.4. set igmp fast-leave auto-assignment 1012
12. SERVICEABILITY PACKET TRACING COMMANDS 1013
12.1. CPU Traffic Commands ... 1013
12.1.1. show cpu-traffic ... 1013
12.1.2. show cpu-traffic interface 1013
12.1.3. show cpu-traffic summary 1013
12.1.4. show cpu-traffic trace 1013
12.1.5. cpu-traffic direction interface 1014
12.1.6. cpu-traffic direction match cust-filter 1014
12.1.7. cpu-traffic direction match srcip 1014
12.1.8. cpu-traffic direction match dstip 1015
12.1.9. cpu-traffic direction match tcp 1015
12.1.10. cpu-traffic direction match tcp 1015
12.1.11. cpu-traffic direction match mac 1016
12.1.12. cpu-traffic direction match filter 1016
12.1.13. cpu-traffic mode .. 1016
12.1.14. cpu-traffic trace ... 1017
12.1.15. clear cpu-traffic ... 1017
12.2. Exception Kernel Dump Commands 1018
12.2.1. show exception kernel-dump 1018
12.2.2. show exception kernel-dump list ... 1018
12.2.3. show exception kernel-dump log ... 1018
12.2.4. exception kernel-dump ... 1018
12.2.5. exception kernel-dump path ... 1019
12.3. Memory Buffer Commands .. 1020
12.3.1. show mbuf ... 1020
12.3.2. show mbuf total ... 1020
12.3.3. mbuf ... 1021
1. Introduction

1.1. Product Overview

The switch provides high performance, high availability, and simplicity of management. The switch is designed for adaptability and scalability for campus use and data center use.

1.1.1. Simplicity

The switch can be managed through industry standard command-line interface (CLI) which reduces the training and operating costs. It also supports Simple Network Management Protocol (SNMP) both rom standard MIB and private MIB for network administrator to easily configure, monitor, and manage remotely. The Auto-installation feature implemented helps centralized management to simplify deployment of a truly plug-and-play experience. With the evolution from IPv4 to IPv6, the switch is an IPv6 integrated management device.

1.1.2. High Availability

The switch is designed for high availability from both hardware and software perspective. The key features include:

- 1+1 hot-swappable power supplies
- Out-of-band management supported
- 802.1D, 802.1w and 802.1s supported
- Up to 8 ports per link aggregation group (LACP) and up to 64 groups
- Multi-chassis LAG for preventing the risks of single point failure
- Up to 32 paths ECMP routing for load balancing and redundancy
- Virtual Router Redundancy Protocol (VRRP) supported

1.1.3. High-Performance L2/L3 Access Deployments

With the compact 1U form factor, high density ports in the front panel, front to back or back to front airflow design, the switch is ideal for top-of-rack deployments in high-performance, highly demanding data centers. The high switching capacity to be a powerful solution to aggregate high-performance servers in the data center.
1.1.4. Advance IPv4 and IPv6 Routing

The switch is a full layer 2 and layer 3 routing switch that supports advanced IPv4 and IPv6 routing features such as OSPFv2, BGP4, and OSPFv3. The multicast routing features for IGMP v1/v2/v3, PIM-SM, MLD v1/v2 and PIM-SM6 are all supported.

1.1.5. Data Center Application

The switch is an IEEE DCB-based switch delivering a high-performance solution to integrate server edge access. The key features include:

- Enhanced Transmission Selection (ETS, 802.1Qaz)
- Priority-based Flow Control (PFC, 802.1Qbb)
- Data Center Bridging Extension (DCBX, 802.1Qaz)
- FCoE Initiation Protocol (FIP) snooping

1.2. Features

- IEEE 802.3z and IEEE 802.3x compliant Flow Control for all Ethernet ports
- Supports 802.1S MSTP, and 802.1w Rapid Spanning Tree for redundant back up bridge paths
- Supports 802.1Q VLAN, Double VLAN, IGMP snooping, 802.1p Priority Queues, Port Channel, port mirroring
- Link Aggregation (802.1ad LACP)
- Multi-chassis Link Aggregation (MLAG)
- Supports LLDP with potential communication problems detection
- Supports Port Security
- Multi-layer Access Control (based on MAC address, IP address, VLAN, Protocol, 802.1p, DSCP)
- Quality of Service (QoS) customized control
- 802.1x access control and RADIUS client support
- TACACS+ support
- UDLD support
- Administrator-definable port security
- Supports DHCP Snooping, Dynamic ARP Inspection and IP Source Guard (IPSG)
- ARP support
- IP Routing support
- OSPF v2 and v3 support
- BGP4 Support
- Router Discovery Protocol support
- Virtual Router Redundancy Protocol (VRRP) v2 support
- VLAN Routing support
- 32-way ECMP support
- 31 subnets support
- Source IP configuration support
- Policy Based Routing (PBR)
- IP Multicast support
- IGMP v1, v2, and v3 support
- Protocol Independent Multicast - Sparse Mode (PIM-SM) support for IPv4 and IPv6
- IPv6 function
 - Supports DHCPv6 protocol, OSPFv3 protocol, Tunneling, loopback
 - Provides to configure IPv6 routing interface, routing preference
- DHCP Client and Relay support
- IP Helper (BOOTP/DHCP Relay)
- DNS Client and Relay support
- DDNS client support
- Per-port bandwidth control
- SNMP v1, v2, v3 network management, RMON support
- CLI management support
- Fully configurable either in-band or out-of-band control via RS-232 console serial connection
- Telnet remote control console
- TraceRoute support
- Traffic Segmentation
- TFTP/FTP upgrade
- SysLog support
- Email Alerting support
- CLI Scheduler support
- Simple Network Time Protocol support
- SSH Secure Shell v2.0 support; not support SSH v1.5.
- SSL Secure HTTP TLS Version 1 and SSL version 3 support
- Auto Install Support
- Fiber Channel Over Ethernet (FCoE)
 - FIP Snooping
- Data Center Bridge (DCB)
 - Enhanced Transmission Selection (ETS, IEEE 802.1Qaz)
 - Priority Flow Control (PFC, IEEE 802.1Qbb)
 - Application Priority (IEEE 802.1Qaz)
- Data Center Bridge Exchange (DCBX, IEEE802.1Qaz)
 - CEE 1.01 support
 - IEEE version support

1.3. Management Options

The system may be managed by using one Service Ports through a Telnet, SNMP function, and using the console port on the front panel through CLI command.

1.4. Command Line Console Interface Through The Serial Port or Telnet

You can also connect a computer or terminal to the serial console port or use Telnet to access the Switch. The command-line-driven interface provides complete access to all switch management features.
1.5. SNMP-Based Management

You can manage the Switch with an SNMP-compatible console program. The Switch supports SNMP version 1.0, version 2.0, and version 3.0. The SNMP agent decodes the incoming SNMP messages and responds to requests with MIB objects stored in the database. The SNMP agent updates the MIB objects to generate statistics. The Switch supports a comprehensive set of MIB extensions:

- RFC1493 Bridge
- RFC 2819 RMON-MIB
- RFC 2233 Interface MIB
- RFC 2618 (Radius-Auth-Client-MIB)
- RFC 2620 (Radius-Acc-Client-MIB)
- RFC 1850 (OSPF-MIB)
- RFC 1850 (OSPF-TRAP-MIB)
- RFC 2787 (VRRP-MIB)
- RFC 3289 - DIFFSERV-DSCP-TC
- RFC 3289 - DIFFSERV-MIB
- QOS-DIFFSERV-EXTENSIONS-MIB
- QOS-DIFFSERV-PRIVATE-MIB
- RFC 2674 802.1p
- RFC 2932 (IPMROUTE-MIB)
- Private Enterprise MIB
- ROUTING-MIB
- MGMD-MIB
- RFC 2934 PIM-MIB
- IANA-RTPROTO-MIB
- MULTICAST-MIB
- ROUTING6-MIB
- IEEE8021-PAE-MIB
- INVENTORY-MIB
- MGMT-SECURITY-MIB
- QOS-MIB
- QOS-ACL-MIB
- QOS-COS-MIB
- QOS-AUTOVOIP-MIB
- QOS-DIFFSERV-PRIVATE-MIB
- QOS-ISCSI-MIB
- RFC 1907 - SNMPv2-MIB
- RFC 2465 - IPV6-MIB
- RFC 2466 - IPV6-ICMP-MIB
- TACACS-MIB
- IGMP/MLD Snooping
- IGMP/MLD Layer2 Multicast
- QoS – IPv6 ACL
- Guest VLAN
- LLDP-MIB
- LLDP MED
- RFC 2925 (DISMAN-TRACEROUTE-MIB)
- OSPFV3-MIB
- RFC 2571 - SNMP-FRAMEWORK-MIB
- RFC 2572 - SNMP-MPD-MIB
- RFC 2573 - SNMP-NOTIFICATION-MIB
- RFC 2573 - SNMP-TARGET-MIB
- RFC 2574 - SNMP-USER-BASED-SM-MIB
- RFC 2576 - SNMP-COMMUNITY-MIB
- RFC 2263 - USM-TARGET-TAG-MIB
- RFC 3176 - SFLOW-MIB
- IEEE8023-LAG-MIB (IEEE Std 802.3ad)
- RFC 2674 - P-BRIDGE-MIB
- RFC 2674 - Q-BRIDGE-MIB
- RFC 2737 - ENTITY-MIB
- RFC 2863 - IF-MIB
- RFC 3635 - Etherlike-MIB
• PORTSECURITY-PRIVATE-MIB
• RADIUS-CLIENT-PRIVATE-MIB
• RFC 5060 - PIM-STD-MIB
• RFC 5240 - PIM-BSR-MIB
• RFC 3419 - TRANSPORT-ADDRESS-MIB
• IANA-MAU-MIB
2. Quick Startup

2.1. Quick-Start the Switch

1. Read the device Installation Guide for the connectivity procedure. In-band connectivity allows access to the Switch locally. From a remote workstation, the device must be configured with IP information (IP address, subnet mask, and default gateway).

2. Turn the Power ON.

3. Allow the device to load the software until the login prompt appears. The device initial state is called the default mode.

4. Log in to the Linux system first with the following login and password information in the default mode:

 Login: admin
 Password: EndGame

 After you log in, follow the system prompts you to select a menu option:

 NETGEAR

 ================
 NETGEAR M4500 Menu
 ================
 1: CLI Console
 2: Firmware update with verification using SCP
 3: Firmware update with verification using TFTP
 4: Reboot
 ================
 Enter your menu option:

5. Change the password for the admin user.

 On first login, the switch forces you to change the default password for the admin user. The new password must be eight or more characters and must consist of letters, numbers, and special characters.

6. Log back in to the switch, using the new password.

2.2. Methods to Access the Switch CLI

You can access the switch CLI by any of the following methods:

- Console
- SSH using standard port 22
- SSH using special port 1234
- Telnet using special port 1223
2.2.1. Switch CLI Access Using a Console

When a user logs in to the switch using serial console connection, the system automatically logs in to the switch Linux shell and prompts the user to log in to switch CLI, as shown in the following example:

```bash
Ubuntu 16.04 LTS M4500-48XF8C ttyS0
M4500-48XF8C login: admin (automatic login)
Last login: Tue Sep 17 05:38:06 UTC 2019 from 10.1.109.26 on pts/1
Welcome to Ubuntu 16.04 LTS (GNU/Linux 4.14.4 x86_64)
* Documentation: https://help.ubuntu.com/
Initializing console session. Press ^z to exit
Connecting to /dev/pts/0
DMA pool size: 33554432
PCI unit 0: Dev 0xb873, Rev 0x01, Chip BCM56873_A0, Driver BCM56870_A0
SOC unit 0 attached to PCI device BCM56873_A0
UNIT0 CANCUN:
CIH: LOADED
Ver: 05.00.07
CMH: LOADED
Ver: 05.00.07
CCH: LOADED
Ver: 05.00.07
CEH: LOADED
Ver: 05.00.07
*** unit 0: ports capable of limited speed range cut-thru
*** unit 0: alpm level 2 loaded: 8 banks in combined-128 started!
Sep 17 05:42:26: %1-1-SIM: [0xe92bd554] sim_util.c(4227) 7
%%% Switch was reset due to power disruption or unexpected restart.
(Unit 1)>
Applying Global configuration, please wait ...
Applying Interface configuration, please wait ...
User:
Sep 17 05:42:36: %1-2-General: [0xf7800754] Boot!(0) 207 %
Event(0xaaaaaaaa)
User:admin
Password:
```

If user authentication is successful, the system prompts the user to change the password, if the default password was used to log in to the switch CLI, as shown in the following example:

```bash
Default password authentication successful.
Change default password for NETWORK ‘admin’ user.
Password requires 8 or more characters.
New password:**********
Re-enter new password: **********
Password change is successful.
!!! For guest user access, change its default password
Login again using new password
User:admin
Password:**********
(M4500-48XF8C) #
```
2.2.2. Switch CLI Access Using SSH Standard Port 22

A user can log in to the switch by using an SSH connection over standard port 22 with the default user name admin and default password EndGame, as shown in the following example:

```
switch$ ssh admin@10.1.18.206
admin@10.1.18.206's password:
Welcome to Ubuntu 16.04 LTS (GNU/Linux 4.14.4 x86_64)
* Documentation: https://help.ubuntu.com/
Last login: Tue Sep 24 05:32:19 2019 from 10.1.51.30
Initializing console session. Press ^z to exit
Connecting to /dev/pts/0
User:
```

If the login is successful, the switch prompts the user to change the default Linux password, as shown in the following example:

```
switch$ ssh admin@10.1.18.206
admin@10.1.18.206's password:
Default password authentication successful.
Change default password for SYSTEM 'admin' user.
Password requires 8 or more characters.
New password:*********
Re-enter new password: *********
Password change is successful.
Login again using new password
```

After the new password is configured, the current session is terminated and the user is forced to log in again. When the user logs in again using SSH with the new password, the switch CLI is available.

2.2.3. Switch CLI Access Using SSH Special Port 1234

A user can log in to the switch by using an SSH connection over special port 1234 using default user name admin and default password (which is blank), as shown in the following example:

```
switch$ ssh admin@10.1.18.206 -p 1234
admin@10.1.18.206's password:
(M4500-48XF8C) #
```

If the login is successful, the switch prompts the user to change the default Linux password, as shown in the following example. After the new password is configured, the current session is terminated and the user is forced to log in again. When the user logs in again using SSH with the new password, the switch CLI is available.

```
Default password authentication successful.
Change default password for NETWORK user 'admin'
Password requires 8 or more characters.
New password:*********
Re-enter new password: *********
Password change is successful.
!!! For guest user access, change its default password
Login again using new password
User:admin
Password:*********
(M4500-48XF8C) #
```
2.2.4. Switch CLI Access Using Telnet Special Port 1223

Access to the switch CLI using Telnet special port 1223 follows the same process as access to the switch CLI using SSH special port 1234.

2.2.5. Limitations for a Guest User Login

- A guest user cannot change the password. Only an admin user can change the password for a guest password.

- A guest cannot log in using default password. Guest user access is denied until an admin user sets up the password for the guest user. If a guest attempts to log in using the default password, the following message is shown, after which the login prompt is displayed.

 Login using default password is not allowed.
 Please ask network admin to set new guest user password.

2.2.6. Limitations for SNMP Login

- For SNMPv1 and SNMPv2, by default, no community strings such as private or public are configured.

- The SNMPv3 authentication protocol is MD5. SNMPv3 users and devices cannot access the switch if the authentication protocol is None.

2.3. System Information Setup

2.3.1. Quick Startup Software Version Information

Table 2-1. Quick Start up Software Version Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>show hardware</td>
<td>Allows the user to see the HW & SW version the device contains System Description - switch's model name</td>
</tr>
<tr>
<td>show version</td>
<td>Allows the user to see Serial Number, Part Number, and Model name See SW loader, bootrom and operation version See HW version</td>
</tr>
</tbody>
</table>

2.3.2. Quick Startup Physical Port Data

Table 2-2. Quick Start up Physical Port

<table>
<thead>
<tr>
<th>Command</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interfaces status [<slot/port>]</td>
<td>Displays the Ports slot/port Type - Indicates if the port is a special type of port Admin Mode - Selects the Port Control Administration State</td>
</tr>
</tbody>
</table>
2.3.3. Quick Startup User Account Management

Table 2-3. Quick Start up User Account Management

<table>
<thead>
<tr>
<th>Command</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>show users</td>
<td>Displays all users that are allowed to access the switch</td>
</tr>
<tr>
<td></td>
<td>User Access Mode - Shows whether the user is able to change parameters on the switch (Read/Write) or is only able to view (Read Only).</td>
</tr>
<tr>
<td></td>
<td>As a factory default, admin has Read/Write access and guest has Read Only access. There can only be one Read/Write user and up to 5 Read Only users.</td>
</tr>
<tr>
<td>show login session</td>
<td>Displays all login session information</td>
</tr>
<tr>
<td>username <username> {passwd}</td>
<td>Allows the user to set passwords or change passwords needed to login</td>
</tr>
<tr>
<td></td>
<td>A prompt will appear after the command is entered requesting the old password. In the absence of an old password leave the area blank. The operator must press enter to execute the command.</td>
</tr>
<tr>
<td></td>
<td>The system then prompts the user for a new password then a prompt to confirm the new password. If the new password and the confirmed password match a message will be displayed.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>This will save passwords and all other changes to the device. If you do not save config, all configurations will be lost when a power cycle is performed on the switch or when the switch is reset.</td>
</tr>
</tbody>
</table>

2.3.4. Quick Startup IP Address

To view the network parameters the operator can access the device by the following three methods.

- Simple Network Management Protocol - SNMP
- Telnet via port **1223** for X86 system and via port **23** for other systems
- SSH via port **1234** for X86 system and via port **22** for other systems
Table 2-4. Quick Start up IP Address

<table>
<thead>
<tr>
<th>Command</th>
<th>Details</th>
</tr>
</thead>
</table>
| show ip interface | Displays the Network Configurations
| | Interface Status – Indicates whether the interface is up or down.
| | IP Address - IP Address of the interface
| | Subnet Mask - IP Subnet Mask for the interface.
| | MAC Address - The MAC Address used for this in-band connectivity
| | Network Configurations Protocol Current - Indicates which network protocol is being used. Default is None. |

<table>
<thead>
<tr>
<th>Command</th>
<th>Details</th>
</tr>
</thead>
</table>
| ip address | (Config)#interface vlan 1
| | (if-vlan 1)#ip address <ipaddr> <subnet-mask>
| | (if-vlan 1)#exit
| | (Config)#ip default-gateway <gateway-addr>
| | IP Address range from 0.0.0.0 to 255.255.255.255
| | Subnet Mask range from 0.0.0.0 to 255.255.255.255
| | Gateway Address range from 0.0.0.0 to 255.255.255.255
| | Displays all of the login session information |

<table>
<thead>
<tr>
<th>Command</th>
<th>Details</th>
</tr>
</thead>
</table>
| serviceport | Displays the serviceport’s network configurations
| | Interface Status – Indicates whether the interface is up or down.
| | IP Address - IP Address of the interface. Default IP is 0.0.0.0
| | Subnet Mask - IP Subnet Mask for the interface. Default is 0.0.0.0
| | Default Gateway - The default Gateway for this interface. Default value is 0.0.0.0
| | Burned in MAC Address - The Burned in MAC Address used for out-of-band connectivity
| | Configured IPv4 Protocol - Indicates which network protocol is being used. Default is DHCP.

<table>
<thead>
<tr>
<th>Command</th>
<th>Details</th>
</tr>
</thead>
</table>
| serviceport ip | (Config)#serviceport protocol none
| | (Config)#serviceport ip <ipaddr> <netmask> <gateway>
| | (Config)# |

2.3.5. Quick Startup Downloading from TFTP Server

Before starting a TFTP server download, the operator must complete the Quick Start up for the IPAddress.

Table 2-5. Quick Start up Downloading from TFTP Server

<table>
<thead>
<tr>
<th>Command</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy <url> startup-config <destfilename></td>
<td>Sets the download datatype to be an image or config file. The URL must be specified as: tftp://ipAddr/filepath/fileName. The startup-config option downloads the config file using tftp and image option downloads the code file.</td>
</tr>
</tbody>
</table>
2.3.6. Quick Startup Factory Defaults

Table 2-6. Quick Start up Factory Defaults

<table>
<thead>
<tr>
<th>Command</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear config</td>
<td>Enter yes when the prompt pops up to clear all the configurations made to the switch. You can also decide if the IP settings of service port be kept or not in this command.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>Enter yes when the prompt pops up that asks if you want to save the configurations made to the switch.</td>
</tr>
<tr>
<td>reload [warm]</td>
<td>Enter yes when the prompt pops up that asks if you want to reset the system. You can reset the switch or cold boot the switch; both work effectively. warm – indicates only switch application is restarted.</td>
</tr>
</tbody>
</table>
3. Console and Telnet Administration Interface

This chapter discusses many of the features used to manage the Switch, and explains many concepts and important points regarding these features. Configuring the Switch to implement these concepts is discussed in detail in chapter 5.

The command-line interface (CLI) provides a text-based way to manage and monitor the switch features. You can access the CLI by using a direct connection to the console port or by using a Telnet or SSH client. To access the switch by using Telnet or Secure Shell (SSH), the switch must have an IP address configured on either the service port or the network interface, and the management station you use to access the device must be able to ping the switch IP address. DHCP is enabled by default on the service port. It is disabled on the network interface.

3.1. Local Console Management

Local console management involves the administration of the Switch via a direct connection to the RS-232 DCE console port. This is an Out-of-band connection, meaning that it is on a different circuit than normal network communications, and thus works even when the network is down.

The local console management connection involves a terminal or PC running terminal emulation software to operate the Switch’s built-in console program (see Chapter 5). Using the console program, a network administrator can manage, control, and monitor many functions of the Switch. Hardware components in the Switch allow it to be an active part of a manageable network. These components include a CPU, memory for data storage, other related hardware, and SNMP agent firmware. Activities on the Switch can be monitored with these components, while the Switch can be manipulated to carry out specific tasks.

3.2. Setup Your Switch Using Console Access

Out-of-band management requires connecting a terminal, such as a VT-100 or a PC running a terminal-emulation program (such as HyperTerminal, which is automatically installed with Microsoft Windows) to the RS-232 DCE console port of the Switch. Switch management using the RS-232 DCE console port is called Local Console Management to differentiate it from management done via management platforms, such as DView or HP OpenView.

Make sure the terminal or PC you are using to make this connection is configured to match these settings. If you are having problems making this connection on a PC, make sure the emulation is set to VT-100 or ANSI. If you still don’t see anything, try pressing <Ctrl> + r to refresh the screen.

First-time configuration must be carried out through a console, that is, either (a) a VT100-type serial data terminal, or (b) a computer running communications software set to emulate a VT100. The console must be connected to the Diagnostics port. This is an RS-232 port with a 9-socket D-shell connector and DCE-type wiring. Make the connection as follows:

1. Obtain suitable cabling for the connection. You can use a null-modem RS-232 cable or an ordinary RS-232 cable and a null-modem adapter. One end of the cable (or cable/adapter combination) must have a 9-pin D-shell connector suitable for the Diagnostics port; the other end must have a connector suitable for the console’s serial communications port.

2. Power down the devices, attach the cable (or cable/adapter combination) to the correct ports, and restore power.
3. Set the console to use the following communication parameters for your terminal:

- The console port is set for the following configuration:
- Baud rate: 115,200
- Data width: 8 bits
- Parity: none
- Stop bits: 1
- Flow Control: none

A typical console connection is illustrated below:

Figure 3-1: Console Setting Environment

3.3. Setup Your Switch Using Telnet Access

Once you have set an IP address for your Switch, you can use a Telnet program (in a VT-100 compatible terminal mode) to access and control the Switch. The port number for Telnet is 1223 for X86 systems and 23 for other systems. Most of the screens are identical, whether accessed from the console port or from a Telnet interface.

3.3.1. Accessing the Switch CLI through the Network

Remote management of the switch is available through the service port or through the network interface. To use telnet, SSH, or SNMP for switch management, the switch must be connected to the network, and you must know the IP or IPv6 address of the management interface. The switch has no IP address by default. The DHCP client on the service port is enabled, and the DHCP client on the network interface is disabled. The port number used to access the switch CLI is as follows:

- Telnet via port 1223.

Example:

my-ubuntu:~$ telnet 10.1.18.206 1223
Trying 10.1.18.206...
Connected to 10.1.18.206.
Escape character is '^]'.

NETGEAR M4500 Series Switches CLI Command Reference Manual 78
User: admin
Password: **********

(M4500-48XF8C) #

- **SSH via port standard port 22.**

 Example:

 my-ubuntu:~$ ssh admin@10.1.18.206

 admin@10.1.18.206's password:

 Welcome to Ubuntu 16.04 LTS (GNU/Linux 4.14.4 x86_64)
 * Documentation: https://help.ubuntu.com/

 Last login: Sun Sep 8 07:16:34 2019 from 10.1.50.12

 Initializing console session. Press ^z to exit
 Connecting to /dev/pts/0
 User: admin
 Password: **********

 (M4500-48XF8C) #

3.3.2. Using the Service Port or Network Interface for Remote Management

The service port is a dedicated Ethernet port for out-of-band management. We recommend that you use the service port to manage the switch. Traffic on this port is segregated from operational network traffic on the switch ports and cannot be switched or routed to the operational network. Additionally, if the production network is experiencing problems, the service port still allows you to access the switch management interface and troubleshoot issues. Configuration options on the service port are limited, which makes it difficult to accidentally cut off management access to the switch.

Alternatively, you can choose to manage the switch through the production network, which is known as in-band management, because in-band management traffic is mixed in with production network traffic, it is subject to all of the filtering rules usually applied on a switched/routed port such as ACLs and VLAN tagging. You can access the in-band network management interface through a connection to any front-panel port.
3.3.2.1. Configuring Service Port Information

To disable DHCP/BootP and manually assign an IPv4 address, enter commands under Global Configuration mode:

```
serviceport protocol none
serviceport ip ipaddress netmask
```

For example, serviceport ip 192.168.2.22 255.255.255.0

To disable DHCP/BootP and manually assign an IPv6 address, enter commands under Global Configuration mode:

```
serviceport protocol none dhcp6
serviceport ipv6 enable
serviceport ipv6 address prefix /prefix-length
serviceport ipv6 gateway ipv6-address
```

To view the assigned or configured network address, use:

```
show serviceport
```

To enable the DHCP/DHCPv6 client on the service port, use:

```
serviceport protocol dhcp
serviceport protocol dhcp6
```

To enable the BootP client on service port, use:

```
serviceport protocol bootp
```

3.3.2.2. Configuring the In-Band Network Interface

To use a DHCP server to obtain the IP address, subnet mask, and default gateway information, use:

```
interface vlan 1
ip address dhcp
ipv6 address dhcp
```

To manually configure the IPv4 address, subnet mask, use:

```
interface vlan 1
```
To manually configure the IPv6 address, subnet mask, use:

```
ip address ipaddr subnet-mask
```

```
interface vlan 1
ipv6 address prefix /prefix-length
```

3.3.2.3. Firmware Image Update

Starting with release 7.0.1.x, the M4500 series switches support signed firmware images only. Therefore, updating firmware directly from an unsigned 7.0.0.x image to a signed 7.0.1.x image is not supported. To update firmware from a 7.0.0.x image to a 7.0.1.x image, you first must update to a transition image before you can update to a signed 7.0.1.x image.

For example, from the unsigned 7.0.0.x image, update to the 7.0.1.6 transition image. Then, from the 7.0.1.6 transition image, update to signed 7.0.1.x image.

Similarly, to revert from a signed 7.0.1.x image to an unsigned 7.0.0.x image, first revert from the unsigned 7.0.1.x image to the 7.0.1.6 transition image, and then revert from the 7.0.1.6 transition image to the unsigned 7.0.0.x image.

The current transition firmware image version is 7.0.1.6. The transition firmware image lets you update to a signed firmware image or revert to an unsigned firmware image as shown below. The text “with verification” refers to a signed firmware image and the text “without verification” refers to an unsigned firmware image.

NETGEAR

```
=================================
NETGEAR M4500 Menu
=================================
1: CLI Console
2: Firmware update without verification using SCP
3: Firmware update without verification using TFTP
4: Firmware update with verification using SCP
5: Firmware update with verification using TFTP
6: Reboot
=================================
Enter your menu option:
```

To update from one signed firmware version to another signed firmware version, you do not need to use a transition image.
4. Command Line Interface Structure and Mode-based CLI

The Command Line Interface (CLI) syntax, conventions, and terminology are described in this section. Each CLI command is illustrated using the structure outlined below.

4.1. CLI Command Format

Commands are followed by values, parameters, or both.

Example 1

ip address <ipaddr> <netmask> [gateway]
- **ip address** is the command name.
- **<ipaddr> <netmask>** are the required values for the command.
- **[gateway]** is the optional value for the command.

Example 2

snmp-server location <loc>
- **snmp-server location** is the command name.
- **<loc>** is the required parameter for the command.

Example 3

clear vlan
- **clear vlan** is the command name.

Command

The text in bold, non-italic font must be typed exactly as shown.
4.2. CLI Mode-based Topology

4.2.1. Parameters

Parameters are order dependent.

The text in bold italics should be replaced with a name or number. To use spaces as part of a name parameter, enclose it in double quotes like this: "System Name with Spaces".

Parameters may be mandatory values, optional values, choices, or a combination.

- `<parameter>.

 The <> angle brackets indicate that a mandatory parameter must be entered in place of the brackets and text inside them.

- `[parameter].

 The [] square brackets indicate that an optional parameter may be entered in place of the brackets and text inside them.

- `{choice1 | choice2}

 The | indicates that only one of the parameters should be entered.

 The {} curly braces indicate that a parameter must be chosen from the list of choices.

4.2.2. Values

- `ipaddr

 This parameter is a valid IP address, made up of four decimal bytes ranging from 0 to 255. The default for all IP parameters consists of zeros (that is, 0.0.0.0). The interface IP address of 0.0.0.0 is invalid.

- `macaddr

 The MAC address format is six hexadecimal numbers separated by colons, for example 00:06:29:32:81:40.

- `areaid

 Area IDs may be entered in dotted-decimal notation (for example, 0.0.0.1). An area ID of 0.0.0.0 is reserved for the backbone. Area IDs have the same form as IP addresses, but are distinct from IP addresses. The IP network number of the sub-netted network may be used for the area ID.

- `routerid

 The value of <router id> must be entered in 4-digit dotted-decimal notation (for example, 0.0.0.1). A router ID of 0.0.0.0 is invalid.

- `slot/port
This parameter denotes a valid slot number, and a valid port number. For example, 0/1 represents unit number 1, slot number 0 and port number 1. The <slot/port> field is composed of a valid slot number and a valid port number separated by a forward slash (/).

- **logical slot/port**

 This parameter denotes a logical slot number, and logical port number assigned. This is applicable in the case of a port-channel (LAG). The operator can use the logical slot number, and the logical port number to configure the port-channel.

4.2.3. Conventions

Network addresses are used to define a link to a remote host, workstation, or network. Network addresses are shown using the following syntax:

Table 4-1. Network Address Syntax

<table>
<thead>
<tr>
<th>Address Type</th>
<th>Format</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPAddr</td>
<td>A.B.C.D</td>
<td>0.0.0.0 to 255.255.255.255</td>
</tr>
</tbody>
</table>

Double quotation marks such as "System Name with Spaces" set off user defined strings. If the operator wishes to use spaces as part of a name parameter then it must be enclosed in double quotation marks.

Empty strings (""") are not valid user defined strings. Command completion finishes spelling the command when enough letters of a command are typed to uniquely identify the command word. The command may be executed by typing <enter> (command abbreviation) or the command word may be completed by typing the <tab> (command completion).

The value 'Err' designates that the requested value was not internally accessible. This should never happen and indicates that there is a case in the software that is not handled correctly.

The value '-----' designates that the value is unknown.

4.2.4. Annotations

The CLI allows the user to type single-line annotations at the command prompt for use when writing test or configuration scripts and for better readability. The exclamation point ('!') character flags the beginning of a comment. The comment flag character can begin a word anywhere on the command line and all input following this character is ignored. Any command line that begins with the character ‘!’ is recognized as a comment line and ignored by the parser.

Some examples are provided below:

- ! Script file for displaying the ip interface
- ! Display information about interfaces
show ip interface 0/1 !Displays the information about the first interface

! Display information about the next interface

show ip interface 0/2

! End of the script file
5. Switching Commands

5.1. System Information and Statistics Commands

This section describes the commands that use to display system information or statistics.

5.1.1. *show arp*

This command displays connectivity between the switch and other devices from service port or management port. The Address Resolution Protocol (ARP) cache identifies the MAC addresses of the IP stations communicating with the switch.

Format
show arp

Default
None

Mode
Privileged Exec

Example:

(M4500-32C) #show arp

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>IP Address</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00:5E:00:01:03</td>
<td>172.16.3.254</td>
<td>Management</td>
</tr>
<tr>
<td>C4:54:44:F6:4F:8A</td>
<td>172.16.3.98</td>
<td>Management</td>
</tr>
</tbody>
</table>

(M4500-32C) #

5.1.2. *show calendar*

This command displays the system time.

Format
show calendar

Default
None

Mode
Privileged Exec

Example:

(M4500-32C) #show calendar
5.1.3. show process cpu

This command provides the percentage utilization of the CPU by different tasks.

Format

show process cpu

Default None

Mode Privileged Exec

Example:

(M4500-32C) #show process cpu

Memory and Process CPU Utilization Info of Unit:1

Memory Utilization Report
status KBytes
------- -------
free 1277836
alloc 792756
CPU Utilization:

<table>
<thead>
<tr>
<th>PID</th>
<th>Name</th>
<th>5 Secs</th>
<th>60 Secs</th>
<th>300 Secs</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(rcu_sched)</td>
<td>0.00%</td>
<td>0.06%</td>
<td>0.07%</td>
</tr>
<tr>
<td>15</td>
<td>(kworker/1:0)</td>
<td>0.00%</td>
<td>0.01%</td>
<td>0.00%</td>
</tr>
<tr>
<td>52</td>
<td>(kworker/0:1)</td>
<td>0.00%</td>
<td>0.01%</td>
<td>0.02%</td>
</tr>
<tr>
<td>232</td>
<td>(hwnmon0)</td>
<td>0.00%</td>
<td>0.01%</td>
<td>0.02%</td>
</tr>
<tr>
<td>613</td>
<td>(procmsg)</td>
<td>0.00%</td>
<td>0.08%</td>
<td>0.09%</td>
</tr>
<tr>
<td>720</td>
<td>osapiTimer</td>
<td>0.10%</td>
<td>0.11%</td>
<td>0.12%</td>
</tr>
<tr>
<td>729</td>
<td>bcmINTR</td>
<td>0.10%</td>
<td>0.07%</td>
<td>0.06%</td>
</tr>
<tr>
<td>730</td>
<td>socdmadesc.0</td>
<td>0.20%</td>
<td>0.14%</td>
<td>0.13%</td>
</tr>
<tr>
<td>733</td>
<td>bcmMEM_SCAN.0</td>
<td>0.00%</td>
<td>0.04%</td>
<td>0.07%</td>
</tr>
<tr>
<td>735</td>
<td>bcmL2X.0</td>
<td>3.11%</td>
<td>3.47%</td>
<td>3.49%</td>
</tr>
<tr>
<td>737</td>
<td>bcmCNTR.0</td>
<td>1.24%</td>
<td>1.50%</td>
<td>1.50%</td>
</tr>
<tr>
<td>740</td>
<td>bcmLINK.0</td>
<td>2.80%</td>
<td>2.65%</td>
<td>2.64%</td>
</tr>
<tr>
<td>741</td>
<td>bcmRX</td>
<td>0.00%</td>
<td>0.07%</td>
<td>0.07%</td>
</tr>
<tr>
<td>742</td>
<td>cpuUtilMonitorTask</td>
<td>0.20%</td>
<td>0.24%</td>
<td>0.25%</td>
</tr>
<tr>
<td>744</td>
<td>tL7Timer0</td>
<td>0.00%</td>
<td>0.03%</td>
<td>0.03%</td>
</tr>
<tr>
<td>750</td>
<td>simFts_task</td>
<td>0.00%</td>
<td>0.04%</td>
<td>0.04%</td>
</tr>
<tr>
<td>753</td>
<td>BootP</td>
<td>0.10%</td>
<td>0.01%</td>
<td>0.00%</td>
</tr>
<tr>
<td>760</td>
<td>emWeb</td>
<td>0.10%</td>
<td>0.01%</td>
<td>0.01%</td>
</tr>
<tr>
<td>774</td>
<td>hapiBroadBfdCtrlTas</td>
<td>0.31%</td>
<td>0.29%</td>
<td>0.29%</td>
</tr>
<tr>
<td>796</td>
<td>dot1s_timer_task</td>
<td>0.00%</td>
<td>0.06%</td>
<td>0.06%</td>
</tr>
<tr>
<td>800</td>
<td>radius_task</td>
<td>0.00%</td>
<td>0.02%</td>
<td>0.01%</td>
</tr>
<tr>
<td>806</td>
<td>snoopTask</td>
<td>0.00%</td>
<td>0.06%</td>
<td>0.07%</td>
</tr>
<tr>
<td>812</td>
<td>SNTP</td>
<td>0.10%</td>
<td>0.01%</td>
<td>0.00%</td>
</tr>
<tr>
<td>827</td>
<td>pbrProcessingTask</td>
<td>0.00%</td>
<td>0.01%</td>
<td>0.00%</td>
</tr>
<tr>
<td>851</td>
<td>(ospf_app)</td>
<td>0.00%</td>
<td>0.01%</td>
<td>0.02%</td>
</tr>
<tr>
<td>888</td>
<td>RMONTask</td>
<td>0.00%</td>
<td>0.21%</td>
<td>0.28%</td>
</tr>
<tr>
<td>900</td>
<td>mlagTxTask</td>
<td>0.10%</td>
<td>0.01%</td>
<td>0.00%</td>
</tr>
<tr>
<td>924</td>
<td>openrTask</td>
<td>1.66%</td>
<td>1.86%</td>
<td>1.93%</td>
</tr>
</tbody>
</table>

Total CPU Utilization 10.16% 11.30% 11.53%

(M4500-32C) #
5.1.4. show process cpu threshold

This command displays the configurations of CPU utilization threshold.

Format
show process cpu threshold

Default
None

Mode
Privileged Exec

Example:

(M4500-32C) #show process cpu threshold

CPU Utilization Monitoring Parameters
Rising Threshold.. 90 %
Rising Interval... 3600 secs
Falling Threshold.. 50 %
Falling Interval... 300 secs

CPU Free Memory Monitoring Threshold.......... 0 KB

(M4500-32C) #

5.1.5. show eventlog

This command displays the event log, which contains error messages from the system.

Format
show eventlog

Default
None

Mode
Privileged Exec

Example:

(M4500-32C) #show eventlog

<table>
<thead>
<tr>
<th>Time</th>
<th>File</th>
<th>Line</th>
<th>TaskID</th>
<th>Code</th>
<th>yyyy/mm/dd hh:mm:ss</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016/06/07</td>
<td>EVENT> Boot!</td>
<td>0</td>
<td>48474A24</td>
<td>AAAAAAAA</td>
<td>21:22:57</td>
</tr>
<tr>
<td>2016/06/07</td>
<td>EVENT> Boot!</td>
<td>0</td>
<td>48407104</td>
<td>AAAAAAAA</td>
<td>17:38:56</td>
</tr>
<tr>
<td>2016/06/07</td>
<td>EVENT> Manual Reload!</td>
<td>0</td>
<td>48407104</td>
<td>00000000</td>
<td>17:36:12</td>
</tr>
<tr>
<td>2016/06/07</td>
<td>EVENT> Boot!</td>
<td>0</td>
<td>48407104</td>
<td>AAAAAAAA</td>
<td>17:12:40</td>
</tr>
<tr>
<td>2016/06/07</td>
<td>EVENT> Manual Reload!</td>
<td>0</td>
<td>48407104</td>
<td>00000000</td>
<td>17:09:45</td>
</tr>
<tr>
<td>2016/06/05</td>
<td>EVENT> Boot!</td>
<td>0</td>
<td>48407104</td>
<td>AAAAAAAA</td>
<td>00:04:36</td>
</tr>
<tr>
<td>2016/06/05</td>
<td>EVENT> Manual Reload Warm!</td>
<td>0</td>
<td>48407104</td>
<td>00000000</td>
<td>00:01:42</td>
</tr>
<tr>
<td>2016/06/04</td>
<td>EVENT> Boot!</td>
<td>0</td>
<td>48407104</td>
<td>AAAAAAAA</td>
<td>23:38:07</td>
</tr>
<tr>
<td>2016/06/04</td>
<td>EVENT> Manual Reload Warm!</td>
<td>0</td>
<td>48474A24</td>
<td>00000000</td>
<td>23:35:09</td>
</tr>
<tr>
<td>2016/06/04</td>
<td>EVENT> Boot!</td>
<td>0</td>
<td>48474A24</td>
<td>AAAAAAAA</td>
<td>22:01:35</td>
</tr>
<tr>
<td>2016/06/02</td>
<td>EVENT> Boot!</td>
<td>0</td>
<td>48474A24</td>
<td>AAAAAAAA</td>
<td>18:09:26</td>
</tr>
<tr>
<td>2016/06/02</td>
<td>EVENT> Boot!</td>
<td>0</td>
<td>48474A24</td>
<td>AAAAAAAA</td>
<td>03:26:04</td>
</tr>
<tr>
<td>2016/06/01</td>
<td>EVENT> Boot!</td>
<td>0</td>
<td>48465024</td>
<td>AAAAAAAA</td>
<td>21:29:27</td>
</tr>
<tr>
<td>2016/05/31</td>
<td>EVENT> Clear Event Log!</td>
<td>0</td>
<td>48465024</td>
<td>AAAAAAAA</td>
<td>23:07:58</td>
</tr>
</tbody>
</table>

(M4500-32C) #
5.1.6. show running-config

This command is used to display/capture the current setting of different protocol packages supported on switch. This command displays/captures only commands with settings/configurations with values that differ from the default value. The output is displayed in script format, which can be used to configure another switch with the same configuration.

The parameter “<scriptname>” means to redirect the current settings to a script file with an assigned name <scriptname>, which needs a fixed file name extension “.scr”.

The parameter “all” means to display/capture of all commands with settings/configurations that include values that are same as the default values.

The parameter “control-plane” means to display the running config of control-plane interface.

The parameter “mlag” means to display the running config of Multi-Chassis Link Aggregation (MLAG).

Format show running-config [<scriptname>] | all | interface {<slot/port> | control-plane | loopback <loopback-id> | port-channel <portchannel-id> | tunnel <tunnel-id> | vlan <vlan-id>} | mlag]

Default None

Mode Privileged Exec

Example:

(M4500-48XP8C) #show running-config

!Current Configuration:
!
!System Description "M4500-48XP8C, Runtime Code 7.0.0.1"
!System Software Version "7.0.0.1"
!System Up Time "0 days 0 hrs 9 mins 53 secs"
!Additional Packages BGP-4,QOS,Multicast,IPv6,Routing,Data Center
!Current System Time: Aug 5 03:13:06 2019
!
configure
vlan database
set igmp 1
set igmp fast-leave 1
exit

igmp-plus 1
time-range
username "admin" passwd 7
d32036926a456949aldd05f3768212c089add94bccd752314f0c05fedf66f52c407256118c62e461710
1230004dff4ee69c4e4d4eae9590cfd5fe318b39dac3 level 15
username "admin" role "network-admin"
username "guest" role "network-operator"
line console
exit

line vty
exit
line ssh
exit

interface vlan 1
exit
!
interface control-plane
exit
ip igmp snooping
application install orig_restful_api
router ospf
exit
ipv6 router ospf
exit
exit

(M4500-48XF8C) #

5.1.7. show sysinfo

This command displays switch brief information and MIBs supported.

Format show sysinfo

Default None

Mode Privileged Exec

Example:

(M4500-48XF8C) #show sysinfo

System Description............................. M4500-48XF8C, Runtime Code 7.0.0.1
System Name.................................... M4500-48XF8C
System Location................................
System Contact.................................
System Object ID............................... 1.3.6.1.4.1.4526.100.3.10
System Up Time................................. 2 days 21 hrs 19 mins 23 secs

MIBs Supported:

RFC 1907 - SNMPv2-MIB The MIB module for SNMPv2 entities
HC-RMON-MIB The original version of this MIB, published as RFC3273.
HCNUM-TC A MIB module containing textual conventions for high capacity data types.
SNMP-COMMUNITY-MIB This MIB module defines objects to help support coexistence between SNMPv1, SNMPv2, and SNMPv3.
SNMP-MPD-MIB The MIB for Message Processing and Dispatching
SNMP-TARGET-MIB The Target MIB Module
SNMP-VIEW-BASED-ACM-MIB The management information definitions for the View-based Access Control Model for SNMP.
SFLOW-MIB sFlow MIB
QNOS-UDLD-MIB UDLD MIB
DIFFSERV-DSCP-TC The Textual Conventions defined in this module should be used whenever a
Differentiated Services Code Point is used in a MIB.

QNOS-KEYING-PRIVATE-MIB The Netgear Private MIB for QNOS Keying Utility

LLDP-EXT-DOT3-MIB The LLDP Management Information Base extension module for IEEE 802.3 organizationally defined discovery information.

DISMAN-PING-MIB The Ping MIB (DISMAN-PING-MIB) provides the capability of controlling the use of the ping function at a remote host.

QNOS-OUTBOUNDTELNET-PRIVATE-MIB The Netgear Private MIB for QNOS Outbound Telnet

DISMAN-TRACEROUTE-MIB The Traceroute MIB (DISMAN-TRACEROUTE-MIB) provides access to the traceroute capability at a remote host.

RFC 1213 - RFC1213-MIB Management Information Base for Network Management of TCP/IP-based internets: MIB-II

RFC 2674 - P-BRIDGE-MIB The Bridge MIB Extension module for managing Priority and Multicast Filtering, defined by IEEE 802.1D-1998.

RFC 2737 - ENTITY-MIB Entity MIB (Version 2)

RFC 3635 - Etherlike-MIB Definitions of Managed Objects for the Ethernet-like Interface Types

SWITCHING-EXTENSION-MIB Switching extension - Layer 2

QNOS-PORTSECURITY-PRIVATE-MIB Port Security MIB.

IANAifType-MIB This MIB module defines the IANAifType Textual Convention

MAU-MIB Management information for 802.3 MAUs.

QNOS-PFC-MIB The MIB definitions Priority based Flow Control Feature.

QNOS-VPC-MIB The MIB definitions for MLAG.

QNOS-DOT1X-ADVANCED-FEATURES-MIB The Netgear Private MIB for QNOS Dot1x Advanced Features

QNOS-RADIUS-CLIENT-MIB The Netgear Private MIB for QNOS Radius Authentication Client.

RADIUS-CLIENT-MIB RADIUS Authentication Client MIB

QNOS-MGMT-SECURITY-MIB The Netgear Private MIB for QNOS Mgmt Security

QNOS-ROUTING-MIB QNOS Routing - Layer 3

IP-MIB The MIB module for managing IP and ICMP implementations, but excluding their management of IP routes.

RFC 1657 - BGP4-MIB Definitions of Managed Objects for the Fourth Version of the Border Gateway Protocol (BGP-4) using SMIv2

QNOS-QOS-MIB QNOS Flex QOS Support

QNOS-QOS-COS-MIB QNOS Flex QOS COS

RFC 2932 - IPMROUTE-MIB IPv4 Multicast Routing MIB

RFC 5060 - PIM-STD-MIB Protocol Independent Multicast MIB

IANA-RTPROTO-MIB IANA IP Route Protocol and IP MRoute Protocol Textual Conventions

IPMROUTE-STD-MIB The MIB module for management of IP Multicast routing, but independent of the specific multicast routing protocol in use.

RFC 2465 - IPV6-MIB Management Information Base for IP Version 6: Textual Conventions and General Group Textual Conventions for Transport Addresses

RFC 3419 - TRANSPORT-ADDRESS-MIB Textual Conventions for Transport Addresses

QNOS-IPV6-LOOPBACK-MIB The Netgear Private MIB for QNOS Loopback IPv6 address configuration.

QNOS-DCBX-MIB The MIB module defines objects to configure DCBX

IEEE8021-CN-MIB Congestion notification module for managing IEEE 802.1Qau

LLDP-V2-TC-MIB Textual conventions used throughout the IEEE Std 802.1AB version 2 and later MIB modules.
5.1.8. POST Diagnostic Commands

The M4500 series switches support Power On Self Test (POST) commands. These commands test major hardware components to detect errors and let you see the test results.

5.1.8.1. show system self-test

Use this command to display the test result of POST.

Format show system self-test

Mode Privileged Exec

Example:

```
(M4500-48XF8C) #show system self-test

Date: Mar-13-2020 08:45:10
Version: 1.0.0.0
Summary: Diagnostics Pass

M4500-48XF8C: 1IX8UZ20005 QTFCU38290029

PSU-1: Present 700-013917-0000 L257U4000105P
PSU-2: Present 700-013917-0000 L257U4000305P
FAN-1: Present
FAN-2: Present
FAN-3: Present
FAN-4: Present
FAN-5: Present
FAN-6: Present

<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Detect</td>
<td>Pass</td>
</tr>
<tr>
<td>IPMI Fan &amp; Thermal Sensors</td>
<td>Pass</td>
</tr>
<tr>
<td>RPSU Env</td>
<td>Pass</td>
</tr>
<tr>
<td>SDRAM</td>
<td>Pass</td>
</tr>
<tr>
<td>SATA SSD</td>
<td>Pass</td>
</tr>
<tr>
<td>Management Interface</td>
<td>Pass</td>
</tr>
<tr>
<td>Loopback MAC Interface</td>
<td>Pass</td>
</tr>
<tr>
<td>LED</td>
<td>Pass</td>
</tr>
</tbody>
</table>
```

5.1.8.2. run system self-test

Use this command to run POST. After you enter this command, the switch reboots and runs the self-check function on the major hardware components. The major hardware components include the CPU, RAM, Flash memory, network ports, Fans, LEDs, and the power modules. After the self-check function is complete, the system reboots again and runs QNOS automatically.
5.1.9. show system

This command displays switch system information.

Format show system
Default None
Mode Privileged Exec

Example:

(M4500-48XF8C) # show system

System description: M4500-48XF8C, Runtime Code 7.0.0.1
System object ID : 1.3.6.1.4.1.4526.100.3.10
System information
System Up time: 2 days, 21 hours, 17 minutes, and 28 seconds
System Name : M4500-48XF8C
System Location :
System Contact :
MAC address : D8-C4-97-B5-6A-BF
Protocol Current : None

(M4500-48XF8C) #

5.1.10. show tech-support

Use this command displays switch system information and configurations when you contact technical support. The output of the show tech-support command combines the output of the following commands: show version, show sysinfo, show interface status, show logging, show event log, show logging buffered, show trap log, show running config, etc.

The parameter “file” means to write the output into a file with file name “TechSupport”.

Other parameters are used to display the information of assigned component.

Format show tech-support [[[bfd | bgp | datacenter | dcvpn | dot1q | dot1s | dot3ad | igmp | layer3 | link_dependency | lldp | log | mcast | mlag | multicast | ospfv2 | ospfv3 | pimsm | routing | sim | snooping | switching | system | vrrp] [file]] | file]
Default None
Mode Privileged Exec
Example:

(M4500-48XF8C) # show tech-support

*************** show version ***************

Switch: 1

System Description.............................. M4500-48XF8C, Runtime Code 7.0.0.1
Machine Model................................ M4500-48XF8C
Serial Number................................ QTFCU38510002
Burned In MAC Address......................... D8:C4:97:B5:6A:BF
Software Version............................. 7.0.0.1
Software Storage............................. mSATA
Additional Packages........................... BGP-4
QoS
Multicast
IPv6
Routing
Data Center
OpEN API
Prototype Open API

*************** show sysinfo ***************

System Description.............................. M4500-48XF8C
Runtime Code.................................... 7.0.0.1
System Name.................................... Switch
System Location............................... System Location
System Contact............................... System Contact
System Object ID.............................. 1.3.6.1.4.1.4526.100.3.10
System Up Time................................. 0 days 2 hrs 43 mins 19 secs

(* note: this command displays information more than 3000 lines, so here we omit
 remained messages.)
:
:
(M4500-48XF8C) #

5.1.11. show hardware

This command displays inventory and hardware information for the switch.

Format show hardware

Default None

Mode Privileged Exec

Example:

(M4500-48XF8C) # show hardware
5.1.12. show version

This command displays inventory, software packages and license key information for the switch.

Format show version

Default None
Mode Privileged Exec

Example:

(M4500-48XF8C) # show version

Switch: 1

System Description......................... M4500-48XF8C, Runtime Code 7.0.0.1
Machine Model................................ M4500-48XF8C
Serial Number................................ QTFCU38510002
Burned In MAC Address...................... D8:C4:97:B5:6A:BF
Software Version............................ 7.0.0.1
Software Storage............................ mSATA
Additional Packages........................ BGP-4
.. QOS
.. Multicast
.. IPv6
.. Routing
.. Data Center
.. OpEN API
.. Prototype Open API
(M4500-48XF8C) #

5.1.13. show loginsessin

This command displays serial port or remote login connections to the switch.

The parameter “long” means to display full user names of login sessions.

Format show loginsession [long]

Default None

Mode Privileged Exec

Example:

(M4500-32C) # show loginsession

<table>
<thead>
<tr>
<th>ID</th>
<th>User Name</th>
<th>Connection From</th>
<th>Idle Time</th>
<th>Session Time</th>
<th>Session Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>admin</td>
<td>EIA-232</td>
<td>00:00:00</td>
<td>02:08:12</td>
<td>Serial</td>
</tr>
<tr>
<td>01</td>
<td>guest</td>
<td>172.16.3.68</td>
<td>00:00:05</td>
<td>00:00:05</td>
<td>SSH</td>
</tr>
</tbody>
</table>

(M4500-32C) #

5.1.14. show command filter

All commands starting with keyword “show” can use below parameters to refine output or redirect output to a file. Following any show command to use symbol “|” to set filter and it uses regular expression to math assigned keyword.

The parameter “commands” means any show command of CLI.
The parameter “|” means to use filter option.

The parameter “begin” sets output to begin with the line that matches assigned keyword.

The parameter “exclude” sets output to exclude lines that matches assigned keyword.

The parameter “include” sets output to include lines that matches assigned keyword only.

The parameter “section” sets output to include only a specified section of the content (e.g., “interface 0/1”) with a configurable end-of-section delimiter. If multiple sections matching the specified string match criteria are part of the output, then all instances are displayed. Each section begins with the line containing the starting keyword and ends with the line containing the ending keyword. If there is a line, for example, the line L that contains the starting keyword, and there is no line containing the ending keyword in the original output, the parameter “section” will extract a section from the line L to the final line of the original output. (The default ending keyword is “exit”.)

The parameter “redirect” means to write output to a remote file which locates the assigned “url”, and “url” could be TFTP, FTP or SFTP.

Format show command | [{begin <keyword>} [exclude <keyword>] [include <keyword>] [section <starting keyword> [ending keyword]] [redirect url]}

Default None

Mode Privileged Exec

Example:

(M4500-32C) #show interface counters detailed 0/1 | begin "Total Packets" exclude "0"

Total Packets Received (Octets).................. 438677
Packets Received 64 Octets...................... 115
Packets Received 65-127 Octets.................. 376
Packets Received 128-255 Octets............... 2136
Packets RX and TX 64 Octets.................... 117
Packets RX and TX 65-127 Octets................. 36293
Packets RX and TX 128-255 Octets.............. 2136

Total Packets Received Without Errors......... 2729
Multicast Packets Received...................... 2258
Broadcast Packets Received..................... 471

Packets Discarded by Chip Debug Counter...... 225
Total Received Packets Discarded.............. 225

Packets Transmitted 64 Octets.................. 2
Packets Transmitted 65-127 Octets.............. 35917
Max Frame Size............................... 1518

Total Packets Transmitted Successfully........ 35919
Multicast Packets Transmitted............... 35919

MSTP BPDUs Transmitted....................... 33675

(M4500-32C) #
5.1.15. show transceiver device

This command displays summary of digital optical monitor information for the switch.

Format show transceiver device

Default None

Mode Privileged Exec

Example:

(M4500-32C) #show transceiver device

<table>
<thead>
<tr>
<th>Interface</th>
<th>Gigabit Ethernet Compliance Code</th>
<th>Vendor Name</th>
<th>Vendor Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/7</td>
<td>10GBase-SR</td>
<td>FINISAR CORP.</td>
<td>FTLX8571D3BCL</td>
</tr>
<tr>
<td>0/9</td>
<td>10GBase-SR</td>
<td>FINISAR CORP.</td>
<td>FTLX8571D3BCL</td>
</tr>
</tbody>
</table>

(++) : high alarm, (+) : high warning, (-) : low warning, (--) : low alarm.

mA: milliamperes, dBm: decibels (milliwatts), NA: not available, -: null/unknown.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Temperature (Celsius)</th>
<th>Voltage (Volts)</th>
<th>Tx bias current (mA)</th>
<th>Tx Power (dBm)</th>
<th>Rx Power (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/7</td>
<td>23.15</td>
<td>3.31</td>
<td>7.92</td>
<td>-2.17</td>
<td>-2.28</td>
</tr>
<tr>
<td>0/9</td>
<td>30.14</td>
<td>3.29</td>
<td>7.95</td>
<td>-1.91</td>
<td>-2.02</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0/51</td>
<td>31.59</td>
<td>3.27</td>
<td>6.88</td>
<td>-23.47 (--)</td>
<td>-3.45</td>
</tr>
<tr>
<td>0/52</td>
<td>30.77</td>
<td>3.27</td>
<td>6.86</td>
<td>-23.47 (--)</td>
<td>-4.15</td>
</tr>
</tbody>
</table>

(M4500-32C) #

5.1.16. show transceiver interface

This command displays detail of digital optical monitor information for the switch.

Format show transceiver interface detail [<intf-range>]

Default None

Mode Privileged Exec

Example:

(M4500-32C) #show transceiver interface detail 0/7

(++) : high alarm, (+) : high warning, (-) : low warning, (--) : low alarm.
mA: milliamperes, dBm: decibels (milliwatts), NA: not available, -: null/unknown.

Interface...................................... 0/7
Gigabit Ethernet Compliance Codes.............. 10GBase-SR
Vendor Name.................................. FINISAR CORP.
Vendor Part Number.......................... FTLX8571D3BCL
Vendor Serial Number........................ AP50L3K
Vendor Revision Number........................ A
Vendor Manufacturing Date.................... 2013/02/02
Wavelength................................... 850 nm
Link length supported for 50um OM2 fiber...... 82 m
Link length supported for 62.5um OM1 fiber..... 33 m
Link length supported for 50um OM3 fiber...... 300 m
Temperature................................... 34.66 Celsius
Voltage.. 3.31 Volts
Tx bias current................................ 8.17 mA
Tx Power....................................... -2.15 dBm
Rx Power....................................... -2.26 dBm
Temperature high alarm threshold.............. 80.00 Celsius
Temperature high warning threshold............. 70.00 Celsius
Temperature low warning threshold............. 0.00 Celsius
Temperature low alarm threshold.............. -5.00 Celsius
Voltage high alarm threshold................... 3.46 Volts
Voltage high warning threshold............... 3.40 Volts
Voltage low warning threshold............... 3.20 Volts
Voltage low alarm threshold............... 3.14 Volts
Tx bias current high alarm threshold......... 12.00 mA
Tx bias current high warning threshold....... 10.00 mA
Tx bias current low warning threshold........ 2.00 mA
Tx bias current low alarm threshold.......... 0.00 mA
Tx power high alarm threshold............... 3.97 dBm
Tx power high warning threshold............... 3.49 dBm
Tx power low warning threshold.............. -2.50 dBm
Tx power low alarm threshold............... -3.00 dBm
Rx power high alarm threshold............... 3.97 dBm
Rx power high warning threshold............... 3.49 dBm
Rx power low warning threshold.............. -9.50 dBm
Rx power low alarm threshold............... -10.00 dBm

(M4500-32C) #

5.1.17. show process memory

This command provides the memory usage by different tasks.

Format show process memory

Default None

Mode Privileged Exec

Example:

(M4500-32C) #show process memory

Total: 8142492 KB
Allocated: 2451536 KB
Free: 5690956 KB

Component CurrentAllocated[change] MaxAllocated[Allocs/Frees]
SIM 80904570[+0] 82085413 [1697/26]
NIM 959361[+0] 959361 [20/0]
TRAPMGR 1456[+0] 1456 [1/0]
CNFGR 20868[+0] 20868 [108/0]
COMMAND_SCHEDULER 69728[+0] 69728 [3/0]
BHD 7484[+0] 7484 [2/0]

Total Current Usage = 2064220254
osapi Debug overhead = 1928808

(M4500-32C) #

5.1.18. show process app-list

This command displays user and system applications known to the Process Manager.

Format show process app-list

Default None

Example:

(M4500-32C) #show process app-list

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>PID</th>
<th>Status</th>
<th>Restart</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>switchdrvr</td>
<td>31539</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Running</td>
</tr>
<tr>
<td>2</td>
<td>syncdb</td>
<td>31540</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Running</td>
</tr>
<tr>
<td>3</td>
<td>syncdb-test</td>
<td>0</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Stopped</td>
</tr>
<tr>
<td>4</td>
<td>proctest</td>
<td>0</td>
<td>Disabled</td>
<td>Enabled</td>
<td>Stopped</td>
</tr>
<tr>
<td>5</td>
<td>user.start</td>
<td>0</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Stopped</td>
</tr>
<tr>
<td>6</td>
<td>opensshd</td>
<td>32194</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Running</td>
</tr>
<tr>
<td>7</td>
<td>netconf-opensshd</td>
<td>0</td>
<td>Disabled</td>
<td>Enabled</td>
<td>Stopped</td>
</tr>
<tr>
<td>8</td>
<td>vr-agent-0</td>
<td>32059</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Running</td>
</tr>
<tr>
<td>9</td>
<td>ospf-00</td>
<td>32065</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Running</td>
</tr>
</tbody>
</table>
5.1.19. show process app-resource-list

This command displays the configured and in-use resources of each application known to the Process Manager.

Format show process app-resource-list

Default None

Example:

(M4500-32C) #show process app-resource-list

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>PID</th>
<th>Limit</th>
<th>Share</th>
<th>Memory Usage</th>
<th>Max Mem Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>switchdrvr</td>
<td>31539</td>
<td>Unlimited</td>
<td>Unlimited</td>
<td>2047 MB</td>
<td>2047 MB</td>
</tr>
<tr>
<td>2</td>
<td>syncdb</td>
<td>31540</td>
<td>Unlimited</td>
<td>Unlimited</td>
<td>16 MB</td>
<td>16 MB</td>
</tr>
<tr>
<td>3</td>
<td>syncdb-test</td>
<td>0</td>
<td>Unlimited</td>
<td>Unlimited</td>
<td>0 MB</td>
<td>0 MB</td>
</tr>
<tr>
<td>4</td>
<td>proctest</td>
<td>0</td>
<td>10 MB</td>
<td>20%</td>
<td>0 MB</td>
<td>0 MB</td>
</tr>
<tr>
<td>5</td>
<td>user.start</td>
<td>0</td>
<td>Unlimited</td>
<td>Unlimited</td>
<td>0 MB</td>
<td>0 MB</td>
</tr>
<tr>
<td>6</td>
<td>opensshd</td>
<td>32194</td>
<td>Unlimited</td>
<td>Unlimited</td>
<td>1 MB</td>
<td>3 MB</td>
</tr>
<tr>
<td>7</td>
<td>netconf-opensshd</td>
<td>0</td>
<td>Unlimited</td>
<td>Unlimited</td>
<td>0 MB</td>
<td>0 MB</td>
</tr>
<tr>
<td>8</td>
<td>vr-agent-0</td>
<td>32059</td>
<td>Unlimited</td>
<td>Unlimited</td>
<td>9 MB</td>
<td>10 MB</td>
</tr>
<tr>
<td>9</td>
<td>ospf-00</td>
<td>32065</td>
<td>Unlimited</td>
<td>Unlimited</td>
<td>6 MB</td>
<td>7 MB</td>
</tr>
<tr>
<td>10</td>
<td>ping-0</td>
<td>32143</td>
<td>Unlimited</td>
<td>Unlimited</td>
<td>0 MB</td>
<td>1 MB</td>
</tr>
<tr>
<td>11</td>
<td>traceroute-0</td>
<td>32150</td>
<td>Unlimited</td>
<td>Unlimited</td>
<td>0 MB</td>
<td>1 MB</td>
</tr>
</tbody>
</table>

(M4500-32C) #
5.1.20. show process proc-list

This command displays the processes started by applications created by the Process Manager.

Format show process proc-list

Default None

Example:

(M4500-32C) (Config)#show process proc-list

<table>
<thead>
<tr>
<th>Process</th>
<th>Application</th>
<th>VM Size</th>
<th>VM Peak</th>
<th>FD Count</th>
<th>Up Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID</td>
<td>Name</td>
<td>ID-VRID-Name</td>
<td>Chld</td>
<td>(KB)</td>
<td>(KB)</td>
</tr>
<tr>
<td>31476</td>
<td>procmgr</td>
<td>0-0-procmgr</td>
<td>No</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31539</td>
<td>switchdrvr</td>
<td>1-0-switchdrvr</td>
<td>No</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31540</td>
<td>syncdb</td>
<td>2-0-syncdb</td>
<td>No</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>32059</td>
<td>vr_agent_app</td>
<td>8-0-vr-agent-0</td>
<td>No</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>32065</td>
<td>ospf_app</td>
<td>9-0-ospf-00</td>
<td>No</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>32143</td>
<td>ping_app</td>
<td>10-0-ping-0</td>
<td>No</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>32150</td>
<td>traceroute_app</td>
<td>11-0-traceroute-0</td>
<td>No</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>32194</td>
<td>opensshd</td>
<td>6-0-opensshd</td>
<td>No</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(M4500-32C) #

5.1.21. show environment

This command displays vital environment status data, including temperature, fan (speed, state), RPSU (temperature, fan speed, state, and power).

Format show environment

Mode Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp</td>
<td>The current temperature (C).</td>
</tr>
</tbody>
</table>
Example:
The following shows examples of the command.

(M4500-32C) #show environment

Temperature Sensors:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Sensor</th>
<th>Description</th>
<th>Temp (C)</th>
<th>Crit_Temp (C)</th>
<th>State</th>
<th>Max_Temp (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Temp-1</td>
<td>36</td>
<td>67</td>
<td>Normal</td>
<td>38</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Temp-2</td>
<td>37</td>
<td>65</td>
<td>Normal</td>
<td>39</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>Temp-3</td>
<td>31</td>
<td>61</td>
<td>Normal</td>
<td>32</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>Temp-4</td>
<td>26</td>
<td>59</td>
<td>Normal</td>
<td>28</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>Temp-5</td>
<td>34</td>
<td>64</td>
<td>Normal</td>
<td>37</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>Temp-6</td>
<td>42</td>
<td>76</td>
<td>Normal</td>
<td>44</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>Temp-7</td>
<td>31</td>
<td>67</td>
<td>Normal</td>
<td>33</td>
</tr>
</tbody>
</table>

Fans:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Fan</th>
<th>Description</th>
<th>Type</th>
<th>Speed (RPM)</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Fan-1</td>
<td>Removable</td>
<td></td>
<td>Failed</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Fan-2</td>
<td>Removable</td>
<td></td>
<td>Failed</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>Fan-3</td>
<td>Removable</td>
<td></td>
<td>Failed</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>Fan-4</td>
<td>Removable</td>
<td></td>
<td>Failed</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>Fan-5</td>
<td>Removable</td>
<td></td>
<td>Failed</td>
</tr>
</tbody>
</table>

Crit Temp
The maximum limit of temperature.

State
The status of module.

Max Temp
The highest temperature after the system boot.

Type
The type of module (fixed or removable).

Speed
The fan speed (RPM).

Description
The name of sensor.

Power
The power of RPSU (W).
1 6 Fan-6 Removable - Failed
1 7 Fan-7 Removable - Failed
1 8 Fan-8 Removable - Failed
1 9 Fan-9 Removable - Failed
1 10 Fan-10 Removable - Failed
1 11 Fan-11 Removable - Failed
1 12 Fan-12 Removable - Failed

Power Modules:

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
<th>Temp1 (°C)</th>
<th>Temp2 (°C)</th>
<th>Speed (RPM)</th>
<th>Power (W)</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS-1</td>
<td>Removable</td>
<td>28</td>
<td>46</td>
<td>3150</td>
<td>60</td>
<td>Operational</td>
</tr>
<tr>
<td>PS-2</td>
<td>Removable</td>
<td>27</td>
<td>45</td>
<td>3000</td>
<td>50</td>
<td>Operational</td>
</tr>
</tbody>
</table>

5.1.22. show configuration files

This command displays the content of text-based configuration files from the CLI. The text-based configuration files (startup-config, backup-config and factory-defaults) are saved compressed in flash. With this command, the files are decompressed while displaying their content.

Format
show {startup-config | backup-config | factory-defaults}

Mode
Privileged EXEC

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>startup-config</td>
<td>Display the content of the startup-config file.</td>
</tr>
<tr>
<td>backup-config</td>
<td>Display the content of the backup-config file.</td>
</tr>
<tr>
<td>factory-defaults</td>
<td>Display the content of the factory-defaults file.</td>
</tr>
</tbody>
</table>

5.1.23. process cpu threshold

Use this command to configure the CPU utilization thresholds. The Rising and Falling thresholds are specified as a percentage of CPU resources. The utilization monitoring time period can be
configured from 5 seconds to 86400 seconds in multiples of 5 seconds. The CPU utilization threshold configuration is saved across a switch reboot. Configuring the falling utilization threshold is optional. If the falling CPU utilization parameters are not configured, then they take the same value as the rising CPU utilization parameters.

Format
process cpu threshold type total rising <1-100> interval

no process cpu threshold type total

Mode
Global Config

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rising threshold</td>
<td>The percentage of CPU resources that, when exceeded for the configured rising interval, triggers a notification. The range is 1 to 100. The default is 0 (disabled).</td>
</tr>
<tr>
<td>rising interval</td>
<td>The duration of the CPU rising threshold violation, in seconds, that must be met to trigger a notification. The range is 5 to 86400. The default is 0 (disabled).</td>
</tr>
<tr>
<td>falling threshold</td>
<td>The percentage of CPU resources that, when usage falls below this level for the configured interval, triggers a notification. The range is 1 to 100. The default is 0 (disabled).</td>
</tr>
<tr>
<td>falling interval</td>
<td>A notification is triggered when the total CPU utilization falls below this level for a configured period of time. The falling utilization threshold notification is made only if a rising threshold notification was previously done. The falling utilization threshold must always be equal or less than the rising threshold value. The CLI does not allow setting the falling threshold to be greater than the rising threshold.</td>
</tr>
<tr>
<td>falling interval</td>
<td>The duration of the CPU falling threshold, in seconds, that must be met to trigger a notification. The range is 5 to 86400. The default is 0 (disabled).</td>
</tr>
</tbody>
</table>

5.1.24. memory free low-watermark processor

Use this command to get notifications when the CPU free memory falls below the configured threshold. A notification is generated when the free memory falls below the threshold. Another notification is generated once the available free memory rises to 10 percent above the specified threshold. To prevent generation of excessive notifications when the CPU free memory fluctuates around the configured threshold, only one Rising or Falling memory notification is generated over a period of 60 seconds. The threshold is specified in kilobytes. The CPU free memory threshold configuration is saved across a switch reboot.

Format
memory free low-watermark processor <1-8142712>

no memory free low-watermark processor

Mode
Global Config
5.1.25. show supported cardtype

Use this command to display the supported card type(s) information.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>low-watermark</td>
<td>When CPU free memory falls below this threshold, a notification message is triggered. The range is 1 to the maximum available memory on the switch. The default is 0 (disabled).</td>
</tr>
</tbody>
</table>

5.1.26. show supported cardtype <cardindex>

Use this command to display the specified card information.

<table>
<thead>
<tr>
<th>Format</th>
<th>show supported cardtype <cardindex></th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Definition</td>
</tr>
<tr>
<td><cardindex></td>
<td>Specifies a card index (CID) to be displayed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode</th>
<th>Privileged Exec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display Message</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Card Type</td>
<td>The numerical identifier unique to this card hardware</td>
</tr>
<tr>
<td>Model Identifier</td>
<td>The model identifier for specified card index</td>
</tr>
<tr>
<td>Card Description</td>
<td>The text describing this card type</td>
</tr>
</tbody>
</table>
5.1.27. pager

Use this command to enable or disable pager admin mode for current access line.

Format
[no] pager

Default
Enabled

Mode
Privileged Exec

5.1.28. show pager

Use this command to display the pager configuration.

Format
show pager

Mode
Privileged Exec

Example:

(M4500-48XF8C) #show pager

Pager Admin mode............................ Enable
5.2. Device Configuration Commands

5.2.1. Interface commands

5.2.1.1. show interface status

The command displays a summary of information for a specific interface or all interfaces.

Format

```
show interface status [[<slot/port> | err-disabled | loopback <loopback-id> | port-channel <port-channel-id> | tunnel <tunnel-id> | vlan <vlan-id>]]
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>no parameter</td>
<td>To display information for all interfaces.</td>
</tr>
<tr>
<td><slot/port></td>
<td>Specifies Interface number.</td>
</tr>
<tr>
<td>err-disabled</td>
<td>Specifies to display the interfaces which are err disabled.</td>
</tr>
<tr>
<td>loopback <0-63></td>
<td>Specifies to display information for the loopback interfaces. The range of</td>
</tr>
<tr>
<td></td>
<td>the loopback ID is 0 to 63.</td>
</tr>
<tr>
<td>port-channel <1-64></td>
<td>Specifies to display information for the port-channel interfaces. The range</td>
</tr>
<tr>
<td></td>
<td>of the port-channel ID is 1 to 64.</td>
</tr>
<tr>
<td>tunnel <0-7></td>
<td>Specifies to display information for the tunnel interfaces. The range of</td>
</tr>
<tr>
<td></td>
<td>the tunnel ID is 0 to 7.</td>
</tr>
<tr>
<td>vlan <vlan-id></td>
<td>Specifies to display information for the vlan interfaces. The range of the</td>
</tr>
<tr>
<td></td>
<td>VLAN ID is 1 to 4093.</td>
</tr>
</tbody>
</table>

Mode

Privileged EXEC

The following will show the information of each command with a different parameter.

5.2.1.1.1. show interface status

Displays information for all interfaces.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intf</td>
<td>The physical slot and physical port.</td>
</tr>
<tr>
<td>Type</td>
<td>If not blank, this field indicates that this port is a special type of port.</td>
</tr>
<tr>
<td></td>
<td>The possible values are:</td>
</tr>
</tbody>
</table>
5.2.1.1.2. show interface status <slot/port>

Displays information for a specific interface.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The physical slot and physical port.</td>
</tr>
<tr>
<td>ifIndex</td>
<td>Displays the interface index associated with the port.</td>
</tr>
<tr>
<td>Description</td>
<td>Description string attached to a port. It can be of up to 64 characters in length.</td>
</tr>
<tr>
<td>Admin Mode</td>
<td>Selects the Port control administration state. The port must be enabled in order for it to be allowed into the network. It may be enabled or disabled. The factory default is enabled.</td>
</tr>
<tr>
<td>Physical Mode</td>
<td>Selects the desired port speed and duplex mode. If auto-negotiation support is selected, then the duplex mode and speed will be set from the auto-negotiation process. Note that the port’s maximum capability (full duplex 100M) will be advertised. Otherwise, this object will determine the port's duplex mode and transmission rate. The factory default is Auto.</td>
</tr>
</tbody>
</table>
5.2.1.1.3. show interface status err-disabled

Displays interfaces which are error disabled.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>An interface that is error disabled.</td>
</tr>
<tr>
<td>Errdisabled Reason</td>
<td>The cause of the interface being error disabled.</td>
</tr>
<tr>
<td>Auto-Recovery Time Left</td>
<td>The amount of time left before auto recovery begins.</td>
</tr>
</tbody>
</table>

5.2.1.1.4. show interface status loopback <0-63>

Displays information for the loopback interfaces.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The interface name.</td>
</tr>
<tr>
<td>ifIndex</td>
<td>Displays the interface index associated with the port.</td>
</tr>
<tr>
<td>Description</td>
<td>Description string attached to the port-channel. It can be of up to 64 characters in length.</td>
</tr>
</tbody>
</table>

Physical Status Indicates the port speed and duplex mode.

Cable Type Displays interface cable type.

Link Status Indicates whether the Link is up or down.

Link Trap This object determines whether to send a trap when link status changes. The factory default is enabled.

LACP Mode Displays whether LACP is enabled or disabled on this port.

Flow Control Mode Displays flow control mode.

Capability Information Displays interface capabilities.

MAC Address Displays interface mac address.

Bit Offset Val Displays the bit offset value which corresponds to the port when the MIB object type PortList is used to manage in SNMP.

advertised. Otherwise, this object will determine the port’s duplex mode and transmission rate. The factory default is Auto.
5.2.1.1.5. show interface status port-channel <1-64>

Displays information for the port-channel interface.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The interface name.</td>
</tr>
<tr>
<td>ifIndex</td>
<td>Displays the interface index associated with the port.</td>
</tr>
<tr>
<td>Description</td>
<td>Description string attached to the port-channel. It can be of up to 64 characters in length.</td>
</tr>
<tr>
<td>Admin Mode</td>
<td>Displays the port-channel control administration state.</td>
</tr>
<tr>
<td>Physical Mode</td>
<td>The speed and duplex mode setting on the interface.</td>
</tr>
<tr>
<td>Physical Status</td>
<td>Indicates the speed and duplex mode for the physical interface.</td>
</tr>
<tr>
<td>Cable Type</td>
<td>Displays interface cable type.</td>
</tr>
<tr>
<td>Link Status</td>
<td>Indicates whether the Link is up or down.</td>
</tr>
<tr>
<td>Link Trap</td>
<td>Indicates whether to send a trap when link status changes. The factory default is enabled.</td>
</tr>
<tr>
<td>LACP Mode</td>
<td>Displays whether LACP is enabled or disabled on this port.</td>
</tr>
</tbody>
</table>
5.2.1.1.6. show interface status tunnel <0-7>

Displays information for the tunnel interface.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The interface name.</td>
</tr>
<tr>
<td>ifIndex</td>
<td>Displays the interface index associated with the interface.</td>
</tr>
<tr>
<td>Description</td>
<td>Description string attached to an interface.</td>
</tr>
<tr>
<td>Admin Mode</td>
<td>Displays the administration state.</td>
</tr>
<tr>
<td>Physical Mode</td>
<td>The speed and duplex mode setting on the interface.</td>
</tr>
<tr>
<td>Physical Status</td>
<td>Indicates the speed and duplex mode for the physical interface.</td>
</tr>
<tr>
<td>Cable Type</td>
<td>Displays interface cable type.</td>
</tr>
<tr>
<td>Link Status</td>
<td>Indicates whether the Link is up or down.</td>
</tr>
<tr>
<td>Link Trap</td>
<td>This object determines whether to send a trap when link status changes. The factory default is enabled.</td>
</tr>
<tr>
<td>LACP Mode</td>
<td>Displays whether LACP is enabled or disabled on this port.</td>
</tr>
<tr>
<td>Flow Control Mode</td>
<td>Displays flow control mode.</td>
</tr>
<tr>
<td>Capability Information</td>
<td>Displays interface capabilities.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>Displays interface mac address.</td>
</tr>
<tr>
<td>Bit Offset Val</td>
<td>Displays the bit offset value which corresponds to the interface when the MIB object type PortList is used to manage in SNMP.</td>
</tr>
</tbody>
</table>

5.2.1.1.7. show interface status vlan <1-4093>

Displays information for the vlan interface.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC Address</td>
<td>Displays interface mac address.</td>
</tr>
<tr>
<td>Bit Offset Val</td>
<td>Displays the bit offset value which corresponds to the interface when the MIB object type PortList is used to manage in SNMP.</td>
</tr>
</tbody>
</table>
5.2.1.2. show interface counters

The command displays a summary of statistics for a specific interface or all interfaces.

Format

```
show interface counters [{<slot/port> | port-channel <port-channel-id> | detailed {<slot/port> | port-channel <port-channel-id> | switchport }}]
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>no parameter</td>
<td>Displays summary statistics for all interfaces.</td>
</tr>
<tr>
<td><slot/port></td>
<td>Displays summary statistics for a specific interface.</td>
</tr>
<tr>
<td>port-channel <port-channel-id></td>
<td>Displays summary statistics for the port-channel interfaces. The range of the port-channel ID is 1 to 64.</td>
</tr>
<tr>
<td>Detailed <slot/port></td>
<td>Display detailed statistics for a specific interface.</td>
</tr>
<tr>
<td>Detailed port-channel <port-channel-id></td>
<td>Display detailed statistics for the port-channel interfaces.</td>
</tr>
</tbody>
</table>
Mode | Privileged EXEC

The following will show the counter information for the command with a different parameter.

5.2.1.2.1. **show interface counters**

Displays summary statistics for all interfaces.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets Received Without Error</td>
<td>The total number of packets (including broadcast packets and multicast packets) received by the processor.</td>
</tr>
<tr>
<td>Packets Received With Error</td>
<td>The number of inbound packets that contained errors preventing them from being deliverable to a higher-layer protocol.</td>
</tr>
<tr>
<td>Total Bytes Received</td>
<td>The total number of inbound bytes received by the interface.</td>
</tr>
<tr>
<td>Unicast Packets Received</td>
<td>The number of inbound unicast packets received by the interface.</td>
</tr>
<tr>
<td>Multicast Packets Received</td>
<td>The number of inbound multicast packets received by the interface.</td>
</tr>
<tr>
<td>Broadcast Packets Received</td>
<td>The total number of packets received that were directed to the broadcast address. Note that this does not include multicast packets.</td>
</tr>
<tr>
<td>Total Received Packets Discarded</td>
<td>The number of inbound packets which were chosen to be discarded even though no errors had been detected to prevent their being deliverable to a higher-layer protocol. One possible reason for discarding such a packet could be to free up buffer space.</td>
</tr>
<tr>
<td>Packets Transmitted Without Errors</td>
<td>The total number of packets transmitted out of the interface.</td>
</tr>
<tr>
<td>Transmit Packet Errors</td>
<td>The number of outbound packets that could not be transmitted because of errors.</td>
</tr>
<tr>
<td>Total Bytes Transmitted</td>
<td>The total number of outbound bytes transmitted by the interface.</td>
</tr>
<tr>
<td>Unicast Packets Transmitted</td>
<td>The number of outbound unicast packets transmitted by the interface.</td>
</tr>
<tr>
<td>Multicast Packets Transmitted</td>
<td>The number of outbound multicast packets transmitted by the interface.</td>
</tr>
<tr>
<td>Broadcast Packets Transmitted</td>
<td>The number of outbound broadcast packets transmitted by the interface.</td>
</tr>
<tr>
<td>Total Transmit Packets Discarded</td>
<td>The number of inbound packets which were chosen to be discarded even though no errors had been detected.</td>
</tr>
</tbody>
</table>
5.2.1.2.2. show interface counters detailed

Displays detailed statistics for a specific interface.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Since Counters Last Cleared</td>
<td>The elapsed time, in days, hours, minutes, and seconds since the statistics for this port were last cleared.</td>
</tr>
<tr>
<td>Total Packets Received (Octets)</td>
<td>The total number of octets of data (including those in bad packets) received on the network (excluding framing bits but including FCS octets). This object can be used as a reasonable estimate of Ethernet utilization. If greater precision is desired, the etherStatsPkts and etherStatsOctets objects should be sampled before and after a common interval. The result of this equation is the value Utilization which is the percent utilization of the Ethernet segment on a scale of 0 to 100 percent.</td>
</tr>
<tr>
<td>Packets Received 64 Octets</td>
<td>The total number of packets (including bad packets) received that were 64 octets in length (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>Packets Received 65-127 Octets</td>
<td>The total number of packets (including bad packets) received that were between 65 and 127 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>Packets Received 128-255 Octets</td>
<td>The total number of packets (including bad packets) received that were between 128 and 255 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>Packets Received 256-511 Octets</td>
<td>The total number of packets (including bad packets) received that were between 256 and 511 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>Packets Received 512-1023 Octets</td>
<td>The total number of packets (including bad packets) received that were between 512 and 1023 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>Packets Received 1024-1518 Octets</td>
<td>The total number of packets (including bad packets) received that were between 1024 and 1518 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>Packets Received > 1518 Octets</td>
<td>The total number of packets received that were longer than 1518 octets (excluding framing bits, but including FCS octets) and were otherwise well formed.</td>
</tr>
<tr>
<td>Packets RX and TX 64 Octets</td>
<td>The total number of packets (including bad packets) received that were 64 octets in length (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>Term</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Packets RX and TX 65-127 Octets</td>
<td>The total number of packets (including bad packets) received that were between 65 and 127 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>Packets RX and TX 128-255 Octets</td>
<td>The total number of packets (including bad packets) received that were between 128 and 255 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>Packets RX and TX 256-511 Octets</td>
<td>The total number of packets (including bad packets) received that were between 256 and 512 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>Packets RX and TX 512-1023 Octets</td>
<td>The total number of packets (including bad packets) received that were between 512 and 1024 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>Packets RX and TX 1024-1518 Octets</td>
<td>The total number of packets (including bad packets) received that were between 1024 and 1518 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>Packets RX and TX > 1518 Octets</td>
<td>The total number of packets (including bad packets) received that were longer than 1518 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>Total Packets Received Without Errors</td>
<td>The total number of packets received that were without errors.</td>
</tr>
<tr>
<td>Unicast Packets Received</td>
<td>The number of subnetwork-unicast packets delivered to a higher-layer protocol.</td>
</tr>
<tr>
<td>Multicast Packets Received</td>
<td>The total number of good packets received that were directed to a multicast address. Note that this number does not include packets directed to the broadcast address.</td>
</tr>
<tr>
<td>Broadcast Packets Received</td>
<td>The total number of good packets received that were directed to the broadcast address. Note that this does not include multicast packets.</td>
</tr>
<tr>
<td>Total Packets Received with MAC Errors</td>
<td>The total number of inbound packets that contained errors preventing them from being deliverable to a higher-layer protocol.</td>
</tr>
<tr>
<td>Jabbers Received</td>
<td>The total number of packets received that were longer than 1518 octets (excluding framing bits, but including FCS octets), and had either a bad FCS with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error). Note that this definition of jabber is different than the definition in IEEE-802.3 section 8.2.1.5 (10BASE5) and section 10.3.1.4 (10BASE2). These documents define jabber as the condition where any packet exceeds 20 ms. The allowed range to detect jabber is between 20 ms and 150 ms.</td>
</tr>
<tr>
<td>Metric</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Undersize Received</td>
<td>The total number of packets received that were less than 64 octets in length with GOOD CRC (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>Fragments Received</td>
<td>The total number of packets received that were less than 64 octets in length with ERROR CRC (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>Alignment Errors</td>
<td>The total number of packets received that had a length (excluding framing bits, but including FCS octets) of between 64 and 1518 octets, inclusive, but had a bad FCS with a non-integral number of octets.</td>
</tr>
<tr>
<td>FCS Errors</td>
<td>The total number of packets received that had a length (excluding framing bits, but including FCS octets) of between 64 and 1518 octets, inclusive, but had a bad FCS with an integral number of octets.</td>
</tr>
<tr>
<td>Overruns</td>
<td>The total number of frames discarded as this port was overloaded with incoming packets, and could not keep up with the inflow.</td>
</tr>
<tr>
<td>MTU Errors</td>
<td>The number of packets whose size exceeded the MTU of the interface.</td>
</tr>
<tr>
<td>Packets Discarded by Chip Debug Counter</td>
<td>The number of inbound packets which were chosen to be discarded by chip debug.</td>
</tr>
<tr>
<td>Total Received Packets Discarded</td>
<td>The number of inbound packets which were chosen to be discarded even though no errors had been detected to prevent their being deliverable to a higher-layer protocol. One possible reason for discarding such a packet could be to free up buffer space.</td>
</tr>
<tr>
<td>Total Packets Transmitted (Octets)</td>
<td>The total number of octets of data (including those in bad packets) transmitted on the network (excluding framing bits but including FCS octets). This object can be used as a reasonable estimate of ethernet utilization. If greater precision is desired, the etherStatsPkts and etherStatsOctets objects should be sampled before and after a common interval.</td>
</tr>
<tr>
<td>Packets Transmitted 64 Octets</td>
<td>The total number of packets (including bad packets) transmitted that were 64 octets in length (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>Packets Transmitted 65-127 Octets</td>
<td>The total number of packets (including bad packets) transmitted that were between 65 and 127 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>Packets Transmitted 128-255 Octets</td>
<td>The total number of packets (including bad packets) transmitted that were between 128 and 255 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>Metric</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Packets Transmitted 256-511 Octets</td>
<td>The total number of packets (including bad packets) transmitted that were between 256 and 511 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>Packets Transmitted 512-1023 Octets</td>
<td>The total number of packets (including bad packets) transmitted that were between 512 and 1023 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>Packets Transmitted 1024-1518 Octets</td>
<td>The total number of packets (including bad packets) transmitted that were between 1024 and 1518 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>Packets Transmitted > 1518 Octets</td>
<td>The total number of packets (including bad packets) transmitted that were greater than 1518 octets in length inclusive (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>Max Frame Size</td>
<td>The maximum size of the Info (non-MAC) field that this port will receive or transmit.</td>
</tr>
<tr>
<td>Total Packets Transmitted Successfully</td>
<td>The number of frames that have been transmitted by this port to its segment.</td>
</tr>
<tr>
<td>Unicast Packets Transmitted</td>
<td>The total number of packets that higher-level protocols requested be transmitted to a subnetwork-unicast address, including those that were discarded or not sent.</td>
</tr>
<tr>
<td>Multicast Packets Transmitted</td>
<td>The total number of packets that higher-level protocols requested be transmitted to a Multicast address, including those that were discarded or not sent.</td>
</tr>
<tr>
<td>Broadcast Packets Transmitted</td>
<td>The total number of packets that higher-level protocols requested be transmitted to the Broadcast address, including those that were discarded or not sent.</td>
</tr>
<tr>
<td>Tx Oversized</td>
<td>The total number of frames that exceeded the max permitted frame size. This counter has a max increment rate of 815 counts per sec. at 10 Mb/s.</td>
</tr>
<tr>
<td>Total Transmit Errors</td>
<td>The sum of Single, Multiple, and Excessive Collisions.</td>
</tr>
<tr>
<td>FCS Error</td>
<td>Frame Check Sequence errors.</td>
</tr>
<tr>
<td>Total Transmit Packets Discarded</td>
<td>The sum of single collision frames discarded, multiple collision frames discarded, and excessive frames discarded.</td>
</tr>
<tr>
<td>Single Collision Frames</td>
<td>A count of the number of successfully transmitted frames on a particular interface for which transmission is inhibited by exactly one collision.</td>
</tr>
<tr>
<td>Multiple Collision Frames</td>
<td>A count of the number of successfully transmitted frames on a particular interface for which transmission is inhibited by more than one collision.</td>
</tr>
</tbody>
</table>
Table: Interface Counters Detailed Switchport

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive Collision Frames</td>
<td>A count of frames for which transmission on a particular interface fails due to excessive collisions.</td>
</tr>
<tr>
<td>Packets Dropped by MMU</td>
<td>A count for the packets dropped by the MMU. There are reasons for MMU to drop packets, such as CBP full, HOL blocking, etc.</td>
</tr>
<tr>
<td>STP BPDUs Transmitted</td>
<td>Spanning Tree Protocol Bridge Protocol Data Units sent.</td>
</tr>
<tr>
<td>STP BPDUs Received</td>
<td>Spanning Tree Protocol Bridge Protocol Data Units received.</td>
</tr>
<tr>
<td>RSTP BPDUs Transmitted</td>
<td>Rapid Spanning Tree Protocol Bridge Protocol Data Units sent.</td>
</tr>
<tr>
<td>RSTP BPDUs Received</td>
<td>Rapid Spanning Tree Protocol Bridge Protocol Data Units received.</td>
</tr>
<tr>
<td>MSTP BPDUs Transmitted</td>
<td>Multiple Spanning Tree Protocol Bridge Protocol Data Units sent.</td>
</tr>
<tr>
<td>MSTP BPDUs Received</td>
<td>Multiple Spanning Tree Protocol Bridge Protocol Data Units received.</td>
</tr>
<tr>
<td>Time Since Counters Last Cleared</td>
<td>The elapsed time, in days, hours, minutes, and seconds since the statistics for this port were last cleared.</td>
</tr>
</tbody>
</table>

5.2.1.2.3. show interface counters detailed switchport

Display statistics for the entire switch.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Packets Received (Octets)</td>
<td>The total number of octets of data received by the processor (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>Packets Received Without Error</td>
<td>Packets Received Without Error: The total number of packets (including broadcast packets and multicast packets) received by the processor.</td>
</tr>
<tr>
<td>Unicast Packets Received</td>
<td>The number of subnetwork-unicast packets delivered to a higher-layer protocol.</td>
</tr>
<tr>
<td>Multicast Packets Received</td>
<td>The total number of packets received that were directed to a multicast address. Note that this number does not include packets directed to the broadcast address.</td>
</tr>
<tr>
<td>Broadcast Packets Received</td>
<td>The total number of packets received that were directed to the broadcast address. Note that this does not include multicast packets.</td>
</tr>
<tr>
<td>Receive Packets Discarded</td>
<td>The number of inbound packets which were chosen to be discarded even though no errors had been detected to prevent</td>
</tr>
<tr>
<td>Metric</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Octets Transmitted</td>
<td>The total number of octets transmitted out of the interface, including framing characters.</td>
</tr>
<tr>
<td>Packets Transmitted Without Errors</td>
<td>The total number of packets transmitted out of the interface.</td>
</tr>
<tr>
<td>Unicast Packets Transmitted</td>
<td>The total number of packets that higher-level protocols requested be transmitted to a subnetwork-unicast address, including those that were discarded or not sent.</td>
</tr>
<tr>
<td>Multicast Packets Transmitted</td>
<td>The total number of packets that higher-level protocols requested be transmitted to a Multicast address, including those that were discarded or not sent.</td>
</tr>
<tr>
<td>Broadcast Packets Transmitted</td>
<td>The total number of packets that higher-level protocols requested be transmitted to the Broadcast address, including those that were discarded or not sent.</td>
</tr>
<tr>
<td>Transmit Packets Discarded</td>
<td>The number of outbound packets which were chosen to be discarded even though no errors had been detected to prevent their being deliverable to a higher-layer protocol. A possible reason for discarding a packet could be to free up buffer space.</td>
</tr>
<tr>
<td>Most Address Entries Ever Used</td>
<td>The highest number of Forwarding Database Address Table entries that have been learned by this switch since the most recent reboot.</td>
</tr>
<tr>
<td>Address Entries Currently in Use</td>
<td>The number of Learned and static entries in the Forwarding Database Address Table for this switch.</td>
</tr>
<tr>
<td>Maximum VLAN Entries</td>
<td>The maximum number of Virtual LANs (VLANs) allowed on this switch.</td>
</tr>
<tr>
<td>Most VLAN Entries Ever Used</td>
<td>The largest number of VLANs that have been active on this switch since the last reboot.</td>
</tr>
<tr>
<td>Static VLAN Entries</td>
<td>The number of presently active VLAN entries on this switch that have been created statically.</td>
</tr>
<tr>
<td>Dynamic VLAN Entries</td>
<td>The number of presently active VLAN entries on this switch that have been created by GVRP registration.</td>
</tr>
<tr>
<td>VLAN Deletes</td>
<td>The number of VLANs on this switch that have been created and then deleted since the last reboot.</td>
</tr>
<tr>
<td>Time Since Counters Last Cleared</td>
<td>The elapsed time, in days, hours, minutes, and seconds, since the statistics for this switch were last cleared.</td>
</tr>
</tbody>
</table>
5.2.1.3. show interface dampening

This command displays the status and configured parameters of the interfaces configured with dampening.

The CLI command “clear counters” resets the flap counter to zero.

The interface CLI command “no shutdown” reset the suppressed state to False.

Any change in the dampening configuration resets the current penalty, reuse time and suppressed state to their default value, meaning 0, 0, and False respectively.

Format
show interface dampening

Mode
Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The interface name.</td>
</tr>
<tr>
<td>Flaps</td>
<td>The number times the link state of an interface changed from UP to DOWN.</td>
</tr>
<tr>
<td>Penalty</td>
<td>Accumulated Penalty.</td>
</tr>
<tr>
<td>Supp</td>
<td>Indicates if the interface is suppressed or not.</td>
</tr>
<tr>
<td>ReuseTm</td>
<td>Number of seconds until the interface is allowed to come up again.</td>
</tr>
<tr>
<td>HalfL</td>
<td>Configured half-life period.</td>
</tr>
<tr>
<td>ReuseV</td>
<td>Configured reuse-threshold.</td>
</tr>
<tr>
<td>SuppV</td>
<td>Configured suppress threshold.</td>
</tr>
<tr>
<td>MaxSTm</td>
<td>Configured maximum suppress time in second.</td>
</tr>
<tr>
<td>MaxPenalty</td>
<td>Maximum possible penalty.</td>
</tr>
<tr>
<td>Restart</td>
<td>Configured restart penalty.</td>
</tr>
</tbody>
</table>

5.2.1.4. show interface loopback

The command displays the configured loopback interface information.

Format
show interface loopback [{<0-63> | vrf <vrf-name>}]
5.2.1.5. show interface port-channel

This command displays the capabilities of all port-channels (LAGs) on the device as well as a summary of individual port-channel.

Format

```
show interface port-channel [{<ID> | brief | system priority }]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><ID></td>
<td>The port-channel interface number. The range of the port-channel ID is 1 to 64.</td>
</tr>
<tr>
<td>brief</td>
<td>Display port-channel static capability and summary information for the device.</td>
</tr>
<tr>
<td>system</td>
<td>Display port-channel system priority.</td>
</tr>
<tr>
<td>priority</td>
<td></td>
</tr>
</tbody>
</table>

Mode Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Channel ID</td>
<td>The port-channel’s ID.</td>
</tr>
</tbody>
</table>
5.2.1.6. show interface port-mode

The command displays the hardware profile information for the 100G ports.

Format

```
show interface port-mode [<slot/port>]
```

Mode

Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>100G Interface</td>
<td>Indicates the interface number of 100G port.</td>
</tr>
<tr>
<td>40G Interface</td>
<td>Indicates the interface number of 40G port.</td>
</tr>
<tr>
<td>50G Interface</td>
<td>Indicates the interface number of 50G port.</td>
</tr>
</tbody>
</table>

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel Name</td>
<td>The name of the port-channel.</td>
</tr>
<tr>
<td>Link State</td>
<td>Indicates whether the link is up or down.</td>
</tr>
<tr>
<td>Admin Mode</td>
<td>Indicates if the port-channel is enabled or not.</td>
</tr>
<tr>
<td>Link Trap Mode</td>
<td>Indicates whether or not to send a trap when link status changes. The factory default is enabled.</td>
</tr>
<tr>
<td>STP Mode</td>
<td>Indicates if the STP mode for the interface is enabled or not.</td>
</tr>
<tr>
<td>Type</td>
<td>Indicates whether the port-channel is statically or dynamically maintained.</td>
</tr>
<tr>
<td>Port-channel Min-links</td>
<td>Indicates the minimum links for the port-channel.</td>
</tr>
<tr>
<td>Load Balance Option (Src/Dest MAC, VLAN, EType, incoming port)</td>
<td>The load balance option associated with this LAG.</td>
</tr>
<tr>
<td>LACP Fallback Mode</td>
<td>May be enabled or disabled. The factory default is disabled.</td>
</tr>
<tr>
<td>LACP Fallback Timeout</td>
<td>This field displays the LACP fallback timeout, the timeout default is 5sec.</td>
</tr>
<tr>
<td>Admin Key</td>
<td>Indicates the administrative value of the LACP actor admin key</td>
</tr>
<tr>
<td>Mbr Ports</td>
<td>Lists the ports that are members of this port-channel, in slot/port notation</td>
</tr>
<tr>
<td>Active Ports (Port Active)</td>
<td>Lists the ports that are actively participating in this port-channel.</td>
</tr>
<tr>
<td>Port Speed</td>
<td>Speed of the port-channel port</td>
</tr>
<tr>
<td>Device/Timeout</td>
<td>Displays the device timeout value of actor and partner. The value of device timeout should be short (1 second) or long(30 seconds).</td>
</tr>
</tbody>
</table>
The command displays the priority flow control (PFC) information of a given interface or all interfaces.

Format
show interface [<slot/port>] priority-flow-control

Parameter
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>slot/port</td>
<td>Specifies the interface number as the slot/port format.</td>
</tr>
</tbody>
</table>

Mode
Privileged EXEC

When an interface number is not provided, it will display all the interfaces.

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Detail</td>
<td>The port for which data is displayed.</td>
</tr>
<tr>
<td>Operational State</td>
<td>The operational status of the interface.</td>
</tr>
<tr>
<td>Configured State</td>
<td>The administrative mode of PFC on the interface.</td>
</tr>
<tr>
<td>Configured Drop Priorities</td>
<td>The 802.1p priority values that are configured with a drop priority on the interface. Drop priorities do not participate in pause.</td>
</tr>
<tr>
<td>Configured No-Drop Priorities</td>
<td>The 802.1p priority values that are configured with a no-drop priority on the interface. If an 802.1p priority that is designated as no-drop is congested, the priority is paused.</td>
</tr>
</tbody>
</table>
5.2.1.8. show interface switch

This command displays a summary of statistics for all CPU traffic.

Format

```
show interfaces switch
```

Mode

Privileged EXEC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets Received Without Error</td>
<td>The total number of packets received from the interface.</td>
</tr>
</tbody>
</table>
5.2.1.9. show interface switchport

This command displays VLAN port information.

Format show interface switchport [{<slot/port> | port-channel <1-64>}]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>no parameter</td>
<td>To display information for all ports.</td>
</tr>
<tr>
<td><slot/port></td>
<td>Specifies Interface number</td>
</tr>
<tr>
<td>port-channel <1-64></td>
<td>Specifies to display information for the port-channel. The range of the port-channel ID is 1 to 64.</td>
</tr>
</tbody>
</table>

Mode Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Indicates by slot id and port number which is the port controlled by the fields on this line.</td>
</tr>
<tr>
<td>Port VLAN ID</td>
<td>The VLAN ID that this port will assign to untagged frames or priority tagged frames received on this port. The value must be for an existing VLAN.</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>Default Priority</td>
<td>The 802.1p priority assigned to untagged packets arriving on the port.</td>
</tr>
<tr>
<td>Admin. Native VLAN</td>
<td>The administrative VLAN ID that this port will assign to untagged frames or priority tagged frames received on this port. The value must be for an existing VLAN.</td>
</tr>
<tr>
<td>Oper. Native VLAN</td>
<td>The operational VLAN ID that this port will assign to untagged frames or priority tagged frames received on this port. The value must be for an existing VLAN.</td>
</tr>
<tr>
<td>Mode</td>
<td>Indicates this interface is operating on Access mode, General mode, Trunk mode, Private Vlan Host mode and Private Vlan Promiscuous mode.</td>
</tr>
<tr>
<td>Ingress Filtering</td>
<td>May be enabled or disabled. When enabled, the frame is discarded if this port is not a member of the VLAN with which this frame is associated. In a tagged frame, the VLAN is identified by the VLAN ID in the tag. In an untagged frame, the VLAN is the Port VLAN ID specified for the port that received this frame. When disabled, all frames are forwarded in accordance with the 802.1Q VLAN bridge specification. The factory default is disabled.</td>
</tr>
<tr>
<td>Acceptable Frame Types</td>
<td>Specifies the types of frames that may be received on this port. The options are 'VLAN only' and 'Admit All'. When set to 'VLAN only', untagged frames or priority tagged frames received on this port are discarded. When set to 'Admit All', untagged frames or priority tagged frames received on this port are accepted and assigned the value of the Port VLAN ID for this port. With either option, VLAN tagged frames are forwarded in accordance to the 802.1Q VLAN specification.</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>Displays the VLAN of which the interface is a member. (Display in administration and operation two statuses)</td>
</tr>
<tr>
<td>VLAN Name</td>
<td>Displays the name of the VLAN of which the interface is a member. (Display in administration and operation two statuses)</td>
</tr>
<tr>
<td>VLAN Type</td>
<td>Displays the type of the VLAN of which the interface is a member. (Display in administration and operation statuses)</td>
</tr>
<tr>
<td>Egress rule</td>
<td>Indicate the port will untag or tag frame when sending frames in that specific VLAN. (Display in administration and operation statuses)</td>
</tr>
</tbody>
</table>
5.2.1.10. show interface tunnel

This command displays the parameters related to tunnel such as tunnel mode, tunnel source address and tunnel destination address.

Format show interface tunnel [<0-7>]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><0-7></td>
<td>Specifies the tunnel ID</td>
</tr>
</tbody>
</table>

Mode Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TunnelId</td>
<td>Shows the tunnel identification number.</td>
</tr>
<tr>
<td>Interface</td>
<td>Shows the name of the tunnel interface..</td>
</tr>
<tr>
<td>Tunnel Mode</td>
<td>Shows the tunnel mode.</td>
</tr>
<tr>
<td>Source Address</td>
<td>Shows the source transport address of the tunnel</td>
</tr>
<tr>
<td>Destination Address</td>
<td>Shows the destination transport address of the tunnel</td>
</tr>
<tr>
<td>Routing Mode</td>
<td>Shows whether the routing is enabled or disabled.</td>
</tr>
<tr>
<td>Administrative Mode</td>
<td>Shows whether the interface administrative mode is enabled or disabled.</td>
</tr>
<tr>
<td>IPv6 Implicit Mode</td>
<td>Shows whether the Implicit mode is enabled, which enables the interface being capable of ipv6 operation without a global address.</td>
</tr>
<tr>
<td>IPv6 Operational Mode</td>
<td>Shows whether the operational state of an interface is enabled or disabled.</td>
</tr>
<tr>
<td>Interface Maximum Transmit Unit</td>
<td>Shows the maximum transmission unit for packets on the interface, in bytes.</td>
</tr>
<tr>
<td>Router Duplicate Address Detection Transmits</td>
<td>Shows the number of consecutive duplicate address detection probes to transmit.</td>
</tr>
<tr>
<td>Router Advertisement NS Interval</td>
<td>Shows the interval, in milliseconds, between router advertisements for advertised neighbor solicitations.</td>
</tr>
<tr>
<td>Router Advertisement Lifetime</td>
<td>Shows the router lifetime value of the interface in router advertisements.</td>
</tr>
<tr>
<td>Router Advertisement Reachable Time</td>
<td>Shows the amount of time, in milliseconds, to consider a neighbor reachable after neighbor discovery confirmation.</td>
</tr>
</tbody>
</table>
5.2.1.11. **show interface description**

This command displays the interface description.

Format

```
show interface description [slot/port | loopback <loopback-id> | port-channel <portchannel-id> | tunnel <tunnel-id> | vlan <vlan-id>]
```

Mode

Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The slot/port or LAG with the information to view.</td>
</tr>
<tr>
<td>Description</td>
<td>The alpha-numeric description of the interface created by the description command.</td>
</tr>
</tbody>
</table>

Example: The following example shows the CLI display output for the command **show interface description 0/1**.

```
(M4500-32C) #show interface description 0/1

Interface 0/1
Description
```

5.2.1.12. **show interface fec**

This command displays forward error correction information for the interface.
Format
show interface fec [<slot/port>]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>no parameter</td>
<td>To display information for all ports.</td>
</tr>
<tr>
<td><slot/port></td>
<td>Specifies Interface number</td>
</tr>
</tbody>
</table>

Mode
Privileged EXEC

5.2.13. show interface advertise

Use this command to display the advertisement information for interfaces.

Format
show interface advertise [<slot/port>]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>no parameter</td>
<td>Displays information for all ports.</td>
</tr>
<tr>
<td><slot/port></td>
<td>The interface number for which information is displayed.</td>
</tr>
</tbody>
</table>

Mode
Privileged EXEC

Example:

(M4500-48XF8C) # show interface advertise

<table>
<thead>
<tr>
<th>Intf</th>
<th>Neg</th>
<th>Operational Link Advertisement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>--------------------------------</td>
</tr>
<tr>
<td>0/1</td>
<td>Enabled</td>
<td>25000f</td>
</tr>
<tr>
<td>0/2</td>
<td>Enabled</td>
<td>25000f</td>
</tr>
<tr>
<td>0/3</td>
<td>Enabled</td>
<td>25000f</td>
</tr>
<tr>
<td>0/4</td>
<td>Enabled</td>
<td>25000f</td>
</tr>
<tr>
<td>0/5</td>
<td>Disabled</td>
<td>- - - - - - - -</td>
</tr>
<tr>
<td>0/6</td>
<td>Disabled</td>
<td>- - - - - - - -</td>
</tr>
<tr>
<td>0/7</td>
<td>Disabled</td>
<td>- - - - - - - -</td>
</tr>
<tr>
<td>0/8</td>
<td>Disabled</td>
<td>- - - - - - - -</td>
</tr>
<tr>
<td>0/9</td>
<td>Disabled</td>
<td>- - - - - - - -</td>
</tr>
<tr>
<td>0/10</td>
<td>Disabled</td>
<td>- - - - - - - -</td>
</tr>
<tr>
<td>0/11</td>
<td>Disabled</td>
<td>- - - - - - - -</td>
</tr>
</tbody>
</table>
0/12 Disabled - - - - - -

(M4500-48XF8C) #show interface advertise 0/1
Port: 0/1
Link State: Up
Auto Negotiation: Enabled
Clock: Slave

100000f 50000f 40000f 25000f 10000f 1000f
------- ------- ------- ------- ------- -------
Admin Local link Advertisement no no no yes no no
Oper Local link Advertisement no no no yes no no
Oper Peer Advertisement no no no yes no no
Priority Resolution no no no yes no no

5.2.1.14. Interface configuration commands

5.2.1.14.1. interface

This command is used to enter Interface configuration mode.

Format interface {<slot/port> | control-plane | loopback <0-63> | port-channel <1-64> | range <intf-range>| tunnel <0-7> | vlan <1-4093> | vxlan <1-1>}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><slot/port></td>
<td>Enter into interface mode</td>
</tr>
<tr>
<td>control-plane</td>
<td>Enter into Control Plane Mode</td>
</tr>
<tr>
<td>loopback <0-63></td>
<td>Configuration of Loopback Interface</td>
</tr>
<tr>
<td>port-channel <1-64></td>
<td>Enter into interface port-channel mode.</td>
</tr>
<tr>
<td>Range <intf-range></td>
<td>Enter into interface range mode. Specifies the interface(s) in slot/port</td>
</tr>
<tr>
<td>tunnel <0-7></td>
<td>Configure IPv6 Tunnel.</td>
</tr>
<tr>
<td>vlan <1-4093></td>
<td>Enter into interface VLAN mode.</td>
</tr>
<tr>
<td>vxlan <1-1></td>
<td>Enter into VxLAN Mode.</td>
</tr>
</tbody>
</table>
5.2.1.14.2. **description**

This command is used to create an alpha-numeric description of the port.

Format
```
description <description>
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><description></td>
<td>an alpha-numeric description</td>
</tr>
</tbody>
</table>

Default None

Mode Interface Config

5.2.1.14.3. **no description**

This command removes the description of the interface.

Format
```
no description
```

Mode Interface Config

5.2.1.14.4. **flowcontrol**

This command enables 802.3x flow control for the interface(s).

Format
```
flowcontrol {asymmetric | symmetric}
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>asymmetric</td>
<td>Indicates to enable an asymmetric flow control</td>
</tr>
<tr>
<td>symmetric</td>
<td>Indicates to enable a symmetric flow control</td>
</tr>
</tbody>
</table>

Default Disabled

Mode Global Config

Interface Config
5.2.1.14.5. **no flowcontrol**

This command removes the flow control feature from the interface(s).

Format
`no flowcontrol`

Mode
Global Config, Interface Config

5.2.1.14.6. **mtu**

Use the `mtu` command to set the maximum transmission unit (MTU) size, in bytes, for frames that ingress or egress the interface. You can use the `mtu` command to configure jumbo frame support for physical and port-channel (LAG) interfaces. For the standard ICOS implementation, the MTU size is a valid integer between 1522 and 9412 for tagged packets and a valid integer between 1518 and 9412 for untagged packets.

Format
`mtu <1518-9412>`

Default
1518

Mode
Interface Config

5.2.1.14.7. **no mtu**

This command sets the default MTU size (in bytes) for the interface.

Format
`no mtu`

Mode
Interface Config

5.2.1.14.8. **port-mode**

Use this command to configure a 100G QSFP28 port in either 1x100G, 1x40G, 2x50G, 4x25G, or 4x10G mode or four 25G SFP28 ports in either 4x25G, 4x10G, or 4x1G mode.

Note: In model M4500-48XF8C, every four 25G ports form a group from port 1 until port 48. The `port-mode` command can only be applied on the first port of each group and all the four ports in the same group are configured to the same speed. For example, you can issue the `port-mode 4x1G` command on ethernet port 0/1 but not on ethernet port 0/2, 0/3, or 0/4; all the four ports from 0/1 to 0/4 are configured to 1G.

Format
`port-mode {1x100G | 1x40G | 2x50G | 4x25G | 4x10G | 4x1G}`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
</table>

NETGEAR M4500 Series Switches CLI Command Reference Manual 133
5.2.1.14.9. no port-mode

This command resets to the default value. The default value is 100G for 100G ports and 10G for 25G ports.

Format

```
no port-mode
```

Mode

Interface Config

5.2.1.14.10. shutdown

This command is used to disable a port.

The no command is used to enable a port.

Format

```
[no] shutdown
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>no.</td>
<td>Reset to default.</td>
</tr>
</tbody>
</table>

Default

Enable

Mode

Interface Config
5.2.1.14.11. shutdown all

This command is used to disable all ports.

Format [no] shutdown all

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>no.</td>
<td>Reset to default.</td>
</tr>
</tbody>
</table>

Mode Global Config

5.2.1.14.12. fec

Enable forward error correction on the interface.

Note:
1. Different type of FEC should be applied on different speed. FEC CL74 is applied on 25G/50G interface, FEC CL91 is applied on 100G/50G interface, and FEC CL108 is applied on 25G interface.
2. FEC enable/disable is applied to the first interface of each group, which works in the same way as the command *port-mode*. For example, you can issue the *fec CL108* command on ethernet port 0/1 but not on ethernet port 0/2, 0/3, or 0/4; all the four ports from 0/1 to 0/4 are configured to CL108. For the 50G ports, such as 0/161 and 0/162 on M4500-32C model, you can issue the *fec CL91* command on ethernet port 0/161 but not on ethernet port 0/162; both ports, 0/161 and 0/162, are configured to CL91.

Format fec {CL74 | CL91 | CL108}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL74</td>
<td>Enable CL74/Base-R FEC.</td>
</tr>
<tr>
<td>CL91</td>
<td>Enable CL91/RS FEC.</td>
</tr>
<tr>
<td>CL108</td>
<td>Enable Enable RS108 FEC.</td>
</tr>
</tbody>
</table>

Default Enable

Mode Interface Config

5.2.1.14.13. negotiate

Use this command to enable auto-negotiation on a specific port. Auto-negotiation is supported on 100G/40G/25G ports with DAC cables. AOC cables and 50G/10G/1G ports do not support auto-negotiation.

Note:
- Auto-negotiation is applied to the first interface of each group, which works in the same way as the *port-mode* and *fec* commands. For example, you can issue the *negotiate* command on Ethernet port 0/1 but not...
on Ethernet port 0/2, 0/3, or 0/4. However, if you issue the `negotiate` command on Ethernet port 0/1, all four ports from 0/1 to 0/4 are configured for auto-negotiation.

- If you enable auto-negotiation on SFP28 ports, the advertisement of FEC is CL108. On QSFP28 ports, it is CL91.

Format

```
 negociate
 no negociate
```

Default

Enabled

Mode

Interface Config

5.2.1.15. show port status all

This command displays the status of all ports.

Format

```
show port status all
```

Mode

Privileged EXEC

Display Message

Example: The following example shows the CLI display output for the command `show port status all`.

```
(M4500-32C) #show port status all

<table>
<thead>
<tr>
<th>Intf</th>
<th>Media Type</th>
<th>STP Mode</th>
<th>Physical Status</th>
<th>Link Status</th>
<th>Loop Status</th>
<th>Partner Flow Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1</td>
<td>DAC</td>
<td>FWD</td>
<td>25G Full</td>
<td>Up</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>0/2</td>
<td>DAC</td>
<td>BLK</td>
<td>25G Full</td>
<td>Up</td>
<td>Loop</td>
<td>NA</td>
</tr>
<tr>
<td>0/3</td>
<td>DIS</td>
<td>25G Full</td>
<td>Down</td>
<td></td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>0/4</td>
<td>DIS</td>
<td>25G Full</td>
<td>Down</td>
<td></td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>0/5</td>
<td>10GBase-SR</td>
<td>FWD</td>
<td>10G Full</td>
<td>Up</td>
<td>Loop</td>
<td>NA</td>
</tr>
<tr>
<td>0/6</td>
<td>10GBase-SR</td>
<td>FWD</td>
<td>10G Full</td>
<td>Up</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>0/49</td>
<td>40GBase-SR4</td>
<td>FWD</td>
<td>40G Full</td>
<td>Up</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>0/50</td>
<td>40GBase-SR4</td>
<td>BLK</td>
<td>40G Full</td>
<td>Up</td>
<td>Loop</td>
<td>NA</td>
</tr>
</tbody>
</table>
```

5.2.1.16. Show flowcontrol

Use this command to display the IEEE 802.3 Annex 31B flow control settings and status for a specific interface or all interfaces. It also displays 802.3 Tx and Rx pause counts. Priority Flow Control frames counts are not displayed. If the port is enabled for priority flow control, operational flow control status is displayed as Inactive.

Format

```
show flowcontrol
```

Mode

Privileged EXEC
Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin Flow Control</td>
<td>The administrative mode of flow control.</td>
</tr>
<tr>
<td>port</td>
<td>The port associated with the rest of the data in the row.</td>
</tr>
<tr>
<td>Flow Control Oper</td>
<td>The operational mode of flow control.</td>
</tr>
<tr>
<td>RxPause</td>
<td>The received pause frame count.</td>
</tr>
<tr>
<td>TxPause</td>
<td>The transmitted pause frame count.</td>
</tr>
</tbody>
</table>

Example:
The following shows examples of the command.

(Routing)#show flowcontrol

Admin Flow Control: Symmetric

<table>
<thead>
<tr>
<th>Port</th>
<th>Flow Control</th>
<th>RxPause</th>
<th>TxPause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>------ ------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>0/1</td>
<td>Active</td>
<td>310</td>
<td>611</td>
</tr>
<tr>
<td>0/2</td>
<td>Inactive</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

--More-- or (q)uit

(Routing)#show flowcontrol interface 0/1

Admin Flow Control: Symmetric

<table>
<thead>
<tr>
<th>Port</th>
<th>Flow Control</th>
<th>RxPause</th>
<th>TxPause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>------ ------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>0/1</td>
<td>Active</td>
<td>310</td>
<td>611</td>
</tr>
</tbody>
</table>
5.2.2. Show BMC Commands

5.2.2.1. show bmc

Use this command to display the information for BMC.

Format show bmc

Mode Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMC Version</td>
<td>BMC Version</td>
</tr>
<tr>
<td>BMC IP Protocol</td>
<td>IP address protocol: DHCP or Static</td>
</tr>
<tr>
<td>BMC IP Address</td>
<td>BMC IP address</td>
</tr>
<tr>
<td>BMC Subnet Mask</td>
<td>BMC subnet mask</td>
</tr>
<tr>
<td>BMC Default Gateway</td>
<td>IP address of default gateway</td>
</tr>
<tr>
<td>BMC MAC Address</td>
<td>BMC MAC address</td>
</tr>
<tr>
<td>BMC Watchdog Status</td>
<td>Watchdog is Started/Running or Stopped</td>
</tr>
<tr>
<td>BMC Watchdog Actions</td>
<td>The action to be taken when Watchdog detects a device abnormality.</td>
</tr>
<tr>
<td>BMC Watchdog Timeout</td>
<td>True when Watchdog detects no response from device, else it's False.</td>
</tr>
<tr>
<td>BMC Watchdog Config Time</td>
<td>User configured Watchdog timeout (unit: seconds)</td>
</tr>
<tr>
<td>BMC Watchdog Present Time</td>
<td>Remained time to take Watchdog Actions (unit: seconds).</td>
</tr>
</tbody>
</table>

Example:

(M4500-48XF8C) # show bmc
BMC Version.. 3.06.00
BMC IP Protocol................................... DHCP
BMC IP Address...................................... 172.20.0.71
BMC Subnet Mask.................................... 255.255.0.0
BMC Default Gateway............................. 172.20.255.254
BMC MAC Address.......................... d8:c4:97:b4:87:cb
BMC Watchdog Status......................... Stopped
BMC Watchdog Actions......................... Hard Reset
BMC Watchdog Timeout........................ False
BMC Watchdog Config Time (sec).............. 60
BMC Watchdog Present Time (sec)............. 60

BMC User List

qct.admin

5.2.2.2. bmc account password

Use this command to change the password of the specific account for BMC. The password must be in plain text between 8 and 16 characters. The text that you type is displayed in asterisk characters.

Format bmc account <username> password
Default The same as the user name of the account
Mode Global Config

5.2.2.3. bmc ip

Use this command to set a static IP address for BMC or change its IP protocol to DHCP.

Format bmc ip {dhcp | static <ipaddr> <netmask> <gateway>}
Default bmc ip dhcp
Mode Global Config

5.2.2.4. bmc watchdog

Use this command to start or stop the BMC watchdog or to modify the watchdog timer for time-out detection.

If you enable the watchdog, NOS resets the countdown timer each fifth of the time that is set for the watchdog configuration time. For example, if the watchdog configuration time is 60 seconds, the countdown timer reset each 20 seconds.
Format bmc watchdog [timer <10-600>]
 no bmc watchdog [timer]

Default The watchdog is disabled. If enabled, the default time is 60 seconds.

Mode Global Config

5.2.3. L2 MAC Address and Multicast Forwarding Database Tables

5.2.3.1. show mac-addr-table

This command displays the forwarding database entries. If the command is entered with no parameter, the entire table is displayed. The administrator can enter a MAC Address to display the table entry for the requested MAC address and all entries following the requested MAC address.

Format show mac-addr-table [(<macaddr> <vlan-id>)]

Default None

Mode Privileged EXEC

Example: The following example shows the CLI display output for the command show mac-addr-table.

(M4500-32C) #show mac-addr-table

```
VLAN ID  MAC Address         Interface     IfIndex  Status
-------  ---------------------  ------------  -------  -------
1        C4:54:44:56:D3:57   vlan 1        136      Management
```

5.2.3.2. show mac-addr-table count

This command displays the total forwarding database entries, the number of static and learning mac address, and the max address available on the switch.

Format show mac-addr-table count

Default None

Mode Privileged EXEC

Example: The following example shows the CLI display output for the command show mac-addr-table count.

(M4500-32C) #show mac-addr-table count

```
Dynamic Address count.......................... 0
Static Address (User-defined) count............ 1
```
Total MAC Addresses in use..................... 1
Total MAC Addresses available.................. 98304

5.2.3.3. show mac-addr-table interface

This command displays the forwarding database entries. The user can search FDB table by using specific interface number.

Format show mac-addr-table interface {<slot/port> | port-channel <portchannel-id> | vlan <vlan-id>}

Mode Privileged EXEC

Example: The following example shows the CLI display output for the command `show mac-addr-table vlan 1`.

(M4500-32C) #show mac-addr-table interface vlan 1

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>VLAN ID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4:54:44:56:D3:57</td>
<td>1</td>
<td>Management</td>
</tr>
</tbody>
</table>

5.2.3.4. show mac-address-table igmpsnooping

This command displays the IGMP Snooping entries in the Multicast Forwarding Database (MFDB) table.

Format show mac-address-table igmpsnooping

Mode Privileged EXEC

Example: The following example shows the CLI display output for the command `show mac-address-table igmpsnooping`.

(M4500-32C) (Config)#show mac-address-table igmpsnooping

<table>
<thead>
<tr>
<th>VLAN ID</th>
<th>MAC Address</th>
<th>Type</th>
<th>Description</th>
<th>Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:01:01:00:5E:01:01:01</td>
<td>Static</td>
<td>Network Assist</td>
<td>Fwd: 0/1,chl</td>
<td></td>
</tr>
<tr>
<td>00:02:01:00:5E:AA:BB:CC</td>
<td>Static</td>
<td>Network Assist</td>
<td>Fwd: 0/2</td>
<td></td>
</tr>
</tbody>
</table>
5.2.3.5. show mac-address-table multicast

This command displays the MFDB information. If the command is entered with no parameter, the entire table is displayed. This is the same as entering the all parameter. The user can display the table entry for one MAC Address by specifying the MAC address as an optional parameter.

Format show mac-address-table multicast [macaddr]

Mode Privileged EXEC

Example: The following example shows the CLI display output for the command show mac-address-table multicast.

(M4500-32C) (Config)#show mac-address-table multicast

<table>
<thead>
<tr>
<th>VLAN ID</th>
<th>MAC Address</th>
<th>Source</th>
<th>Type</th>
<th>Description</th>
<th>Interface</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01:00:5E:01:01:01</td>
<td>IGMP</td>
<td>Static</td>
<td>Network Assist</td>
<td>Fwd:</td>
<td>Fwd:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/1,</td>
<td>0/1,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ch1</td>
<td>ch1</td>
</tr>
<tr>
<td>2</td>
<td>01:00:5E:AA:BB:CC</td>
<td>IGMP</td>
<td>Static</td>
<td>Network Assist</td>
<td>Fwd:</td>
<td>Fwd:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/2</td>
<td>0/2</td>
</tr>
</tbody>
</table>

5.2.3.6. show mac-address-table status

This command displays the MFDB statistics.

Format show mac-address-table stats

Mode Privileged EXEC

Example: The following example shows the CLI display output for the command show mac-address-table stats.

(M4500-32C) #show mac-address-table stats

Max MFDB Table Entries......................... 1024
Most MFDB Entries Since Last Reset............ 0
Current Entries.................................. 0
5.2.3.7. show mac-addr-table agetime

This command displays the forwarding database address aging timeout.

Format show mac-addr-table agetime
Mode Privileged EXEC

Example: The following example shows the CLI display output for the command show mac-addr-table agetime.

(M4500-32C) #show mac-addr-table agetime
Address Aging Timeout:300

5.2.3.8. mac-addr-table aging-time

This command configures the forwarding database address aging timeout in seconds.

Format mac-addr-table aging-time <10-1000000>
Default 300s
Mode Global Config

5.2.3.9. no mac-addr-table aging-time

Use this command to return the address aging timeout the default settings.

Format no mac-addr-table aging-time
Mode Global Config

5.2.3.10. clear mac-addr-table dynamic

This command clears dynamic MAC entries.

Format clear mac-addr-table dynamic
Default None
Mode Privileged Exec
5.2.4. VLAN Commands

This section describes the commands you use to configure VLAN settings.

5.2.4.1. vlan database

This command gives you access to the VLAN Config mode, which allows you to configure VLAN characteristics.

Format vlan database
Mode Global Config

5.2.4.2. vlan

This command creates a new VLAN and assigns it an ID. The ID is a valid VLAN identification number (ID 1 is reserved for the default VLAN). VLAN range is 1-4093.

Format vlan <vlan-list>
Mode VLAN Config

5.2.4.3. no vlan

This command deletes an existing VLAN. The ID is a valid VLAN identification number (ID 1 is reserved for the default VLAN). The VLAN range is 1-4093.

Format no vlan <vlan-list>
Mode VLAN Config

5.2.4.4. vlan makestatic

This command changes a dynamically created VLAN to a static VLAN (one that is permanently configured and defined). The ID is a valid VLAN identification number. VLAN range is 2-4093.

Format vlan makestatic <2-4093>
Mode VLAN Config
5.2.4.5. **vlan name**

This command changes the name of a VLAN. The name is an alphanumeric string of up to 32 characters, and the ID is a valid VLAN identification number. ID range is 1-4093.

Format

```plaintext
vlan name <1-4093> <newname>
```

Default

VLAN ID 1 - default
Other VLANS - blank string

Mode

VLAN Config

5.2.4.6. **no vlan name**

This command sets the name of a VLAN to a blank string.

Format

```plaintext
no vlan name <1-4093>
```

Mode

VLAN Config

5.2.4.7. **switchport acceptable-frame-types**

This command sets the frame acceptance mode per interface. For VLAN Only mode, untagged frames or priority frames received on this interface are discarded. For Admit All mode, untagged frames or priority frames received on this interface are accepted and assigned the value of the interface VLAN ID for this port. With either option, VLAN tagged frames are forwarded in accordance with the IEEE 802.1Q VLAN specification.

Format

```plaintext
switchport acceptable-frame-types {all | tagged | untagged}
```

Default

all

Mode

Interface Config

5.2.4.8. **no switchport acceptable-frame-types**

This command resets the frame acceptance mode for the interface to the default value.

Format

```plaintext
no switchport acceptable-frame-types
```

Mode

Interface Config
5.2.4.9. switchport acceptable-frame-type all

This command sets the frame acceptance mode for all interfaces. For VLAN Only mode, untagged frames or priority frames received on this interface are discarded. For Admit All mode, untagged frames or priority frames received on this interface are accepted and assigned the value of the interface VLAN ID for this port. With either option, VLAN tagged frames are forwarded in accordance with the IEEE 802.1Q VLAN specification.

Format switchport acceptable-frame-types all {all | tagged | untagged}
Default all
Mode Global Config

5.2.4.10. no switchport acceptable-frame-types all

This command resets the frame acceptance mode for all interfaces to the default value.

Format no switchport acceptable-frame-types all
Mode Global Config

5.2.4.11. switchport ingress-filtering

This command enables ingress filtering. If ingress filtering is disabled, frames received with VLAN IDs that do not match the VLAN membership of the receiving interface are admitted and forwarded to ports that are members of that VLAN.

Format switchport ingress-filtering
Default disabled
Mode Interface Config

5.2.4.12. no switchport ingress-filtering

This command disables ingress filtering. If ingress filtering is disabled, frames received with VLAN IDs that do not match the VLAN membership of the receiving interface are admitted and forwarded to ports that are members of that VLAN.

Format no switchport ingress-filtering
Mode Interface Config
5.2.4.13. **switchport ingress-filtering all**

This command enables ingress filtering for all interfaces. If ingress filtering is disabled, frames received with VLAN IDs that do not match the VLAN membership of the receiving interface are admitted and forwarded to ports that are members of that VLAN.

Format
```
switchport ingress-filtering all
```

Default
disabled

Mode
Global Config

5.2.4.14. **no switchport ingress-filtering all**

This command disables ingress filtering for all interfaces. If ingress filtering is disabled, frames received with VLAN IDs that do not match the VLAN membership of the receiving interface are admitted and forwarded to ports that are members of that VLAN.

Format
```
no switchport ingress-filtering all
```

Mode
Global Config

5.2.4.15. **switchport native vlan**

This command changes the VLAN ID which will be assigned to untagged or priority tagged frames per interface.

Format
```
switchport native vlan <1-4093>
```

Default
1

Mode
Interface Config

5.2.4.16. **no switchport native vlan**

This command sets the VLAN ID per interface to 1.

Format
```
no switchport native vlan
```

Mode
Interface Config
5.2.4.17. switchport native vlan all

This command changes the VLAN ID which will be assigned to untagged or priority tagged frames for all interfaces.

Format switchport native vlan all <1-4093>

Default 1

Mode Global Config

5.2.4.18. no switchport native vlan all

This command sets the VLAN ID for all interfaces to 1.

Format no switchport native vlan all

Mode Global Config

5.2.4.19. switchport allowed vlan

This command configures the degree of participation for a specific interface in a VLAN. The ID is a valid VLAN identification number, and the interface is a valid interface number.

Format switchport allowed vlan {add [tagged | untagged] | remove} <vlan-list>

Mode Interface Config

5.2.4.20. switchport allowed vlan all

This command configures the degree of participation for all interfaces in a VLAN. The ID is a valid VLAN identification number.

Format switchport allowed vlan {add {tagged | untagged} | remove} all <1-4093>

Mode Global Config

5.2.4.21. switchport tagging

This command configures the tagging behavior for a specific interface in a VLAN to enable. If tagging is enabled, traffic is transmitted as tagged frames. If tagging is disabled, traffic is transmitted as untagged frames. The ID is a valid VLAN identification number.
5.2.4.22. **no switchport tagging**

This command configures the tagging behavior for a specific interface in a VLAN to disabled. If tagging is disabled, traffic is transmitted as untagged frames. The ID is a valid VLAN identification number.

Format no switchport tagging <vlan-list>

Mode Interface Config

5.2.4.23. **switchport tagging all**

This command configures the tagging behavior for all interfaces in a VLAN to be enabled. If tagging is enabled, traffic is transmitted as tagged frames. If tagging is disabled, traffic is transmitted as untagged frames. The ID is a valid VLAN identification number.

Format switchport tagging all <1-4093>

Default Disable

Mode Global Config

5.2.4.24. **no switchport tagging all**

This command configures the tagging behavior for all interfaces in a VLAN to disabled. If tagging is disabled, traffic is transmitted as untagged frames. The ID is a valid VLAN identification number.

Format no switchport tagging all <1-4093>

Mode Global Config

5.2.4.25. **show vlan**

This command displays brief information on a list of all configured VLANs.

Format show vlan

Mode Privileged EXEC
User EXEC

Display Message

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>There is a VLAN Identifier (vlanid) associated with each VLAN. The range of the VLAN ID is 1 to 4093.</td>
</tr>
<tr>
<td>VLAN Name</td>
<td>A string associated with this VLAN as a convenience. It can be up to 16 alphanumeric characters, including blanks. The default is blank. VLAN ID 1 is always named 'Default'. This field is optional.</td>
</tr>
<tr>
<td>VLAN Type</td>
<td>Type of VLAN, which can be Default, (VLAN ID = 1), can be static (one that is configured and permanently defined), or Dynamic (one that is created by GVRP registration).</td>
</tr>
<tr>
<td>Interface(s)</td>
<td>Indicates by slot id and port number which port belongs to this VLAN.</td>
</tr>
</tbody>
</table>

5.2.4.26. show vlan id

This command displays detailed information, including interface information, for a specific VLAN.

Format
```
show vlan {id <1-4093> | name <vlanname>}
```

Mode
- Privileged EXEC
- User EXEC

Display Message

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>There is a VLAN Identifier (VID) associated with each VLAN. The range of the VLAN ID is 1 to 4093.</td>
</tr>
<tr>
<td>VLAN Name</td>
<td>A string associated with this VLAN as a convenience. It can be up to 32 alphanumeric characters, including blanks. The default is blank. VLAN ID 1 is always named 'Default'. This field is optional.</td>
</tr>
<tr>
<td>VLAN Type</td>
<td>Type of VLAN, which can be Default, (VLAN ID = 1), can be static (one that is configured and permanently defined), or Dynamic (one that is created by GVRP registration).</td>
</tr>
<tr>
<td>Interface</td>
<td>Indicates by slot id and port number which port belongs to this VLAN.</td>
</tr>
</tbody>
</table>

Current:
- **Include**
- **Exclude**
- **Autodetect**

Determines the degree of participation of this port in this VLAN. The permissible values are:
- This port is always a member of this VLAN. This is equivalent to registration fixed in the IEEE 802.1Q standard.
- This port is never a member of this VLAN. This is equivalent to registration forbidden in the IEEE 802.1Q standard.
- Specifies to allow the port to be dynamically registered in this VLAN via GVRP. The port will not participate in this VLAN unless a join request is received on this port. This is equivalent to registration normal in the IEEE 802.1Q standard.

Configured:
- **Include**
- **Exclude**
- **Autodetect**

Determines the configured degree of participation of this port in this VLAN. The permissible values are:
- This port is always a member of this VLAN. This is equivalent to registration fixed in the IEEE 802.1Q standard.
5.2.4.27. **show vlan internal usage**

This command displays information about the VLAN ID allocation on the switch.

Format
show vlan internal usage

Mode
Privileged EXEC
User EXEC

Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base VLAN ID</td>
<td>Identifies the base VLAN ID for Internal allocation of VLANs to the routing interface.</td>
</tr>
<tr>
<td>Allocation policy</td>
<td>Identifies whether the system allocates VLAN IDs in ascending or descending order.</td>
</tr>
</tbody>
</table>

5.2.4.28. **show interface switchport**

This command displays VLAN port information.

Format
show interface switchport {<slot/port> | port-channel <1-64>}

Mode
Privileged EXEC
User EXEC

Display Message

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Indicates by slot id and port number which port is controlled by the fields on this line. It is possible to set the parameters for all ports by using the selectors on the top line.</td>
</tr>
<tr>
<td>Native VLAN</td>
<td>The VLAN ID that this port will assign to untagged frames or priority tagged frames received on this port. The value must be for an existing VLAN. The factory default is 1.</td>
</tr>
<tr>
<td>Mode</td>
<td>Indicates this interface is operating on Access mode or General mode.</td>
</tr>
</tbody>
</table>
5.2.4.29. `show vlan private-vlan`

This command displays private vlan information.

Format
`show vlan private-vlan [type]`

Mode
Privileged Exec

5.2.4.30. `show vlan remote-span`

This command displays remote-span information.

Format
`show vlan private-vlan`

Mode
Privileged Exec

5.2.5. **Private VLAN Commands**

This section describes the commands you use for private VLANs. Private VLANs provides Layer 2 isolation between ports that share the same broadcast domain. In other words, it allows a VLAN broadcast domain to be partitioned into smaller point-to-multipoint subdomains. The ports participating in a private VLAN can be located anywhere in the Layer 2 network.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptable Frame Type</td>
<td>Specifies the types of frames that may be received on this port. The options are 'VLAN only' and 'Admit All'. When set to 'VLAN only', untagged frames or priority tagged frames received on this port are discarded. When set to 'Admit All', untagged frames or priority tagged frames received on this port are accepted and assigned the value of the Port VLAN ID for this port. With either option, VLAN tagged frames are forwarded in accordance to the 802.1Q VLAN specification.</td>
</tr>
</tbody>
</table>
5.2.5.1. switchport private-vlan

This command defines a private-VLAN association for an isolated or community port or a mapping for a promiscuous port.

Format

```
switchport private-vlan {host-association <primary-vlan-id> <secondary-vlan-id> | mapping <primary-vlan-id> [add | remove] <secondary-vlan-list>}
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>host-association</td>
<td>Defines the VLAN association for community or host ports.</td>
</tr>
<tr>
<td>mapping</td>
<td>Defines the private VLAN mapping for promiscuous ports.</td>
</tr>
<tr>
<td>primary-vlan-id</td>
<td>Primary VLAN ID of a private VLAN.</td>
</tr>
<tr>
<td>secondary-vlanid</td>
<td>Secondary (isolated or community) VLAN ID of a private VLAN.</td>
</tr>
<tr>
<td>add</td>
<td>Associates the secondary VLAN with the primary one.</td>
</tr>
<tr>
<td>remove</td>
<td>Deletes the secondary VLANs from the primary VLAN association.</td>
</tr>
<tr>
<td>secondary-vlanlist</td>
<td>A list of secondary VLANs to be mapped to a primary VLAN.</td>
</tr>
</tbody>
</table>

Mode Interface Config

5.2.5.2. **no switchport private-vlan**

This command removes the private-VLAN association or mapping from the port.

Format

```
no switchport private-vlan {host-association | mapping}
```

Mode Interface Config

5.2.5.3. switchport mode private-vlan

This command configures a port as a promiscuous or host private VLAN port. Note that the properties of each mode can be configured even when the switch is not in that mode. However, they will only be applicable once the switch is in that particular mode.

Format

```
switchport mode private-vlan {host | promiscuous}
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>host</td>
<td>Configures an interface as a private VLAN host port. It can be either isolated or community port depending on the secondary VLAN it is associated with.</td>
</tr>
<tr>
<td>promiscuous</td>
<td>Configures an interface as a private VLAN promiscuous port. The promiscuous ports are members of the primary VLAN.</td>
</tr>
</tbody>
</table>

Default general

Mode Interface Config
5.2.5.4. **no switchport mode private-vlan**

This command removes the private-VLAN association or mapping from the port.

Format
no switchport mode private-vlan

Mode
Interface Config

5.2.5.5. **private-vlan**

This command configures the private VLANs and configures the association between the primary private VLAN and secondary VLANs.

Format
private-vlan {association [add | remove] <secondary-vlanlist> | community | isolated | primary}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>association</td>
<td>Associates the primary and secondary VLAN.</td>
</tr>
<tr>
<td>secondary-vlan-list</td>
<td>A list of secondary VLANs to be mapped to a primary VLAN.</td>
</tr>
<tr>
<td>community</td>
<td>Designates a VLAN as a community VLAN.</td>
</tr>
<tr>
<td>isolated</td>
<td>Designates a VLAN as the isolated VLAN.</td>
</tr>
<tr>
<td>primary</td>
<td>Designates a VLAN as the primary VLAN.</td>
</tr>
</tbody>
</table>

Mode
VLAN Config

5.2.5.6. **no private-vlan**

This command restores normal VLAN configuration.

Format
no private-vlan [association]

Mode
VLAN Config

5.2.6. **Switch Ports**

This section describes the commands used for switch port mode.

5.2.6.1. **switchport mode**

This command configures an interface to be operated on VLAN access mode. In this mode, only one VLAN could be assigned to this interface. Use ‘switchport access vlan <vlan-id>’ to configure the access VLAN. In VLAN access mode, only the untagged packets are handled.
Format switchport mode <access | general | trunk>

Default General Mode

Mode Interface Config

5.2.6.2. no switchport mode

This command sets the mode to General.

Format no switchport mode

Mode Interface Config

5.2.6.3. switchport trunk allowed vlan

Use this command to configure the list of allowed VLANs that can receive and send traffic on this interface in tagged format when in trunking mode. The default is all.

The VLANs list can be modified using the add or remove options or replaced with another list using the vlan-list, all, or except options. If all is choosen, all VLANs are added to the list of allowed vlan. The except option provides an exclusion list.

Trunk ports accept tagged packets, where tagged packets are processed on the VLAN ID contained in the packet, if this VLAN is in the allowed VLAN list. Tagged packets received with a VLAN ID to which the port is not a member are discarded and MAC learning is not performed. If a VLAN is added to the system after a port is set to the Trunk mode and it is in the allowed VLAN list, this VLAN is assigned to this port automatically.

Format switchport trunk allowed vlan {<vlan-list> | all | add <vlan-list> | remove <vlan-list> | except <vlan-list>}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Specifies all VLANs from 1 to 4093. This keyword is not allowed on commands that do not permit all VLANs in the list to be set at the same time.</td>
</tr>
<tr>
<td>add</td>
<td>Adds the defined list of VLANs to those currently set instead of replacing the list.</td>
</tr>
<tr>
<td>remove</td>
<td>Removes the defined list of VLANs from those currently set instead of replacing the list. Valid IDs are from 1 to 4093; extended-range VLAN IDs of the form XY or X, Y, Z are valid in this command.</td>
</tr>
<tr>
<td>except</td>
<td>Lists the VLANs that should be calculated by inverting the defined list of VLANs. (VLANs are added except the ones specified.)</td>
</tr>
<tr>
<td>vlan-list</td>
<td>Either a single VLAN number from 1 to 4093 or a continuous range of VLANs described by two VLAN numbers, the lesser one first, separated by a hyphen.</td>
</tr>
</tbody>
</table>

Default All

Mode Interface Config
5.2.6.4. **no switchport trunk allowed vlan**

This command resets the list of allowed VLANs on the trunk port to its default value.

Format
no switchport trunk allowed vlan

Mode
Interface Config

5.2.6.5. **switchport trunk native vlan**

Use this command to configure the Trunk port Native VLAN (PVID) parameter. Any ingress untagged packets on the port are tagged with the value of Native VLAN. Native VLAN must be in the allowed VLAN list for tagging of received untagged packets. Otherwise, untagged packets are discarded. Packets marked with Native VLAN are transmitted untagged from Trunk port. The default is 1.

Format
switchport trunk native vlan <vlan-id>

Default
1 (Default VLAN)

Mode
Interface Config

5.2.6.6. **no switchport trunk native vlan**

Use this command to reset the switch port trunk mode native VLAN to its default value.

Format
no switchport trunk native vlan

Mode
Interface Config

5.2.6.7. **switchport access vlan**

Use this command to configure the VLAN on the Access port. Only one VLAN can be assigned to the Access port. Access ports are members of VLAN 1 by default. Access ports may be assigned to a VLAN other than VLAN 1. Removing the Access VLAN on the switch makes the Access port a member of VLAN 1. Configuring an Access port to be a member of a VLAN that does not exist results in an error and does not change the configuration.

Format
switchport access vlan <vlan-id>

Default
1 (Default VLAN)

Mode
Interface Config
5.2.6.8. *no switchport access vlan*

This command sets the access VLAN ID to 1.

Format
```plaintext
no switchport access vlan
```

Mode
Interface Config

5.2.6.9. *show interfaces switchport*

Use this command to display the switchport status for all interfaces or a specified interface.

Format
```plaintext
show interfaces switchport [slot/port | port-channel <trunk-id>]
```

Mode
Privileged EXEC

5.2.7. **Double VLAN Commands**

This section describes the commands you use to configure double VLAN (DVLAN). Double VLAN tagging is a way to pass VLAN traffic from one customer domain to another through a Metro Core in a simple and cost effective manner. The additional tag on the traffic helps differentiate between customers in the MAN while preserving the VLAN identification of the individual customers when they enter their own 802.1Q domain.

5.2.7.1. *dvlan-tunnel ethertype*

This command configures the ethertype for the all interfaces. The two-byte hex ethertype is used as the first 16 bits of the DVLAN tag. The ethertype may have the values of 802.1Q, vman, or custom. If the ethertype has an optional value of custom, then it is a custom tunnel value, and ethertype must be set to a value in the range of 1 to 65535.

Format
```plaintext
dvlan-tunnel ethertype {802.1Q | vman | custom <1–65535>}
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.1Q</td>
<td>Configure the ethertype as 0x8100.</td>
</tr>
<tr>
<td>custom</td>
<td>Configure the value of the custom tag in the range from 1 to 65535.</td>
</tr>
<tr>
<td>vman</td>
<td>Represents the commonly used value of 0x88A8.</td>
</tr>
</tbody>
</table>

Mode
Global Config
5.2.7.2. **no dvlan-tunnel ethertype**

Use the no form of the command to disassociate globally defined TPID(s) to all interfaces.

Format
no dvlan-tunnel ethertype

Mode
Global Config

5.2.7.3. **dot1q-tunnel ethertype**

This command configures the ethertype for the all interfaces. The two-byte hex ethertype is used as the first 16 bits of the DVLAN tag. The ethertype may have the values of 802.1Q, vman, or custom. If the ethertype has an optional value of custom, then it is a custom tunnel value, and ethertype must be set to a value in the range of 1 to 65535.

Format
dot1q-tunnel ethertype {802.1Q | vman | custom <1–65535>}

Mode
Global Config

5.2.7.4. **no dot1q-tunnel ethertype**

Use the no form of the command to disassociate globally defined TPID(s) to all interfaces.

Format
no dot1q-tunnel ethertype

Mode
Global Config

5.2.7.5. **mode dot1q-tunnel**

This command is used to enable Double VLAN Tunneling on the specified interface.

Format
mode dot1q-tunnel

Default
disabled

Mode
Interface Config
5.2.7.6. **no mode dot1q-tunnel**

This command is used to disable Double VLAN Tunneling on the specified interface. By default, Double VLAN Tunneling is disabled.

Format
no mode dot1q-tunnel

Mode
Interface Config

5.2.7.7. **mode dvlan-tunnel**

Use this command to enable Double VLAN Tunneling on the specified interface.

Note: When you use the mode dvlan-tunnel command on an interface, it becomes a service provider port. Ports that do not have double VLAN tunneling enabled are customer ports.

Format
mode dvlan-tunnel

Default
disabled

Mode
Interface Config

5.2.7.8. **no mode dvlan-tunnel**

This command is used to disable Double VLAN Tunneling on the specified interface. By default, Double VLAN Tunneling is disabled.

Format
no mode dvlan-tunnel

Mode
Interface Config

5.2.7.9. **show dot1q-tunnel**

Use this command with the optional parameter interface to display all interfaces enabled for Double VLAN Tunneling. Use the optional parameters to display detailed information about Double VLAN Tunneling for the specified interface.

Format
show dot1q-tunnel [interface [(<slot/port> | port-channel <port-channel-id >)]]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>slot/port</td>
</tr>
<tr>
<td>Mode</td>
<td>The administrative mode through which Double VLAN Tunneling can be enabled or disabled. The default value for this field is disabled.</td>
</tr>
</tbody>
</table>
EtherType

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>EtherType</td>
<td>A 2-byte hex EtherType to be used as the first 16 bits of the DVLAN tunnel. There are three different EtherType tags. The first is 802.1Q, which represents the commonly used value of 0x8100. The second is vMAN, which represents the commonly used value of 0x88A8. If EtherType is not one of these two values, then it is a custom tunnel value, representing any value in the range of 1 to 65535.</td>
</tr>
</tbody>
</table>

Mode

<table>
<thead>
<tr>
<th>Privileged EXEC</th>
<th>User EXEC</th>
</tr>
</thead>
</table>

Example: The following shows examples of the CLI display output for the commands `show dot1q-tunnel`.

```
(M4500-32C) #show dot1q-tunnel

Ethertype........................................... 0x8100
Interfaces Enabled for DVLAN Tunneling........ None

(M4400-32C) #show dvlan-tunnel interface port-channel 1

<table>
<thead>
<tr>
<th>Interface</th>
<th>Mode</th>
<th>EtherType</th>
</tr>
</thead>
<tbody>
<tr>
<td>ch1</td>
<td>Disable</td>
<td>0x8100</td>
</tr>
</tbody>
</table>
```

5.2.7.10. `show dvlan-tunnel`

Use this command with the optional parameter interface to display all interfaces enabled for Double VLAN Tunneling. Use the optional parameters to display detailed information about Double VLAN Tunneling for the specified interface.

Format

`show dvlan-tunnel [interface [[<slot/port> | port-channel <portchannel-id >]]]`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>slot/port</td>
</tr>
<tr>
<td>Mode</td>
<td>The administrative mode through which Double VLAN Tunneling can be enabled or disabled. The default value for this field is disabled.</td>
</tr>
<tr>
<td>EtherType</td>
<td>A 2-byte hex EtherType to be used as the first 16 bits of the DVLAN tunnel. There are three different EtherType tags. The first is 802.1Q, which represents the commonly used value of 0x8100. The second is vMAN, which represents the commonly used value of 0x88A8. If EtherType is not one of these two values, then it is a custom tunnel value, representing any value in the range of 1 to 65535.</td>
</tr>
</tbody>
</table>
Example: The following shows examples of the CLI display output for the commands `show dvlan-tunnel`.

(M4500-32C) #show dvlan-tunnel

Ethertype...................................... 0x8100
Interfaces Enabled for DVLAN Tunneling........ None

(M4500-32C) #show dvlan-tunnel interface port-channel 1

<table>
<thead>
<tr>
<th>Interface</th>
<th>Mode</th>
<th>EtherType</th>
</tr>
</thead>
<tbody>
<tr>
<td>ch1</td>
<td>Disable</td>
<td>0x8100</td>
</tr>
</tbody>
</table>

5.2.8. IGMP snooping commands

This section describes the commands which are used to configure IGMP Snooping.

IGMP snooping is designed to prevent flooding multicast traffic which can cause unnecessary load on host devices.

Note: IGMP Snooping can be enabled with MLAG. The configuration of IGMP Snooping on peers of MLAG must be the same to guarantee that MLAG can work correctly.

5.2.8.1. `ip igmp snooping`

Use this command to enable IGMP snooping globally.

Format `ip igmp snooping`

Default Disable

Mode Global Config

5.2.8.2. `no ip igmp snooping`

Use this command to disable IGMP snooping globally.

Format `no ip igmp snooping`

Mode Global Config
5.2.8.3. clear igmp snooping

Use this command to delete all dynamic entries in Multicast Forwarding Database which is managed by the IGMP Snooping.

Format clear igmp snooping

Default None

Mode Privileged Exec

5.2.8.4. ip igmp snooping interfacemode

Use this command to enable IGMP snooping on one particular interface.

Format ip igmp snooping interfacemode

Default Disable

Mode Interface Config

5.2.8.5. no ip igmp snooping interfacemode

Use this command to disable IGMP snooping on one particular interface.

Format no ip igmp snooping interfacemode

Mode Interface Config

5.2.8.6. ip igmp snooping interfacemode all

Use this command to enable IGMP snooping on all interfaces.

Format ip igmp snooping interfacemode all

Default Disable

Mode Global Config
5.2.8.7. no ip igmp snooping interfacemode all

Use this command to disable IGMP snooping on all interfaces.

Format no ip igmp snooping interfacemode all
Mode Global Config

5.2.8.8. ip igmp snooping fast-leave

Use this command to enable IGMP snooping fast-leave admin mode on one particular interface or all interfaces.

Format ip igmp snooping fast-leave
Default Disable
Mode Global Config
 Interface Config

5.2.8.9. no ip igmp snooping fast-leave

Use this command to disable IGMP snooping fast-leave admin mode on one particular interface or all interfaces.

Format no ip igmp snooping fast-leave
Mode Global Config
 Interface Config

5.2.8.10. ip igmp snooping groupmembershipinterval

Use this command to configure IGMP Group Membership Interval time on one particular interface or all interfaces.

Format ip igmp snooping groupmembershipinterval <2-3600>
Default 600 seconds
Mode Global Config
 Interface Config
5.2.8.11. **no ip igmp snooping groupmembershipinterval**

Use this command to restore IGMP Group Membership Interval time to default value.

Format

```
no ip igmp snooping groupmembershipinterval
```

Mode

- Global Config
- Interface Config

5.2.8.12. **ip igmp snooping mcrtexpiretime**

Use this command to configure Multicast Router Present Expiration time globally or on one particular interface.

Format

```
ip igmp snooping mcrtexpiretime <0-3600>
```

Default

300 seconds

Mode

- Global Config
- Interface Config

5.2.8.13. **no ip igmp snooping mcrtexpiretime**

Use this command to restore Multicast Router Present Expiration time to default value.

Format

```
no ip igmp snooping mcrtexpiretime
```

Mode

- Global Config
- Interface Config

5.2.8.14. **ip igmp snooping mrouter**

Use this command to configure one particular interface as a multicast router-attached interface or configure the VLAN ID for the VLAN that has the multicast router attached mode enabled.

Format

```
ip igmp snooping mrouter {interface | <vlan-id>}
```

Default

Disable

Mode

- Interface Config
5.2.8.15. **no ip igmp snooping mrouter**

Use this command to disable multicast router attached mode for one particular interface or a VLAN.

Format
no ip igmp snooping mrouter {interface | <vlan-id>}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><vlan-id></td>
<td>The VLAN ID. (Range: 1-4093)</td>
</tr>
</tbody>
</table>

Mode
Interface Config

5.2.8.16. **set igmp**

Use this command to enable IGMP Snooping on a particular VLAN.

Format
set igmp <vlan-id>

Default
Disable

Mode
VLAN database

5.2.8.17. **no set igmp**

Use this command to disable IGMP Snooping on a particular VLAN.

Format
no set igmp <vlan-id>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><vlan-id></td>
<td>The VLAN ID. (Range: 1-4093)</td>
</tr>
</tbody>
</table>

Mode
VLAN database

5.2.8.18. **set igmp fast-leave**

Use this command to enable IGMP Snooping fast-leave admin mode on a particular VLAN.

Format
set igmp fast-leave <vlan-id>

Default
Disable

Mode
VLAN database
5.2.8.19. no set igmp fast-leave

Use this command to disable IGMP Snooping fast-leave admin mode on a particular VLAN.

Format no set igmp fast-leave <vlan-id>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><vlan-id></td>
<td>The VLAN ID. (Range: 1-4093)</td>
</tr>
</tbody>
</table>

Mode VLAN database

5.2.8.20. set igmp groupmembership-interval

Use this command to configure IGMP Group Membership Interval time on a particular VLAN.

Format set igmp groupmembership-interval <vlan-id> <2-3600>

Default 600 seconds

Mode VLAN database

5.2.8.21. no set igmp groupmembership-interval

Use this command to restore IGMP Group Membership Interval time on a particular VLAN to default value.

Format no set igmp groupmembership-interval <vlan-id>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><vlan-id></td>
<td>The VLAN ID. (Range: 1-4093)</td>
</tr>
</tbody>
</table>

Mode VLAN database

5.2.8.22. set igmp maxresponse

Use this command to configure IGMP Maximum Response time on a particular VLAN when the igmp-plus command is not enabled.

Format set igmp maxresponse <vlan-id> <1-300>

Default 120

Mode VLAN database
5.2.8.23. *no set igmp maxresponse*

Use this command to restore IGMP Maximum Response time on a particular VLAN to default value.

Format
`no set igmp maxresponse <vlan-id>`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><vlan-id></td>
<td>The VLAN ID. (Range: 1-4093)</td>
</tr>
</tbody>
</table>

Mode
VLAN database

5.2.8.24. *set igmp mcrtexpirytime*

Use this command to configure Multicast Router Present Expiration time on a particular VLAN.

Format
`set igmp mcrtexpirytime <vlan-id> <0-3600>`

Default
300

Mode
VLAN database

5.2.8.25. *no set igmp mcrtexpirytime*

Use this command to restore Multicast Router Present Expiration time on a particular VLAN to default value.

Format
`no set igmp mcrtexpirytime <vlan-id>`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><vlan-id></td>
<td>The VLAN ID. (Range: 1-4093)</td>
</tr>
</tbody>
</table>

Mode
VLAN database

5.2.8.26. *set igmp report-suppression*

Use this command to enable Report Suppression on a particular VLAN.

Format
`set igmp report-suppression <vlan-id>`

Default
Disable

Mode
VLAN database
5.2.8.27. **no set igmp report-suppression**

Use this command to disable Report Suppression on a particular VLAN.

Format
no set igmp report-suppression <vlan-id>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><vlan-id></td>
<td>The VLAN ID. (Range: 1-4093)</td>
</tr>
</tbody>
</table>

Mode
VLAN database

5.2.8.28. **set snoop-vlan-block**

Use this command to enable Snooping Vlan Block mode for a list of VLAN.

Format
set snoop-vlan-block <vlan-list>

Default
None

Mode
VLAN database

5.2.8.29. **no set snoop-vlan-block**

Use this command to disable Snooping Vlan Block mode for a list of VLAN.

Format
no set snoop-vlan-block <vlan-list>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan-list</td>
<td>The VLANs which apply this command.</td>
</tr>
</tbody>
</table>

Mode
VLAN database

5.2.8.30. **ip igmp snooping static**

Use this command to add an interface to a multicast group.

Format
ip igmp snooping static <macaddr> vlan <vlan-id> [interface {<slot/port> | port-channel <portchannel-id>}]

Default
None

Mode
Global Config
5.2.8.31. **no ip igmp snooping static**

Use this command to remove an interface from a multicast group.

Format

```plaintext
no ip igmp snooping static <macaddr> vlan <vlan-id> interface {<slot/port> | port-channel <portchannel-id>}
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan-id</td>
<td>The VLAN ID. (Range: 1-4093)</td>
</tr>
<tr>
<td>macaddr</td>
<td>Multicast Group MAC address</td>
</tr>
<tr>
<td>slot/port</td>
<td>Interface number</td>
</tr>
<tr>
<td>portchannel-id</td>
<td>Port-channel interface number. The range of port-channel ID is 1 to 64.</td>
</tr>
</tbody>
</table>

Mode

Global Config

5.2.8.32. **ip igmp snooping router-alert-check**

Use this command to enable Router-Alert validation for IGMP packets.

Format

```plaintext
ip igmp snooping router-alert-check
```

Default

Disable

Mode

Global Config

5.2.8.33. **no ip igmp snooping router-alert-check**

Use this command to disable Router-Alert validation for IGMP packets.

Format

```plaintext
no ip igmp snooping router-alert-check
```

Mode

Global Config

5.2.8.34. **show ip igmp snooping**

Use this command to display IGMP snooping information.

Format

```plaintext
show ip igmp snooping [interface {<slot/port> | vlan <vlan-id> | port-channel <portchannel-id>}]}
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan-id</td>
<td>The VLAN ID. (Range: 1-4093)</td>
</tr>
<tr>
<td>slot/port</td>
<td>Interface number</td>
</tr>
<tr>
<td>portchannel-id</td>
<td>Port-channel interface number. The range of port-channel ID is 1 to 64.</td>
</tr>
</tbody>
</table>

Mode

Privilege Exec
Display Message

If no parameters are specified, this command displays the following information:

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin Mode</td>
<td>Indicates whether or not IGMP Snooping is enabled on the switch.</td>
</tr>
<tr>
<td>Operation Mode</td>
<td>Indicates whether or not IGMP Snooping is active on the switch.</td>
</tr>
<tr>
<td>Multicast Control Frame Count</td>
<td>Displays the number of IGMP Control frames that are processed by the CPU.</td>
</tr>
<tr>
<td>IGMP Snooping Router-Alert check</td>
<td>Indicates whether or not Router-Alert Validation is active on the switch.</td>
</tr>
<tr>
<td>Interfaces Enabled for IGMP Snooping</td>
<td>Interfaces on which IGMP Snooping is enabled.</td>
</tr>
<tr>
<td>VLANs enabled for IGMP snooping</td>
<td>VLANs on which IGMP Snooping is enabled.</td>
</tr>
<tr>
<td>VLANs Block enabled for snooping</td>
<td>VLANs on which IGMP Snooping is disabled.</td>
</tr>
</tbody>
</table>

If parameter <slot/port> or <portchannel-id> is specified, the following information is displayed:

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP Snooping Admin Mode</td>
<td>Indicates whether IGMP Snooping is active on the interface.</td>
</tr>
<tr>
<td>Fast Leave Mode</td>
<td>Indicates whether IGMP Snooping Fast Leave is active on the interface.</td>
</tr>
<tr>
<td>Group Membership Interval</td>
<td>Shows the amount of time in seconds that a switch will wait for a report from a particular group on a particular interface, which is participating on the interface, before deleting the interface from the entry. This value may be configured.</td>
</tr>
<tr>
<td>Max Response Time</td>
<td>Shows the amount of time in seconds that a switch will wait after receiving an IGMP Leave Packet.</td>
</tr>
<tr>
<td>Multicast Router Expiry Time</td>
<td>Displays the amount of time to wait before removing an interface that is participating on the interface from the list of interfaces with multicast routers attached. The interface is removed if a query is not received. This value may be configured.</td>
</tr>
</tbody>
</table>

If parameter <vlan-id> is specified, the following information appears:

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>VLAN Id</td>
</tr>
<tr>
<td>IGMP Snooping Admin Mode</td>
<td>Indicates whether IGMP Snooping is active on the VLAN.</td>
</tr>
<tr>
<td>Fast Leave Mode</td>
<td>Indicates whether IGMP Snooping Fast Leave is active on the VLAN.</td>
</tr>
<tr>
<td>Flood IGMP Report and Leave PDU</td>
<td>Indicates whether IGMP report and leave PDUs are flooded on the VLAN.</td>
</tr>
<tr>
<td>Group Membership Interval</td>
<td>Shows the amount of time in seconds that a switch will wait for a report from a particular group on a particular interface, which is participating in the VLAN, before deleting the interface from the entry. This value may be configured.</td>
</tr>
<tr>
<td>Max Response Time</td>
<td>Shows the amount of time in seconds that a switch will wait after receiving an IGMP Leave Packet.</td>
</tr>
<tr>
<td>Multicast Router Block Mode</td>
<td>Indicates whether the Multicast Router Block mode is enabled or disabled on the VLAN.</td>
</tr>
<tr>
<td>Multicast Router Expiry Time</td>
<td>Displays the amount of time to wait before removing an interface that is participating in the VLAN from the list of interfaces with multicast routers</td>
</tr>
</tbody>
</table>
5.2.8.35. show ip igmp snooping mrouter interface

Use this command to display information about dynamically learned or statically configured multicast router-attached interfaces.

Format show ip igmp snooping mrouter interface {<slot/port> | port-channel <portchannel-id>}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>slot/port</td>
<td>Interface number</td>
</tr>
<tr>
<td>portchannel-id</td>
<td>Port-channel interface number. The range of port-channel ID is 1 to 64.</td>
</tr>
</tbody>
</table>

Mode Privilege Exec

Display Message

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Shows the interface on which multicast router information is being displayed.</td>
</tr>
<tr>
<td>Multicast Router Attached</td>
<td>Indicates whether multicast router is statically enabled on the interface.</td>
</tr>
</tbody>
</table>

5.2.8.36. show ip igmp snooping mrouter vlan

Use this command to display information about dynamically learned or statically configured multicast router-attached VLAN interfaces.

Format show ip igmp snooping mrouter vlan {<slot/port> | port-channel <portchannel-id>}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>slot/port</td>
<td>Interface number</td>
</tr>
<tr>
<td>portchannel-id</td>
<td>Port-channel interface number. The range of port-channel ID is 1 to 64.</td>
</tr>
</tbody>
</table>

Mode Privilege Exec

Display Message

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Shows the interface on which multicast router information is being displayed.</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>Displays the list of VLANs of which the interface is a member.</td>
</tr>
</tbody>
</table>

5.2.8.37. show ip igmp snooping static

Use this command to display IGMP snooping static information.

Format show ip igmp snooping static
5.2.8.38. **show mac-address-table igmpsnooping**

Use this command to display the IGMP Snooping entries in the Multicast Forwarding Database (MFDB) table.

Format

```
show mac-address-table igmpsnooping
```

Mode Privilege Exec

Display Message

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>The VLAN ID used with the MAC address to fully identify the L2Mcast Group</td>
</tr>
<tr>
<td>MAC Address</td>
<td>The MAC address of the L2Mcast Group in the format 01:00:5e:xx:xx:xx.</td>
</tr>
<tr>
<td>Port</td>
<td>List the ports you want included into L2Mcast Group.</td>
</tr>
<tr>
<td>State</td>
<td>The active interface number belongs to this Multicast Group.</td>
</tr>
</tbody>
</table>

5.2.8.39. **show ip igmp snooping ssm entries**

Use this command to display IGMP source specific multicast forwarding database.

Format

```
show ip igmp snooping ssm entries
```

Mode Privilege Exec

Display Message

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>VLAN ID</td>
</tr>
<tr>
<td>Group</td>
<td>Multicast Group IP address</td>
</tr>
<tr>
<td>Source IP</td>
<td>Source IP address</td>
</tr>
<tr>
<td>Source Filter Mode</td>
<td>Source filter mode (Include or Exclude) for the specified group on the</td>
</tr>
<tr>
<td>Interfaces</td>
<td>The list of interfaces which are included or excluded for specified group, VLAN and source address.</td>
</tr>
</tbody>
</table>
5.2.8.40. **show ip igmp snooping ssm groups**

Use this command to display IGMP SSM group membership information.

Format show ip igmp snooping ssm groups

Mode Privilege Exec

Display Message

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>VLAN ID</td>
</tr>
<tr>
<td>Group</td>
<td>Multicast Group IP address</td>
</tr>
<tr>
<td>Interface</td>
<td>Interface which is included or excluded for specified group, VLAN and source address.</td>
</tr>
<tr>
<td>Reporter</td>
<td>IP Address of the source of last membership report received for the specified group address on the specified interface and VLAN</td>
</tr>
<tr>
<td>Source Filter Mode</td>
<td>Source filter mode (Include or Exclude) for the specified group on the specified interface and VLAN</td>
</tr>
<tr>
<td>Source Address List</td>
<td>Source List Entry for the specified group address, interface and VLAN</td>
</tr>
</tbody>
</table>

5.2.8.41. **show ip igmp snooping ssm stats**

Use this command to display statistics of IGMP snooping SSMFDB.

Format show ip igmp snooping ssm stats

Mode Privilege Exec

Display Message

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Entries</td>
<td>Maximum number of entries that the SSM MFDB table can hold for IGMP snooping.</td>
</tr>
<tr>
<td>Most SSM FDB Entries Ever Used</td>
<td>Most number of entries ever used in the IGMP snooping SSM MFDB table.</td>
</tr>
<tr>
<td>Current Entries</td>
<td>Current number of entries in the IGMP snooping SSM MFDB table.</td>
</tr>
</tbody>
</table>

5.2.8.42. **ip igmp snooping maxresponse**

Use this command to configure the IGMP Maximum Response time on a particular interface when the `igmp-plus` command is not enabled. The range is 1 to 300 seconds.

Format ip igmp snooping maxresponse <1-300>

Default 120

Mode Interface Config
5.2.8.43. no ip igmp snooping maxresponse

Use this command to restore the IGMP Maximum Response time on a particular interface to default value.

Format
Mode Interface Config

5.2.9. IGMP snooping querier commands

This section describes the commands which are used to configure IGMP Snooping querier.

Note: If you configure the specific IP address as the IGMP snooping querier address, the querier IP address assigned for a VLAN takes precedence over the global querier IP address. If the VLAN is a routing interface with an IP address, this IP address takes precedence over the querier IP address assigned for that VLAN.

5.2.9.1. ip igmp snooping querier

Use this command to enable IGMP snooping querier admin mode.

Format ip igmp snooping querier
Default Disable
Mode Global Config

5.2.9.2. no ip igmp snooping querier

Use this command to disable IGMP snooping querier admin mode.

Format no ip igmp snooping querier
Mode Global Config

5.2.9.3. ip igmp snooping querier address

Use this command to configure IGMP snooping querier address.

Format ip igmp snooping querier address <ip-address>
Default 0.0.0.0
Mode Global Config
5.2.9.4. **no ip igmp snooping querier address**

Use this command to restore IGMP snooping querier address to default value.

Format
no ip igmp snooping querier address

Mode
Global Config

5.2.9.5. **ip igmp snooping querier query-interval**

Use this command to configure IGMP snooping querier query interval.

Format
ip igmp snooping querier query-interval <1-1800>

Default
60

Mode
Global Config

5.2.9.6. **no ip igmp snooping querier query-interval**

Use this command to restore IGMP snooping querier query interval to default value.

Format
no ip igmp snooping querier query-interval

Mode
Global Config

5.2.9.7. **ip igmp snooping querier querier-expiry-interval**

Use this command to configure IGMP snooping querier querier expiry interval.

Format
ip igmp snooping querier querier-expiry-interval <60-300>

Default
180

Mode
Global Config
5.2.9.8. **no ip igmp snooping querier querier-expiry-interval**

Use this command to restore IGMP snooping querier querier expiry interval to default value.

- **Format**

 no ip igmp snooping querier querier-expiry-interval

- **Mode**

 Global Config

5.2.9.9. **ip igmp snooping querier version**

Use this command to configure IGMP snooping querier version.

- **Format**

 ip igmp snooping querier version <1-2>

- **Default**

 2

- **Mode**

 Global Config

5.2.9.10. **no ip igmp snooping querier version**

Use this command to restore IGMP snooping querier version to default value.

- **Format**

 no ip igmp snooping querier version

- **Mode**

 Global Config

5.2.9.11. **ip igmp snooping querier vlan**

Use this command to enable IGMP snooping querier vlan admin mode.

- **Format**

 ip igmp snooping querier vlan <vlan-id>

- **Default**

 Disable

- **Mode**

 Global Config

5.2.9.12. **no ip igmp snooping querier vlan <vlan-id>**

Use this command to disable IGMP snooping querier vlan admin mode.

- **Format**

 no ip igmp snooping querier vlan <vlan-id>
5.2.9.13. **ip igmp snooping querier vlan address**

Use this command to configure IGMP snooping querier vlan address.

Format
ip igmp snooping querier vlan <vlan-id> address <ip-address>

Default
0.0.0.0

Mode
Global Config

5.2.9.14. **no ip igmp snooping querier vlan address**

Use this command to restore IGMP snooping querier vlan address to default value.

Format
no ip igmp snooping querier vlan <vlan-id> address

Parameter
<vlan-id>
The VLAN ID. (Range: 1-4093)

5.2.9.15. **ip igmp snooping querier vlan election participate**

Use this command to enable IGMP snooping querier vlan election participate mode.

Format
ip igmp snooping querier vlan election participate <vlan-id>

Default
Disable

Mode
Global Config

5.2.9.16. **no ip igmp snooping querier vlan election participate**

Use this command to disable IGMP snooping querier vlan election participate mode.
5.2.9.17. show ip igmp snooping querier

Use this command to display IGMP snooping querier global information.

Format show ip igmp snooping querier

Display Message

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP Snooping Querier Mode</td>
<td>Administrative mode for IGMP Snooping. The default is disable.</td>
</tr>
<tr>
<td>Querier Address</td>
<td>Specify the Snooping Querier Address to be used as source address in periodic IGMP queries. This address is used when no address is configured on the VLAN on which query is being sent.</td>
</tr>
<tr>
<td>IGMP Version</td>
<td>Specify the IGMP protocol version used in periodic IGMP queries.</td>
</tr>
<tr>
<td>Querier Query Interval</td>
<td>Specify the time interval in seconds between periodic queries sent by the snooping querier. The Query Interval must be a value in the range of 1 and 1800. The default value is 60.</td>
</tr>
<tr>
<td>Querier Expiry Interval</td>
<td>Specify the time interval in seconds after which the last querier information is removed. The Querier Expiry Interval must be a value in the range of 60 and 300. The default value is 120.</td>
</tr>
</tbody>
</table>

Mode Privilege Exec

5.2.9.18. show ip igmp snooping querier vlan

Use this command to display IGMP snooping querier vlan information.

Format show ip igmp snooping querier vlan <vlan-id>

Parameter Description
<vlan-id> The VLAN ID. (Range: 1-4093)

Mode Privilege Exec

Display Message

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP Snooping Querier Vlan Mode</td>
<td>Display the administrative mode for IGMP Snooping for the switch.</td>
</tr>
<tr>
<td>Querier Election Participation Mode</td>
<td>Displays the querier election participate mode on the VLAN. When this mode is disabled, up on seeing a query of the same version in the vlan, the snooping</td>
</tr>
</tbody>
</table>
querier move to non querier state. Only when this mode is enabled, the snooping querier will participate in querier election where in the least ip address will win the querier election and operates as the querier in that VLAN. The other querier moves to non-querier state.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Querier Vlan Address</td>
<td>Displays the Snooping Querier Address to be used as source address in periodic IGMP queries sent on the specified VLAN.</td>
</tr>
<tr>
<td>Operational State</td>
<td>Displays the operational state of the IGMP Snooping Querier on a VLAN.</td>
</tr>
<tr>
<td>Operational Version</td>
<td>Displays the operational IGMP protocol version of the querier.</td>
</tr>
<tr>
<td>Operational Max Resp Time</td>
<td>Displays the operational IGMP maximum response time of the querier.</td>
</tr>
</tbody>
</table>

5.2.9.19. show ip igmp snooping querier detail

Use this command to display all of the IGMP snooping querier information.

Format
show ip igmp snooping querier detail

Display Message

Last Querier

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>Indicate the VLAN on which the Querier exists.</td>
</tr>
<tr>
<td>Address</td>
<td>Indicate the IP address of the most recent Querier from which a Query was received on this VLAN.</td>
</tr>
<tr>
<td>IGMP Version</td>
<td>Indicate the IGMP protocol version of the most recent Querier from which a Query was received on this VLAN.</td>
</tr>
</tbody>
</table>

Global IGMP Snooping querier status

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP Snooping Querier Mode</td>
<td>Administrative mode for IGMP Snooping. The default is disable.</td>
</tr>
<tr>
<td>Querier Address</td>
<td>Specify the Snooping Querier Address to be used as source address in periodic IGMP queries. This address is used when no address is configured on the VLAN on which query is being sent.</td>
</tr>
<tr>
<td>IGMP Version</td>
<td>Specify the IGMP protocol version used in periodic IGMP queries.</td>
</tr>
<tr>
<td>Querier Query Interval</td>
<td>Specify the time interval in seconds between periodic queries sent by the snooping querier. The Query Interval must be a value in the range of 1 and 1800. The default value is 60.</td>
</tr>
<tr>
<td>Querier Expiry Interval</td>
<td>Specify the time interval in seconds after which the last querier information is removed. The Querier Expiry Interval must be a value in the range of 60 and 300. The default value is 120.</td>
</tr>
</tbody>
</table>

Mode Privilege Exec
5.2.10. MLD Snooping Commands

5.2.10.1. show ipv6 mld snooping

Use this command to display mld snooping information.

Format
show ipv6 mld snooping [interface {<slot/port> | vlan <vlan-id> | port-channel <portchannel-id>}]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan-id</td>
<td>The VLAN ID. (Range: 1-4093)</td>
</tr>
<tr>
<td>slot/port</td>
<td>Interface number</td>
</tr>
<tr>
<td>portchannel-id</td>
<td>Port-channel interface number. The range of port-channel ID is 1 to 64.</td>
</tr>
</tbody>
</table>

Mode
Privilege Exec

Display Message

If no parameters are specified, following information is displayed.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin Mode</td>
<td>Indicates whether or not MLD Snooping is enabled on the switch.</td>
</tr>
<tr>
<td>Operational Mode</td>
<td>Indicates whether or not MLD Snooping is active on the switch.</td>
</tr>
<tr>
<td>Multicast Control Frame Count</td>
<td>Displays the number of MLD Control frames that are processed by the CPU.</td>
</tr>
<tr>
<td>Interfaces Enabled for MLD Snooping</td>
<td>Interfaces on which MLD Snooping is enabled.</td>
</tr>
<tr>
<td>VLANs enabled for MLD snooping</td>
<td>VLANs on which MLD Snooping is enabled.</td>
</tr>
<tr>
<td>VLANs Block enabled for snooping</td>
<td>VLANs on which MLD Snooping is disabled.</td>
</tr>
</tbody>
</table>

If parameter <slot/port> or <portchannel-id> is specified, following information is displayed.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLD Snooping Admin Mode</td>
<td>Indicates whether MLD Snooping is active on the interface.</td>
</tr>
<tr>
<td>Fast Leave Mode</td>
<td>Indicates whether MLD Snooping Fast Leave is active on the interface.</td>
</tr>
<tr>
<td>Group Membership Interval</td>
<td>Shows the p in seconds that a switch will wait for a report from a particular group on a particular interface, which is participating on the interface, before deleting the interface from the entry. This value may be configured.</td>
</tr>
<tr>
<td>Max Response Time</td>
<td>Displays the amount of time the switch waits after it sends a query on in interface, participating in the VLAN, because it did not receive a report for a particular group on that interface. This value may be configured.</td>
</tr>
<tr>
<td>Multicast Router Expiry Time</td>
<td>Displays the amount of time to wait before removing an interface that is participating on the interface from the list of interfaces with multicast routers attached. The interface is removed if a query is not received. This value may be configured.</td>
</tr>
</tbody>
</table>

If parameter <vlan-id> is specified, following information appears.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
</table>
5.2.10.2. \texttt{show ipv6 mld snooping mrouter interface}

Use this command to display information about statically configured multicast router-attached interfaces.

\textbf{Format} \quad \texttt{show ipv6 mld snooping mrouter interface \{<slot/port> | port-channel <portchannel-id>\}}

\begin{tabular}{|l|l|}
\hline
Parameter & Description \\
\hline
slot/port & Interface number \\
portchannel-id & Port-channel interface number. The range of port-channel ID is 1 to 64. \\
\hline
\end{tabular}

\textbf{Mode} \quad \text{Privilege Exec}

\textbf{Display Message}

\begin{tabular}{|l|l|}
\hline
Term & Definition \\
\hline
Interface & Shows the interface on which multicast router information is being displayed. \\
Multicast Router Attached & Indicates whether multicast router is statically enabled on the interface. \\
\hline
\end{tabular}

5.2.10.3. \texttt{show ipv6 mld snooping mrouter vlan}

Use this command to display information about statically configured multicast router-attached interfaces.

\textbf{Format} \quad \texttt{show ipv6 mld snooping mrouter vlan \{<slot/port> | port-channel <portchannel-id>\}}

\begin{tabular}{|l|l|}
\hline
Parameter & Description \\
\hline
slot/port & Interface number \\
portchannel-id & Port-channel interface number. The range of port-channel ID is 1 to 64. \\
\hline
\end{tabular}

\textbf{Mode} \quad \text{Privilege Exec}

\textbf{Display Message}

\begin{tabular}{|l|l|}
\hline
Term & Definition \\
\hline
Interface & Shows the interface on which multicast router information is being displayed. \\
VLAN ID & Displays the list of VLANs of which the interface is a member. \\
\hline
\end{tabular}
5.2.10.4. **show ipv6 mld snooping static**

Use this command to display MLD snooping static information.

Format show ipv6 mld snooping static

Mode Privilege Exec

Display Message

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN</td>
<td>The VLAN ID used with the MAC address to fully identify packets you want L2Mcast Group</td>
</tr>
<tr>
<td>Port</td>
<td>List the ports you want included into L2Mcast Group</td>
</tr>
<tr>
<td>State</td>
<td>The active interface number belongs to this Multicast Group.</td>
</tr>
</tbody>
</table>

5.2.10.5. **show mac-address-table mldsnooping**

Use this command to display the MLD Snooping entries in the Multicast Forwarding Database (MFDB) table.

Format show mac-address-table mldsnooping

Mode Privilege Exec

Display Message

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>VLAN ID number</td>
</tr>
<tr>
<td>MAC Address</td>
<td>A multicast MAC address for which the switch has forwarding or filtering information. The format is twodigit hexadecimal numbers that are separated by colons, for example 33:33:45:67:89:AB.</td>
</tr>
<tr>
<td>Type</td>
<td>The type of entry, which is either static (added by the user) or dynamic (added to the table as a result of a learning process or protocol.)</td>
</tr>
<tr>
<td>Description</td>
<td>The text description of this multicast table entry.</td>
</tr>
<tr>
<td>Interfaces</td>
<td>The list of interfaces that are designated for forwarding (Fwd:) and filtering (Flt:).</td>
</tr>
</tbody>
</table>

5.2.10.6. **show ipv6 mld snooping ssm entries**

Use this command to display MLD source specific multicast forwarding database.

Format show ipv6 mld snooping ssm entries

Mode Privilege Exec

Display Message

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>VLAN ID</td>
</tr>
</tbody>
</table>
5.2.10.7. show ipv6 mld snooping ssm groups

Use this command to display MLD SSM group membership information.

Format

```
show ipv6 mld snooping ssm groups
```

Mode

Privilege Exec

Display Message

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>VLAN ID</td>
</tr>
<tr>
<td>Group</td>
<td>Multicast Group IP address</td>
</tr>
<tr>
<td>Interface</td>
<td>Interface which is included or excluded for specified group, VLAN and source address.</td>
</tr>
<tr>
<td>Reporter</td>
<td>IP Address of the source of last membership report received for the specified group address on the specified interface and VLAN</td>
</tr>
<tr>
<td>Source Filter Mode</td>
<td>Source filter mode (Include or Exclude) for the specified group on the specified interface and VLAN</td>
</tr>
<tr>
<td>Source Address List</td>
<td>Source List Entry for the specified group address, interface and VLAN</td>
</tr>
</tbody>
</table>

5.2.10.8. show ipv6 mld snooping ssm stats

Use this command to display statistics of MLD snooping SSMFDB.

Format

```
show ipv6 mld snooping ssm stats
```

Mode

Privilege Exec

Display Message

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Entries</td>
<td>Maximum number of entries that the SSM MFDB table can hold for MLD snooping.</td>
</tr>
<tr>
<td>Most SSM FDB Entries Ever Used</td>
<td>Most number of entries ever used in the MLD snooping SSM MFDB table.</td>
</tr>
<tr>
<td>Current Entries</td>
<td>Current number of entries in the MLD snooping SSM MFDB table.</td>
</tr>
</tbody>
</table>

5.2.10.9. ipv6 mld snooping

Use this command to enable MLD Snooping globally.
Format ipv6 mld snooping
Default Disable
Mode Global Config

5.2.10.10. no ipv6 mld snooping

Use this command to disable MLD Snooping globally.

Format no ipv6 mld snooping
Mode Global Config

5.2.10.11. clear mld snooping

Use this command to delete all dynamic entries in Multicast Forwarding Database which is managed by the MLD Snooping.

Format clear mld snooping
Default None
Mode Privilege Exec

5.2.10.12. ipv6 mld snooping interfacemode

Use this command to enable MLD Snooping on a particular interface.

Format ipv6 mld snooping interfacemode
Default Disable
Mode Interface Config

5.2.10.13. no ipv6 mld snooping interfacemode

Use this command to disable MLD Snooping on a particular interface.

Format no ipv6 mld snooping interfacemode
Mode Interface Config
5.2.10.14. **ipv6 mld snooping interfacemode all**

Use this command to enable MLD Snooping on all interfaces.

Format
ipv6 mld snooping interfacemode all

Default
Disable

Mode
Global Config

5.2.10.15. **no ipv6 mld snooping interfacemode all**

Use this command to disable MLD Snooping on all interfaces.

Format
no ipv6 mld snooping interfacemode all

Mode
Global Config

5.2.10.16. **ipv6 mld snooping fast-leave**

Use this command to enable MLD Snooping fast-leave admin mode on a particular interface or all interfaces.

Format
ipv6 mld snooping fast-leave

Default
Disable

Mode
Global Config
 Interface Config

5.2.10.17. **no ipv6 mld snooping fast-leave**

Use this command to disable MLD Snooping fast-leave admin mode on a particular interface or all interfaces.

Format
no ipv6 mld snooping fast-leave

Mode
Global Config
 Interface Config
5.2.10.18. **ipv6 mld snooping groupmembershipinterval**

Use this command to configure the MLD Group Membership Interval time on a particular interface or all interfaces.

Format ipv6 mld snooping groupmembershipinterval <2-3600>

Default 260

Mode Global Config
 Interface Config

5.2.10.19. **no ipv6 mld snooping groupmembershipinterval**

Use this command to restore the MLD Group Membership Interval time to default value.

Format no ipv6 mld snooping groupmembershipinterval

Mode Global Config
 Interface Config

5.2.10.20. **ipv6 mld snooping mcrtexpiretime**

Use this command to configure the Multicast Router Present Expiration time for the system or on a particular interface.

Format ipv6 mld snooping mcrtexpiretime <0-3600>

Default 300 seconds

Mode Global Config
 Interface Config

5.2.10.21. **no ipv6 mld snooping mcrtexpiretime**

Use this command to restore the Multicast Router Present Expiration time to default value.

Format no ipv6 mld snooping mcrtexpiretime

Mode Global Config
 Interface Config
5.2.10.22. **ipv6 mld snooping mrouter**

Use this command to configure the interface as a multicast router-attached interface or configure the VLAN ID for the VLAN that has the multicast router attached mode enabled.

Format

```
ipv6 mld snooping mrouter {interface |<vlan-id>}
```

Default

None

Mode

Interface Config

5.2.10.23. **no ipv6 mld snooping mrouter**

Use this command to disable multicast router attached mode for the interface or a VLAN.

Format

```
no ipv6 mld snooping mrouter {interface |<vlan-id>}
```

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><vlan-id></td>
<td>The VLAN ID. (Range: 1-4093)</td>
</tr>
</tbody>
</table>

Mode

Interface Config

5.2.10.24. **ipv6 mld snooping static**

Use this command to add an interface to ipv6 multicast group.

Format

```
ipv6 mld snooping static <macaddr> vlan <vlan-id> [interface {<slot/port> | port-channel <portchannel-id>}]`
```

Default

None

Mode

Global Config

5.2.10.25. **no ipv6 mld snooping static**

Use this command to remove an interface from ipv6 multicast group.

Format

```
no ipv6 mld snooping static <macaddr> vlan <vlan-id> interface {<slot/port> | port-channel <portchannel-id>}
```

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan-id</td>
<td>The VLAN ID. (Range: 1-4093)</td>
</tr>
<tr>
<td>macaddr</td>
<td>Multicast Group MAC address</td>
</tr>
<tr>
<td>slot/port</td>
<td>Interface number</td>
</tr>
<tr>
<td>portchannel-id</td>
<td>Port-channel interface number. The range of port-channel ID is 1 to 64.</td>
</tr>
</tbody>
</table>
5.2.10.26. **set mld**

Use this command to enable MLD Snooping on a particular VLAN.

Format

```
set mld <vlan-id>
```

Default Disable

Mode VLAN database

5.2.10.27. **no set mld**

Use this command to disable MLD Snooping on a particular VLAN.

Format

```
no set mld <vlan-id>
```

Mode VLAN database

5.2.10.28. **set mld fast-leave**

Use this command to enable MLD Snooping fast-leave admin mode on a particular VLAN.

Format

```
set mld fast-leave <vlan-id>
```

Default Disable

Mode VLAN database

5.2.10.29. **no set mld fast-leave**

Use this command to disable MLD Snooping fast-leave admin mode on a particular VLAN.

Format

```
no set mld fast-leave <vlan-id>
```

Mode VLAN database
5.2.10.30. **set mld groupmembership-interval**

Use this command to configure the MLD Group Membership Interval time on a particular VLAN.

Format
set mld groupmembership-interval <vlan-id> <2-3600>

Default
260

Mode
VLAN database

5.2.10.31. **no set mld groupmembership-interval**

Use this command to restore the MLD Group Membership Interval time on a particular VLAN to default value.

Format
no set mld groupmembership-interval <vlan-id>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><vlan-id></td>
<td>The VLAN ID. (Range: 1-4093)</td>
</tr>
</tbody>
</table>

Mode
VLAN database

5.2.10.32. **set mld maxresponse**

Use this command to configure the MLD Maximum Response time on a particular VLAN.

Format
set mld maxresponse <vlan-id> <1-65>

Default
10

Mode
VLAN database

5.2.10.33. **no set mld maxresponse**

Use this command to restore the MLD Maximum Response time on a particular VLAN to default value.

Format
no set mld maxresponse <vlan-id>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><vlan-id></td>
<td>The VLAN ID. (Range: 1-4093)</td>
</tr>
</tbody>
</table>

Mode
VLAN database
5.2.10.34. set mld mcrtexpiretime

Use this command to configure the Multicast Router Present Expiration time on a particular VLAN.

Format set mld mcrtexpiretime <vlan-id> <0-3600>

Default 300 seconds

Mode VLAN database

5.2.10.35. no set mld mcrtexpiretime

Use this command to restore the Multicast Router Present Expiration time on a particular VLAN to default value.

Format no set mld mcrtexpiretime <vlan-id>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><vlan-id></td>
<td>The VLAN ID. (Range: 1-4093)</td>
</tr>
</tbody>
</table>

Mode VLAN database

5.2.11. MLD Snooping Querier Commands

This section describes the commands which are used to configure MLD Snooping querier.

5.2.11.1. show ipv6 mld snooping querier

Use this command to display MLD snooping querier global information.

Format show ipv6 mld snooping querier

Mode Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLD Snooping Querier Mode</td>
<td>Specify the Snooping Querier Address to be used as source address in periodic MLD queries. This address is used when no address is configured on the VLAN on which query is being sent.</td>
</tr>
<tr>
<td>Querier Address</td>
<td>Specify the Snooping Querier Address to be used as source address in periodic MLD queries. This address is used when no address is configured on the VLAN on which query is being sent.</td>
</tr>
<tr>
<td>MLD Version</td>
<td>Specify the MLD protocol version used in periodic MLD queries.</td>
</tr>
<tr>
<td>Querier Query Interval</td>
<td>Specify the time interval in seconds between periodic queries sent by the snooping querier. The Query Interval must be a value in the range of 1 and 1800. The default value is 60.</td>
</tr>
</tbody>
</table>
5.2.11.2. show ipv6 mld snooping querier vlan

Use this command to display MLD snooping querier vlan information.

Format show ipv6 mld snooping querier vlan <vlan-id>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><vlan-id></td>
<td>The VLAN ID. (Range: 1-4093)</td>
</tr>
</tbody>
</table>

Mode Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLD Snooping Querier Vlan Mode</td>
<td>Displays the querier election participate mode on the VLAN. When this mode is disabled, up on seeing a query of the same version in the vlan, the snooping querier move to non querier state. Only when this mode is enabled, the snooping querier will participate in querier election where in the least ip address will win the querier election and operates as the querier in that VLAN. The other querier moves to non-querier state.</td>
</tr>
<tr>
<td>Querier Election Participation Mode</td>
<td>Displays the querier election participate mode on the VLAN. When this mode is disabled, up on seeing a query of the same version in the vlan, the snooping querier move to non querier state. Only when this mode is enabled, the snooping querier will participate in querier election where in the least ip address will win the querier election and operates as the querier in that VLAN. The other querier moves to non-querier state.</td>
</tr>
<tr>
<td>Querier Vlan Address</td>
<td>Displays the Snooping Querier Address to be used as source address in periodic MLD queries sent on the specified VLAN.</td>
</tr>
<tr>
<td>Operational State</td>
<td>Specifies the operational state of the MLD Snooping Querier on a VLAN.</td>
</tr>
<tr>
<td>Operational Version</td>
<td>Displays the operational MLD protocol version of the querier.</td>
</tr>
</tbody>
</table>

5.2.11.3. show ipv6 mld snooping querier detail

Use this command to display MLD snooping querier global information.

Format show ipv6 mld snooping querier detail

Mode Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>Specify the VLAN ID on which the MLD snooping querier is enabled.</td>
</tr>
</tbody>
</table>
5.2.11.4. **ipv6 mld snooping querier**

Use this command to enable MLD snooping querier admin mode.

Format

```
ipv6 mld snooping querier
```

Default
Disable

Mode
Global Config

5.2.11.5. **no ipv6 mld snooping querier**

Use this command to disable MLD snooping querier admin mode.

Format

```
no ipv6 mld snooping querier
```

Mode
Global Config

5.2.11.6. **ipv6 mld snooping querier address**

Use this command to configure MLD snooping querier address.

Format

```
ipv6 mld snooping querier address <ipv6-address>
```
5.2.11.7. no ipv6 mld snooping querier address

Use this command to restore MLD snooping querier address to default value.

Format no ipv6 mld snooping querier address
Mode Global Config

5.2.11.8. ipv6 mld snooping querier query-interval

Use this command to configure MLD snooping querier querier interval.

Format ipv6 mld snooping querier query-interval <1-1800>
Default 60
Mode Global Config

5.2.11.9. no ipv6 mld snooping querier query-interval

Format no ipv6 mld snooping querier query-interval
Mode Global Config

5.2.11.10. ipv6 mld snooping querier querier-expiry-interval

Use this command to configure MLD snooping querier querier expiry interval.

Format ipv6 mld snooping querier querier-expiry-interval <60-300>
Default 125
Mode Global Config

5.2.11.11. no ipv6 mld snooping querier querier-expiry-interval

Use this command to restore MLD snooping querier querier expiry interval to default value.
Format no ipv6 mld snooping querier querier-expiry-interval
Mode Global Config

5.2.11.12. ipv6 mld snooping querier vlan
Use this command to enable MLD snooping querier vlan admin mode.

Format ipv6 mld snooping querier vlan <vlan-id>
Default Disable
Mode Global Config

5.2.11.13. no ipv6 mld snooping querier vlan
Use this command to disable MLD snooping querier vlan admin mode.

Format no ipv6 mld snooping querier vlan <vlan-id>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><vlan-id></td>
<td>The VLAN ID. (Range: 1-4093)</td>
</tr>
</tbody>
</table>

Mode Global Config

5.2.11.14. ipv6 mld snooping querier vlan address
Use this command to configure MLD snooping querier vlan address.

Format ipv6 mld snooping querier vlan <vlan-id> address <ipv6-address>
Default 0
Mode Global Config

5.2.11.15. no ipv6 mld snooping querier vlan address

Format no ipv6 mld snooping querier vlan <vlan-id> address
5.2.11.16. **ipv6 mld snooping querier vlan election participate**

Use this command to enable MLD snooping querier vlan election participate mode.

Format
ipv6 mld snooping querier vlan election participate <vlan-id>

Default
Disable

Mode
Global Config

5.2.11.17. **no ipv6 mld snooping querier vlan election participate**

Use this command to disable MLD snooping querier vlan election participate mode.

Format
no ipv6 mld snooping querier vlan election participate <vlan-id>

Parameter
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><vlan-id></td>
<td>The VLAN ID. (Range: 1-4093)</td>
</tr>
</tbody>
</table>

Mode Global Config

5.2.12. **Port-Channel/LAG (802.3ad) Commands**

This section describes the commands you use to configure port-channels, which is defined in the 802.3ad specification, and that are also known as link aggregation groups (LAGs). Link aggregation allows you to combine multiple full-duplex Ethernet links into a single logical link. Network devices treat the aggregation as if it were a single link, which increases fault tolerance and provides load sharing. The LAG feature initially load shares traffic based upon the source and destination MAC address. Assign the port-channel (LAG) VLAN membership after you create a port-channel. If you do not assign VLAN membership, the port-channel might become a member of the management VLAN which can result in learning and switching issues.

A port-channel (LAG) interface can be either static or dynamic, but not both. All members of a port channel must participate in the same protocols. A static port-channel interface does not require a partner system to be able to aggregate its member ports.

Note: If you configure the maximum number of dynamic port-channels (LAGs) that your platform supports, additional port-channels that you configure are automatically static.
5.2.12.1. show interface port-channel brief

This command displays the capability of all port-channels (LAGs) on the device as well as a summary of individual port-channels.

Format
show interface port-channel brief

Mode
Privileged EXEC
User EXEC

For each port-channel the following information is displayed:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel ID</td>
<td>The field displays the port-channel’s ID.</td>
</tr>
<tr>
<td>Port-Channel Name</td>
<td>This field displays the name of the port-channel.</td>
</tr>
<tr>
<td>Min-links</td>
<td>This field displays the minimum links value of the port-channel.</td>
</tr>
<tr>
<td>Link State</td>
<td>This field indicates whether the link is up or down.</td>
</tr>
<tr>
<td>Trap Flag</td>
<td>This object determines whether or not to send a trap when link status changes. The factory default is enabled.</td>
</tr>
<tr>
<td>Type</td>
<td>This field displays the status designating whether a particular port-channel (LAG) is statically or dynamically maintained. The possible values of this field are Static, indicating that the port-channel is statically maintained; and Dynamic, indicating that the port-channel is dynamically maintained.</td>
</tr>
<tr>
<td>Mbr Ports</td>
<td>This field lists the ports that are members of this port-channel, in slot/port notation.</td>
</tr>
<tr>
<td>Active Ports</td>
<td>This field lists the ports that are actively participating in this port-channel.</td>
</tr>
</tbody>
</table>

Example: The following example displays the interface port-channel brief configurations.

(M4500-48XF8C) #show interface port-channel brief

<table>
<thead>
<tr>
<th>Channel</th>
<th>Port-Channel Name</th>
<th>Min Link State</th>
<th>Trap</th>
<th>Type</th>
<th>Mbr Ports</th>
<th>Active Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td></td>
<td></td>
<td>Flag</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
<td>----------------</td>
<td>--------</td>
<td>------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>ch1</td>
<td>1</td>
<td>Down</td>
<td>Disabled</td>
<td>Static</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ch2</td>
<td>1</td>
<td>Down</td>
<td>Disabled</td>
<td>Static</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ch3</td>
<td>1</td>
<td>Down</td>
<td>Disabled</td>
<td>Static</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ch4</td>
<td>1</td>
<td>Down</td>
<td>Disabled</td>
<td>Static</td>
<td></td>
</tr>
</tbody>
</table>
5.2.12.2. **show interface port-channel**

This command displays an overview of all port-channels (LAGs) or a specific port-channel on the switch.

Format
show interface port-channel [<ID>]

Mode
Privileged EXEC
User EXEC

If you do not use the optional parameters ID, the command displays following information for all port-channels:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel ID</td>
<td>The field displays the port-channel’s ID.</td>
</tr>
<tr>
<td>Channel Name</td>
<td>This field displays the name of the port-channel.</td>
</tr>
<tr>
<td>Min</td>
<td>This field displays the minimum links value of the port-channel.</td>
</tr>
<tr>
<td>Link</td>
<td>This field indicates whether the link is up or down.</td>
</tr>
<tr>
<td>Admin Mode</td>
<td>May be enabled or disabled. The factory default is enabled.</td>
</tr>
</tbody>
</table>
| Link Trap | This object determines whether or not to send a trap when link status changes.
The factory default is enabled

<table>
<thead>
<tr>
<th>STP Mode</th>
<th>This field displays the MSTP administrative bridge port state.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>This field displays the status designating whether a particular port-channel (LAG) is statically or dynamically maintained. The possible values of this field are Static, indicating that the port-channel is statically maintained; and Dynamic, indicating that the port-channel is dynamically maintained.</td>
</tr>
<tr>
<td>Mbr Ports</td>
<td>This field lists the ports that are members of this port-channel, in slot/port notation.</td>
</tr>
<tr>
<td>Device Timeout</td>
<td>This field displays the device timeout value of actor and partner. The value of device timeout should be short (1 second) or long (30 seconds).</td>
</tr>
<tr>
<td>Port Speed</td>
<td>Speed of the port-channel port.</td>
</tr>
<tr>
<td>Active Ports</td>
<td>This field lists the ports that are actively participating in the port-channel (LAG).</td>
</tr>
</tbody>
</table>

Example: The following example displays the interface port-channel configurations.

M4500-48XF8C) #show interface port-channel

<table>
<thead>
<tr>
<th>Channel</th>
<th>Channel</th>
<th>Adm. Link STP</th>
<th>Mbr</th>
<th>Device/</th>
<th>Port</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Name</td>
<td>Min</td>
<td>Link</td>
<td>Mode</td>
<td>Trap Mode</td>
<td>Type</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>ch1</td>
<td>3</td>
<td>Down</td>
<td>En.</td>
<td>Dis. En.</td>
<td>Stat</td>
</tr>
<tr>
<td>2</td>
<td>ch2</td>
<td>1</td>
<td>Down</td>
<td>En.</td>
<td>Dis. En.</td>
<td>Stat</td>
</tr>
<tr>
<td>3</td>
<td>ch3</td>
<td>1</td>
<td>Down</td>
<td>En.</td>
<td>Dis. En.</td>
<td>Stat</td>
</tr>
<tr>
<td>4</td>
<td>ch4</td>
<td>1</td>
<td>Down</td>
<td>En.</td>
<td>Dis. En.</td>
<td>Stat</td>
</tr>
<tr>
<td>5</td>
<td>ch5</td>
<td>1</td>
<td>Down</td>
<td>En.</td>
<td>Dis. En.</td>
<td>Stat</td>
</tr>
<tr>
<td>6</td>
<td>ch6</td>
<td>1</td>
<td>Down</td>
<td>En.</td>
<td>Dis. En.</td>
<td>Stat</td>
</tr>
<tr>
<td>7</td>
<td>ch7</td>
<td>1</td>
<td>Down</td>
<td>En.</td>
<td>Dis. En.</td>
<td>Stat</td>
</tr>
<tr>
<td>8</td>
<td>ch8</td>
<td>1</td>
<td>Down</td>
<td>En.</td>
<td>Dis. En.</td>
<td>Stat</td>
</tr>
<tr>
<td>Port</td>
<td>Channel</td>
<td>Link State</td>
<td>Admin Mode</td>
<td>Link Trap Mode</td>
<td>STP Mode</td>
<td>Type</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>----------------</td>
<td>----------</td>
<td>---------------</td>
</tr>
<tr>
<td>9</td>
<td>ch9</td>
<td>Down</td>
<td>En.</td>
<td>Dis.</td>
<td>En.</td>
<td>Stat</td>
</tr>
<tr>
<td>10</td>
<td>ch10</td>
<td>Down</td>
<td>En.</td>
<td>Dis.</td>
<td>En.</td>
<td>Stat</td>
</tr>
<tr>
<td>11</td>
<td>ch11</td>
<td>Down</td>
<td>En.</td>
<td>Dis.</td>
<td>En.</td>
<td>Stat</td>
</tr>
<tr>
<td>12</td>
<td>ch12</td>
<td>Down</td>
<td>En.</td>
<td>Dis.</td>
<td>En.</td>
<td>Stat</td>
</tr>
<tr>
<td>13</td>
<td>ch13</td>
<td>Down</td>
<td>En.</td>
<td>Dis.</td>
<td>En.</td>
<td>Stat</td>
</tr>
<tr>
<td>14</td>
<td>ch14</td>
<td>Down</td>
<td>En.</td>
<td>Dis.</td>
<td>En.</td>
<td>Stat</td>
</tr>
<tr>
<td>15</td>
<td>ch15</td>
<td>Down</td>
<td>En.</td>
<td>Dis.</td>
<td>En.</td>
<td>Stat</td>
</tr>
</tbody>
</table>

If you use the optional parameters ID, the command displays following information for the specific port-channel:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Channel ID</td>
<td>The field displays the port-channel’s ID.</td>
</tr>
<tr>
<td>Channel Name</td>
<td>This field displays the name of the port-channel.</td>
</tr>
<tr>
<td>Link State</td>
<td>This field indicates whether the link is up or down.</td>
</tr>
<tr>
<td>Admin Mode</td>
<td>May be enabled or disabled. The factory default is enabled.</td>
</tr>
<tr>
<td>Link Trap Mode</td>
<td>This object determines whether or not to send a trap when link status changes. The factory default is enabled.</td>
</tr>
<tr>
<td>STP Mode</td>
<td>This field displays the MSTP administrative bridge port state.</td>
</tr>
<tr>
<td>Type</td>
<td>This field displays the status designating whether a particular port-channel (LAG) is statically or dynamically maintained. The possible values of this field are Static, indicating that the port-channel is statically maintained; and Dynamic, indicating that the port-channel is dynamically maintained.</td>
</tr>
<tr>
<td>Port-channel Min-links</td>
<td>This field displays the minimum links value of the port-channel.</td>
</tr>
<tr>
<td>Load Balance Option</td>
<td>The load balance option associated with the port-channel.</td>
</tr>
<tr>
<td>LACP Fallback Mode</td>
<td>May be enabled or disabled. The factory default is disabled.</td>
</tr>
<tr>
<td>LACP Fallback Timeout</td>
<td>This field displays the LACP fallback timeout, the timeout default is 5sec.</td>
</tr>
<tr>
<td>Mbr Ports</td>
<td>This field lists the ports that are members of this port-channel, in slot/port notation.</td>
</tr>
</tbody>
</table>
Example: The following example displays the interface port-channel configurations.

```
M4500-48XF8C) #show interface port-channel 1

Port Channel ID...................... 1
Channel Name........................... ch1
Link State.............................. Down
Admin Mode............................ Enabled
Admin Key.............................. 354
Link Trap Mode........................ Disabled
STP Mode............................... Enabled
Type...................................... Static
Port-channel Min-links.................. 1
Load Balance Option.................... 3
(Src/Dest MAC, VLAN, EType, incoming port)
LACP Fallback Mode..................... Disabled
LACP Fallback Timeout.................. 5

Mbr    Device/ Port  Port  Fallback
Ports  Timeout      Speed   Active
------  -----------  ------  -------
```

5.2.12.3. show interface port-channel system priority

This command displays the port-channel system priority.

Format
show interface port-channel system priority

Mode
- Privileged EXEC
- User EXEC
5.2.12.4. **show lacp actor**

This command displays LACP actor attributes.

Format
show lacp actor [slot/port]

Mode
Privileged EXEC
User EXEC

Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin Key</td>
<td>The administrative value of the key</td>
</tr>
<tr>
<td>Port Priority</td>
<td>The priority value assigned to the Aggregation Port</td>
</tr>
<tr>
<td>Admin State</td>
<td>The administrative values of the actor state as transmitted by the Actor in LACPUDs</td>
</tr>
</tbody>
</table>

5.2.12.5. **show lacp interface**

This command displays LACP status for interface.

Format
show lacp interface [slot/port]

Mode
Privileged EXEC
User EXEC

5.2.12.6. **interface port-channel**

This command configures a new port-channel (LAG) with the specified ID. Display the information of this port-channel using the `show interface port-channel <portchannel-id>`.

Note: Before including a port in a port-channel, set the port physical mode. For more information, see `speed-duplex` command

Format
interface port-channel <portchannel-id>

Mode
Global Config
5.2.12.7. staticcapability

This command enables the static function to support on specific port-channels (static link aggregations - LAGs) on the device.

Format staticcapability
Default Disabled
Mode Interface Config

5.2.12.8. no staticcapability

This command disables the static function to support on specific port-channels (static link aggregations - LAGs) on the device.

Format no staticcapability
Mode Interface Config

5.2.12.9. port-channel linktrap

This command enables link trap notifications for the port-channel (LAG). The interface is an ID for a configured port-channel. The option all sets every configured port-channel with the same administrative mode setting.

Format port-channel linktrap {<ID> | all}
Default Enabled
Mode Global Config

5.2.12.10. no port-channel linktrap

This command disables link trap notifications for the port-channel (LAG). The interface is a ID for a configured port-channel. The option all sets every configured port-channel with the same administrative mode setting.

Format no port-channel linktrap {<ID> | all}
Mode Global Config
5.2.12.11. port-channel load-balance

This command selects the load-balancing option used on a port-channel (LAG). Traffic is balanced on a port-channel (LAG) by selecting one of the links in the channel over which to transmit specific packets. The link is selected by creating a binary pattern form selected fields in a packet, and associating that pattern with a particular link.

This command can be configured for a single interface, a range of interfaces, or all interfaces.

Format
port-channel load-balance \{src-mac | dst-mac | src-dst-mac | src-ip | dst-ip | src-dst-ip \}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>src-mac</td>
<td>Sets the mode on the source MAC address.</td>
</tr>
<tr>
<td>dst-mac</td>
<td>Sets the mode on the destination MAC address.</td>
</tr>
<tr>
<td>src-dst-mac</td>
<td>Sets the mode on the source and destination MAC addresses.</td>
</tr>
<tr>
<td>src-ip</td>
<td>Sets the mode on the source IP address.</td>
</tr>
<tr>
<td>dst-ip</td>
<td>Sets the mode on the destination IP addresses.</td>
</tr>
<tr>
<td>src-dst-ip</td>
<td>Sets the mode on the source and destination IP addresses.</td>
</tr>
<tr>
<td>enhanced</td>
<td>Set the mode on the source and destination MAC addresses if it is a L2 packet or on the source and destination IP addresses if it is a IP packet.</td>
</tr>
<tr>
<td>(<ID>)</td>
<td>all</td>
</tr>
</tbody>
</table>

Default
src-dst-mac

Mode
Global Config

5.2.12.12. no port-channel load-balance

This command reverts to the default load balancing configuration.

Format
no port-channel load-balance \(<ID>\) | all

Mode
Global Config

5.2.12.13. load-balance

This command selects the load-balancing option used on a port-channel (LAG). Traffic is balanced on a port-channel (LAG) by selecting one of the links in the channel over which to transmit specific packets. The link is
selected by creating a binary pattern form selected fields in a packet, and associating that pattern with a particular link.

Format
load-balance {src-mac | dst-mac | dst-src-mac | src-ip | dst-ip | dst-src-ip | enhanced}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>src-mac</td>
<td>Sets the mode on the source MAC address.</td>
</tr>
<tr>
<td>dst-mac</td>
<td>Sets the mode on the destination MAC address.</td>
</tr>
<tr>
<td>dst-src-mac</td>
<td>Sets the mode on the source and destination MAC addresses.</td>
</tr>
<tr>
<td>src-ip</td>
<td>Sets the mode on the source IP address.</td>
</tr>
<tr>
<td>dst-ip</td>
<td>Sets the mode on the destination IP addresses.</td>
</tr>
<tr>
<td>src-dst-ip</td>
<td>Sets the mode on the source and destination IP addresses.</td>
</tr>
<tr>
<td>enhanced</td>
<td>Set the mode on the source and destination MAC addresses if it is a L2 packet or on the source and destination IP addresses if it is a IP packet.</td>
</tr>
</tbody>
</table>

Default
src-dst-mac

Mode
Interface Config

5.2.12.14. no load-balance

This command reverts to the default load balancing configuration.

Format
no load-balance

Mode
Interface Config

5.2.12.15. port-channel system priority

This command configures port-channel system priority. The value range of priority is 0-65535.

Format
port-channel system priority <priority-value>

Default
32768 (0x8000)

Mode
Global Config
5.2.12.16. *no port-channel system priority*

This command configures the default port-channel system priority value.

Format no port-channel system priority

Mode Global Config

5.2.12.17. *lacp*

This command enables Link Aggregation Control Protocol (LACP) on a port or a range of interfaces.

Format lacp

Default Enabled

Mode Interface Config

5.2.12.18. *no lacp*

This command disables Link Aggregation Control Protocol (LACP) on a port or a range of interfaces.

Format no lacp

Mode Interface Config

5.2.12.19. *lacp all*

This command enables Link Aggregation Control Protocol (LACP) on all ports.

Format lacp all

Default Enabled

Mode Global Config

5.2.12.20. *no lacp*

This command disables Link Aggregation Control Protocol (LACP) on all ports.

Format no lacp all
5.2.12.21. **lacp admin key**

This command configures the administrative value of the key for the port-channel. This command can be used to configure a single interface or a range of interfaces.

Note: This command is applicable only to port-channel interfaces.

Format

```
lacp admin key <0-65535>
```

Default

Internal interface number of this port-channel

Mode

Interface Config

5.2.12.22. **no lacp admin key**

This command configures the default administrative value of the key for the port-channel.

Format

```
no lacp admin key
```

Mode

Interface Config

5.2.12.23. **lacp actor admin key**

This command configures the administrative value of the LACP actor admin key on an interface or a range of interfaces. “0” means that this value is not configured yet and the key value of the physical interfaces will be adjusted to the internal interface number of the port-channel that this physical interface is going to join to.

Note: This command is applicable only to physical interfaces.

Format

```
lacp actor admin key <0-65535>
```

Default

0

Mode

Interface Config

5.2.12.24. **no lacp actor admin key**

This command configures the default administrative value of the key.

Format

```
no lacp actor admin key
```

Mode
5.2.12.25. lACP actor admin state

This command configures the administrative value of the actor state as transmitted by the Actor in LACPDUs. This command can be used to configure a single interface or a range of interfaces.

Note: This command is applicable only to physical interfaces.

Format: lACP actor admin state <individual | longtimeout | passive>

Default: no Individual (aggregation)
longtimeout (no shorttimeout)
no passive (active)

Mode: Interface Config

5.2.12.26. no lACP actor admin state

This command configures the default administrative value of actor state as transmitted by the Actor in LACPDUs.

Note: Both the no port lacptimeout and the no lACP actor admin state commands set the values back to default, regardless of the command used to configure the ports.

Format: no lACP actor admin state <individual | longtimeout | passive>

Mode: Interface Config

5.2.12.27. lACP actor port priority

This command configures the priority value assigned to the Aggregation Port for an interface or a range of interfaces.

Note: This command is applicable only to physical interfaces.

Format: lACP actor port priority <0-65535>

Default: 128 (0x80)

Mode: Interface Config
5.2.12.28. **no lacp actor port priority**

This command configures the default priority value assigned to the Aggregation Port.

Format
no lacp actor port priority

Mode
Interface Config

5.2.12.29. **min-links**

This command configures the minimum links for port-channel interfaces. The maximum number of members for each port-channel is 32. For T1048-LB9/T1048-LB9A, the maximum number of members is 8.

Note: This command is applicable only to port-channel interfaces

Format
min-links <1-max number>

Default
1

Mode
Interface Config

5.2.12.30. **no min-links**

This command configures the default minimum links for port-channel interfaces.

Format
no min-links

Mode
Interface Config

5.2.12.31. **lacp fallback**

This command configures the fallback feature for Link Aggregation.

Note: This command is applicable only to port-channel interfaces

Format
lacp fallback

Default
Disabled

Mode
Interface Config
5.2.12.32. **no lacp fallback**

This command restores the fallback feature to default value.

Format
```
no lacp fallback
```

Mode
Interface Config

5.2.12.33. **lacp fallback timeout**

This command configures the fallback timeout value for Link Aggregation.

Note: This command is applicable only to port-channel interfaces

Format
```
lacp fallback timeout <1-100>
```

Default
5

Mode
Interface Config

5.2.12.34. **no lacp fallback timeout**

This command restores the fallback feature to default timeout value.

Format
```
no lacp fallback timeout
```

Mode
Interface Config

5.2.12.35. **channel-group**

This command assigns and configures an interface to a port-channel (LAG) group. The interface is an ID of a configured port-channel.

Note: Before adding a port to a port-channel, set the physical mode of the port. See ‘port-mode’ command.

You can change the mode for an interface only if it is the only interface designated to the specified channel group. If you enter this command on an interface that is added to a channel with a different protocol (than the protocol you are entering), the command is rejected.

Format
```
channel-group <ID> mode {active | on}
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>active</td>
<td>Enables LACP unconditionally.</td>
</tr>
</tbody>
</table>
5.2.12.36. no channel-group

This command removes the interface from the specified channel group.

Format no channel-group <ID>

Mode Interface Config

5.2.12.37. delete-channel-group

This command deletes all configured ports from the port-channel (LAG). The interface is an ID of a configured port-channel.

Note: This command is applicable only to port-channel interfaces

Format delete-channel-group <ID> all

Default None

Mode Global Config

5.2.12.38. port lacpmode enable all

This command enables Link Aggregation Control Protocol (LACP) on all ports.

Format port lacpmode enable all

no port lacpmode enable all

Mode Global Config

5.2.12.39. port lacptimeout

This command sets the timeout for all interfaces of a particular device type (actor or partner) to either long or short timeout.
5.2.13. Storm Control

This section describes the commands you use to configure storm control or display storm control information. A traffic storm is a condition that occurs when incoming packets flood the LAN, which creates performance degradation in the network. The Storm-Control feature protects against this condition.

5.2.13.1. show storm-control

This command displays switch configuration information. If you do not use any of the optional parameters, this command displays global storm control configuration parameters.

Use the all keyword to display the per-port configuration parameters for all interfaces, or specify the slot/port to display information about a specific interface.

Format show storm-control [{ <slot/port> | all | port-channel <id> }]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><slot/port></td>
<td>Specifies a valid slot number and port number for the system.</td>
</tr>
<tr>
<td>all</td>
<td>Indicates to display the configuration parameters for all ports.</td>
</tr>
<tr>
<td>id</td>
<td>Specifies the port channel ID</td>
</tr>
</tbody>
</table>

Mode Privileged EXEC, Global Config, Interface Config

The following is the display format for the command without any optional parameter.

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadcast Storm Control Mode</td>
<td>The storm-control configuration mode for broadcast traffic.</td>
</tr>
<tr>
<td>Broadcast Storm Control Level</td>
<td>The storm-control speed threshold for broadcast traffic.</td>
</tr>
</tbody>
</table>
Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intf</td>
<td>The interface number.</td>
</tr>
<tr>
<td>Bcast Mode</td>
<td>The storm-control configuration mode for broadcast traffic.</td>
</tr>
<tr>
<td>Bcast Level</td>
<td>The storm-control speed threshold for broadcast traffic.</td>
</tr>
<tr>
<td>Bcast Action</td>
<td>The storm-control action for broadcast traffic.</td>
</tr>
<tr>
<td>Mcast Mode</td>
<td>The storm-control configuration mode for multicast traffic.</td>
</tr>
<tr>
<td>Mcast Level</td>
<td>The storm-control speed threshold for multicast traffic.</td>
</tr>
<tr>
<td>Mcast Action</td>
<td>The storm-control action for multicast traffic.</td>
</tr>
<tr>
<td>Ucast Mode</td>
<td>The storm-control configuration mode for unicast traffic.</td>
</tr>
<tr>
<td>Ucast Level</td>
<td>The storm-control speed threshold for unicast traffic.</td>
</tr>
<tr>
<td>Ucast Action</td>
<td>The storm-control action for unicast traffic.</td>
</tr>
<tr>
<td>Flow Mode</td>
<td>The storm-control speed threshold for unicast traffic.</td>
</tr>
</tbody>
</table>
5.2.13.2. storm-control Configuration

Use this command to enable storm control on each port or all ports.

Format storm-control {broadcast | multicast | unicast} [{action { shutdown | trap} | level <0-100> | rate <0-14880000>}]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>broadcast</td>
<td>multicast</td>
</tr>
<tr>
<td>action shutdown</td>
<td>trap</td>
</tr>
<tr>
<td>level <0-100></td>
<td>Specifies a threshold level (a percentage of link speed) for all interfaces or one interface. The default is 5.</td>
</tr>
<tr>
<td>rate <0-14880000></td>
<td>Specifies a threshold rate(in packets per second) for all interfaces or one interface. The default is 0.</td>
</tr>
</tbody>
</table>

Default disabled

Mode Global Config
 Interface Config

5.2.13.3. storm-control broadcast

Use this command to enable broadcast storm control for all interfaces (Global Config mode) or one or more interfaces (Interface Config mode).

If the mode is enabled, broadcast storm recovery is active and, if the rate of L2 broadcast traffic ingressing on an interface increases beyond the configured threshold, the traffic will be dropped. Therefore, the rate of broadcast traffic will be limited to the configured threshold.

Format storm-control broadcast

Default disabled

Mode Global Config
 Interface Config

5.2.13.4. no storm-control broadcast

This command disables broadcast storm control for all interfaces (Global Config mode) or one or more interfaces (Interface Config mode).
5.2.13.5. **storm-control broadcast action**

This command configures the broadcast storm recovery action to either shutdown or trap for all interfaces (Global Config mode) or one or more interfaces (Interface Config mode).

If configured to shutdown, the interface that receives the broadcast packets at a rate above the threshold is diagnostically disabled. If set to trap, the interface sends trap messages approximately every 30 seconds until broadcast storm control recovers.

Format

```
storm-control broadcast action { shutdown | trap }
```

Default None

Mode

- Global Config
- Interface Config

5.2.13.6. **no storm-control broadcast action**

This command configures the broadcast storm recovery action option to the default value for all interfaces (Global Config mode) or one or more interfaces (Interface Config mode).

Format

```
no storm-control broadcast action
```

Mode

- Global Config
- Interface Config

5.2.13.7. **storm-control broadcast rate**

Use this command to configure the broadcast storm recovery threshold for all interfaces (Global Config mode) or one or more interfaces (Interface Config mode) in packets per second.

If the mode is enabled, broadcast storm recovery is active, and if the rate of L2 broadcast traffic ingressing on an interface increases beyond the configured threshold, the traffic is dropped. Therefore, the rate of broadcast traffic is limited to the configured threshold.

Format

```
storm-control broadcast rate <0-14880000>
```

Default 0
5.2.13.8. no storm-control broadcast rate

This command sets the broadcast storm recovery threshold to the default value for all interfaces (Global Config mode) or one or more interfaces (Interface Config mode) and disables broadcast storm recovery.

Format

no storm-control broadcast rate

Mode

- Global Config
- Interface Config

5.2.13.9. storm-control broadcast level

Use this command to configure the broadcast storm recovery threshold for all interfaces (Global Config mode) or one or more interfaces (Interface Config mode) as a percentage of link speed and enable broadcast storm recovery.

If the mode is enabled, broadcast storm recovery is active, and if the rate of L2 broadcast traffic ingressing on an interface increases beyond the configured threshold, the traffic is dropped. Therefore, the rate of broadcast traffic is limited to the configured threshold.

Format

storm-control broadcast level <0-100>

Default

5

Mode

- Global Config
- Interface Config

5.2.13.10. no storm-control broadcast level

This command sets the broadcast storm recovery threshold to the default value for all interfaces (Global Config mode) or one or more interfaces (Interface Config mode) and disables broadcast storm recovery.

Format

no storm-control broadcast level

Mode

- Global Config
- Interface Config
5.2.13.11. **storm-control multicast**

This command enables multicast storm recovery mode for all interfaces (Global Config mode) or one or more interfaces (Interface Config mode).

If the mode is enabled, multicast storm recovery is active, and if the rate of L2 multicast traffic ingressing on an interface increases beyond the configured threshold, the traffic will be dropped. Therefore, the rate of multicast traffic will be limited to the configured threshold.

Format

```
storm-control multicast
```

Default

disabled

Mode

- Global Config
- Interface Config

5.2.13.12. **no storm-control multicast**

This command disables multicast storm recovery mode for all interfaces (Global Config mode) or one or more interfaces (Interface Config mode).

Format

```
no storm-control multicast
```

Mode

- Global Config
- Interface Config

5.2.13.13. **storm-control multicast action**

This command configures the multicast storm recovery action to either shutdown or trap for all interfaces (Global Config mode) or one or more interfaces (Interface Config mode).

If configured to shutdown, the interface that receives multicast packets at a rate above the threshold is diagnostically disabled. The option trap sends trap messages approximately every 30 seconds until multicast storm control recovers.

Format

```
storm-control multicast action {shutdown | trap}
```

Default

None

Mode

- Global Config
- Interface Config
5.2.13.14. **no storm-control multicast action**

This command returns the multicast storm recovery action option to the default value for all interfaces (Global Config mode) or one or more interfaces (Interface Config mode).

Format

no storm-control multicast action

Mode

- Global Config
- Interface Config

5.2.13.15. **storm-control multicast level**

This command configures the multicast storm recovery threshold for all interfaces (Global Config mode) or one or more interfaces (Interface Config mode) as a percentage of link speed and enables multicast storm recovery mode.

If the mode is enabled, multicast storm recovery is active, and if the rate of L2 multicast traffic ingressing on an interface increases beyond the configured threshold, the traffic will be dropped. Therefore, the rate of multicast traffic will be limited to the configured threshold.

Format

storm-control multicast level <0-100>

Default

5

Mode

- Global Config
- Interface Config

5.2.13.16. **no storm-control multicast level**

This command sets the multicast storm recovery threshold to the default value for all interfaces (Global Config mode) or one or more interfaces (Interface Config mode) and disables multicast storm recovery.

Format

no storm-control multicast level

Mode

- Global Config
- Interface Config

5.2.13.17. **storm-control multicast rate**

Use this command to configure the multicast storm recovery threshold for all interfaces (Global Config mode) or one or more interfaces (Interface Config mode) in packets per second.
If the mode is enabled, multicast storm recovery is active, and if the rate of L2 broadcast traffic ingressing on an interface increases beyond the configured threshold, the traffic is dropped. Therefore, the rate of multicast traffic is limited to the configured threshold.

Format
storm-control multicast rate <0-14880000>

Default
0

Mode
Global Config
Interface Config

5.2.13.18. *no storm-control multicast rate*

This command sets the multicast storm recovery threshold to the default value for all interfaces (Global Config mode) or one or more interfaces (Interface Config mode) and disables multicast storm recovery.

Format
no storm-control multicast rate

Mode
Global Config
Interface Config

5.2.13.19. *storm-control unicast*

This command enables unicast storm recovery mode for all interfaces (Global Config mode) or one or more interfaces (Interface Config mode).

If the mode is enabled, unicast storm recovery is active, and if the rate of unknown L2 unicast (destination lookup failure) traffic ingressing on an interface increases beyond the configured threshold, the traffic will be dropped. Therefore, the rate of unknown unicast traffic will be limited to the configured threshold.

Format
storm-control unicast

Default
disabled

Mode
Global Config
Interface Config

5.2.13.20. *no storm-control unicast*

This command disables unicast storm recovery mode for all interfaces (Global Config mode) or one or more interfaces (Interface Config mode).
5.2.13.21. **storm-control unicast action**

This command configures the unicast storm recovery action to either shutdown or trap for all interfaces (Global Config mode) or one or more interfaces (Interface Config mode).

If configured to shutdown, the interface that receives unicast packets at a rate above the threshold is diagnostically disabled. The option trap sends trap messages approximately every 30 seconds until unicast storm control recovers.

Format
```
storm-control unicast action { shutdown | trap }
```

Default
None

Mode
- Global Config
- Interface Config

5.2.13.22. **no storm-control unicast action**

This command returns the unicast storm recovery action option to the default value for all interfaces (Global Config mode) or one or more interfaces (Interface Config mode).

Format
```
no storm-control unicast action
```

Mode
- Global Config
- Interface Config

5.2.13.23. **storm-control unicast level**

This command configures the unicast storm recovery threshold for all interfaces (Global Config mode) or one or more interfaces (Interface Config mode) as a percentage of link speed, and enables unicast storm recovery.

If the mode is enabled, unicast storm recovery is active, and if the rate of unknown L2 unicast (destination lookup failure) traffic ingressing on an interface increases beyond the configured threshold, the traffic will be dropped.

Therefore, the rate of unknown unicast traffic will be limited to the configured threshold. This command also enables unicast storm recovery mode for an interface.
5.2.13.24. no storm-control unicast level

This command sets the unicast storm recovery threshold to the default value for all interfaces (Global Config mode) or one or more interfaces (Interface Config mode) and disables unicast storm recovery.

Format

```
no storm-control unicast level
```

Default

5

Mode

- Global Config
- Interface Config

5.2.13.25. storm-control unicast rate

Use this command to configure the unicast storm recovery threshold for all interfaces (Global Config mode) or one or more interfaces (Interface Config mode) in packets per second.

If the mode is enabled, unicast storm recovery is active, and if the rate of L2 broadcast traffic ingressing on an interface increases beyond the configured threshold, the traffic is dropped.

Therefore, the rate of unicast traffic is limited to the configured threshold.

Format

```
storm-control unicast rate <0-14880000>
```

Default

0

Mode

- Global Config
- Interface Config

5.2.13.26. no storm-control unicast rate

This command sets the unicast storm recovery threshold to the default value for all interfaces (Global Config mode) or one or more interfaces (Interface Config mode) and disables unicast storm recovery.

Format

```
no storm-control unicast rate
```

Mode

- Global Config
- Interface Config
5.2.14. Port Mirror Commands

This section describes the commands you use to select network traffic that you can analyze with a network analyzer.

Note: On LY4R, one port cannot join more than one port-monitor session regardless of source port or destination port due to the HW limitation.

5.2.14.1. show port-mirror session

Use this command to display the port monitoring information for the specified session.

Format
show port-monitor session { <1-4> | all }

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><1-4></td>
<td>An integer value used to identify the session. Its value can be anything between 1 and the maximum number of mirroring sessions (4) allowed on the platform.</td>
</tr>
<tr>
<td>all</td>
<td>Displays the all sessions</td>
</tr>
</tbody>
</table>

Mode
Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session ID</td>
<td>The session ID. The range of session ID is 1 to 4.</td>
</tr>
<tr>
<td>Admin Mode</td>
<td>Indicates whether the Port Monitoring feature is enabled or disabled. The possible values are enabled and disabled.</td>
</tr>
<tr>
<td>Probe Port</td>
<td>Probe port (destination port) for the session identified with session-id. If probe port is not set then this field is blank.</td>
</tr>
<tr>
<td>Src VLAN</td>
<td>All member ports of this VLAN are mirrored. If the source VLAN is not configured, this field is blank.</td>
</tr>
<tr>
<td>Mirrored Port</td>
<td>The port that is configured as a mirrored port (source port) for the session identified with session-id. If no source port is configured for the session, this field is blank.</td>
</tr>
<tr>
<td>Ref. Port</td>
<td>This port carries all the mirrored traffic at the source switch.</td>
</tr>
<tr>
<td>Src RVLAN</td>
<td>The source VLAN is configured at the destination switch. If the remote VLAN is not configured, this field is blank.</td>
</tr>
<tr>
<td>Dst RVLAN</td>
<td>The destination VLAN is configured at the source switch. If the remote VLAN is not configured, this field is blank.</td>
</tr>
</tbody>
</table>
5.2.14.2. **port-monitor session source**

This command configures the source interface for a selected monitor session. Use the source interface slot/port parameter to specify the interface to monitor. Use rx to monitor only ingress packets, or use tx to monitor only egress packets. If you do not specify an {rx | tx} option, the destination port monitors both ingress and egress packets.

A VLAN can be configured as the source to a session (all member ports of that VLAN are monitored). Remote port mirroring is configured by adding the RSPAN VLAN ID. At the source switch, the destination is configured as the RSPAN VLAN and at the destination switch, the source is configured as the RSPAN VLAN.

Note: The source and destination cannot be configured as remote on the same device. On LY4R, one port cannot join more than one port-monitor session regardless of source port or destination port due to the HW limitation.

Format

```
port-monitor session <1-4> source {interface {<port-list> | <slot/port> | cpu | port-channel {<1-64> | <child-list>}} [{rx | tx}] | remote vlan <1-4093> | vlan <1-4093>}

no port-monitor [session <1-4> [source {interface {<port-list> | <slot/port> | cpu | port-channel {<1-64> | <child-list>}} | remote vlan | vlan]]]
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><1-4></td>
<td>The session ID, which can be 1, 2, 3, or 4.</td>
</tr>
<tr>
<td><port-list></td>
<td>The physical-port IDs in range from 1 to 48. Use '-' to specify a range, or ',' to separate physical port IDs in a list. Spaces and zeros are not permitted.</td>
</tr>
<tr>
<td><slot/port></td>
<td>The interface number.</td>
</tr>
<tr>
<td>port-channel <1-64></td>
<td>The port-channel interface number. The range of the port-channel ID is from 1 to 64.</td>
</tr>
<tr>
<td>port-channel <child-list></td>
<td>The channel IDs in range <1-64>. Use '-' to specify a range, or ',' to separate physical-port IDs in a list. Spaces and zeros are not permitted.</td>
</tr>
<tr>
<td>rx</td>
<td>tx</td>
</tr>
<tr>
<td>remote vlan <1-4093></td>
<td>The VLAN ID to be monitored on the remote switch. The range is 1 to 4093.</td>
</tr>
<tr>
<td>vlan <1-4093></td>
<td>The VLAN ID to be monitored. The range is 1 to 4093.</td>
</tr>
</tbody>
</table>
5.2.14.3. no port-monitor session source

Use this command to remove the specified mirrored port from the selected port mirroring session.

Format

```
no port-monitor session <session-id> source { interface {<slot/port> | cpu | port-channel } [ {rx | tx} ] | remote vlan <vlan-id> | vlan <vlan-id> }
```

Default None

Mode Global Config

5.2.14.4. port-monitor session destination

This command configures the probe interface for a selected monitor session. This command configures a probe port and a monitored port for monitor session (port monitoring).

Use rx to monitor only ingress packets, or use tx to monitor only egress packets. If you do not specify an {rx | tx} option, the destination port monitors both ingress and egress packets.

A VLAN can be configured as the source to a session (all member ports of that VLAN are monitored). Remote port mirroring is configured by adding the RSPAN VLAN ID. At the source switch, the destination is configured as the RSPAN VLAN and at the destination switch, the source is configured as the RSPAN VLAN.

Note: The source and destination cannot be configured as remote on the same device. On LY4R, one port cannot join more than one port-monitor session regardless of source port or destination port due to the HW limitation.

The reflector-port is configured at the source switch along with the destination RSPAN VLAN. The reflector port forwards the mirrored traffic towards the destination switch.

Note: This port must be configured with RSPAN VLAN membership.

Format

```
port-monitor session <1-4> destination { interface <slot/port> | remote vlan <1-4093> reflector-port <slot/port> }
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><1-4></td>
<td>Session number. The range of session id is 1 to 4</td>
</tr>
<tr>
<td>interface <slot/port></td>
<td>The Interface number .</td>
</tr>
<tr>
<td>remote vlan <1-4093></td>
<td>The VLAN ID to be monitored on the remote switch. The range is 1 to 4093.</td>
</tr>
<tr>
<td>reflector-port <slot/port></td>
<td>The Interface number for reflector-port.</td>
</tr>
</tbody>
</table>
5.2.14.5. **no port-monitor session destination**

Use this command to remove the specified probe port from the selected port mirroring session.

Format

```
no port-monitor session <session-id> destination { interface <slot/port> | remote vlan <vlan-id> reflector-port <slot/port> }
```

Default None

Mode Global Config

5.2.14.6. **port-monitor session filter**

This command attaches an IP/MAC ACL to a selected monitor session. This command configures a probe port and a monitored port for monitor session (port monitoring).

An IP/MAC ACL can be attached to a session by giving the access list number/name.

Use the filter parameter to filter a specified access group either by IP address or MAC address.

Note: IP/MAC ACL can be attached to a session by giving the access list number/name. On the platforms that do not support both IP and MAC ACLs to be assigned on the same Monitor session, an error message is thrown when user tries to configure ACLs of both types.

Format

```
port-monitor session <1-4> filter { ip | mac } access-group <aclid | ip-acl-name>
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><1-4></td>
<td>Session number. The range of session id is 1 to 4</td>
</tr>
<tr>
<td>ip</td>
<td>mac</td>
</tr>
<tr>
<td><aclid></td>
<td>Enter an integer specifying an IP ACL number.</td>
</tr>
<tr>
<td><ip-acl-name></td>
<td>Enter access-list name up to 31 characters in length.</td>
</tr>
</tbody>
</table>

Default None

Mode Global Config
5.2.14.7. **no port-monitor session filter**

Use this command to remove the specified IP/MAC ACL from the selected monitoring session.

Format
no port-monitor session <session-id> filter { ip | mac } access-group

Default
None

Mode
Global Config

5.2.14.8. **port-monitor session mode**

Use this command to configure the mode parameters to enable the administrative mode of the selected port mirroring session. If enabled, the probe port monitors all the traffic received and transmitted on the physical monitored port.

Format
port-monitor session <1-4> mode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><1-4></td>
<td>Session number. The range of session id is 1 to 4</td>
</tr>
</tbody>
</table>

Default
None

Mode
Global Config

5.2.14.9. **no port-monitor session mode**

The command disables port-monitoring function for the selected port monitoring session.

Format
no port-monitor session <session-id> mode

Default
None

Mode
Global Config

5.2.14.10. **no port-monitor session**

Use this command without optional parameters to remove the monitor session (port monitoring) destination from the source probe port, the destination monitored port and all VLANs. Once the port is removed from the VLAN, you must manually add the port to any desired VLANs.
5.2.14.11. **no port-monitor**

This command removes all the source ports and a destination port and restores the default value for mirroring session mode for all the configured sessions.

Format
no port-monitor session <session-id>

Parameter	**Definition**
<1-4> | Session number. The range of session id is 1 to 4

Default
None

Mode
Global Config

5.2.15. **Link State**

5.2.15.1. **show link state**

Show link state information.

Format
show link state group [<1-48>]

Parameter	**Description**
<1-48> | The range of group id is 1 to 48.

Default
None

Mode
Global Config

Display Message

Fields	**Definition**
Group ID | The group ID for each displayed row.
DownStream | Display such port was included to DownStream set.
UpStream | Display such port was included to UpStream set.
5.2.15.2. \textbf{link state group action}

This command is used to Link DOWN the group downstream interface list when upstream link goes down (link is up otherwise) or Link UP the group downstream interface list when upstream link goes down (link is down otherwise).

\textbf{Format} \quad \text{link state group} <1-48> \text{ action} \{ \text{down | up} \}
\noalign{\medskip}
\text{no link state group} <1-48>

\begin{tabular}{|l|l|}
\hline
\textbf{Parameter} & \textbf{Description} \\
\hline
\text{<1-48>} & The range of group id is 1 to 48. \\
\hline
\text{no} & Disable the group action \\
\hline
\end{tabular}

\textbf{Default} \quad \text{None}

\textbf{Mode} \quad \text{Global Config}

5.2.15.3. \textbf{link state group}

This command is used to add interface to the downstream/upstream interface list.

\textbf{Format} \quad \text{link state group} <1-48> \{ \text{downstream | upstream} \}
\noalign{\medskip}
\text{no link state group} <1-48> \{ \text{downstream | upstream} \}

\begin{tabular}{|l|l|}
\hline
\textbf{Parameter} & \textbf{Description} \\
\hline
\text{<1-48>} & The range of group id is 1 to 48. \\
\hline
\text{no} & Remove the selected interface from downstream/upstream list. \\
\hline
\end{tabular}

\textbf{Default} \quad \text{None}

\textbf{Mode} \quad \text{Interface Config}
5.2.16. Port-backup Commands

This section describes commands you use to configure port-backup group. Port-backup group consists of two ports, one port is used under normal condition and treated as an “active port”, the other port is NOT used while the other port is active mode and it is treated as a “Backup (Stand-by) port”.

5.2.16.1. show port-backup

This command displays information about port-backup group.

Format show port-backup

Mode Privileged EXEC

The following example shows the CLI display output for the command show port-backup.

(M4500-32C) #show port-backup
Admin Mode: Enable

<table>
<thead>
<tr>
<th>Group</th>
<th>Mode</th>
<th>MAC Update</th>
<th>Failback</th>
<th>Active Port</th>
<th>Backup Port</th>
<th>Current Active Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>En.</td>
<td>Enable</td>
<td>60(sec)</td>
<td>0/1</td>
<td>0/2</td>
<td></td>
</tr>
</tbody>
</table>

5.2.16.2. port-backup

Use this command to enable port-backup admin mode.

Format port-backup

Default Disable

Mode Global Config

5.2.16.3. no port-backup

Use this command to disable port-backup admin mode.

Format no port-backup

Mode Global Config
5.2.16.4. **port-backup group**

Use this command to create the port backup group.

Format
port-backup group [group id]

Default
NA

Mode
Global Config

5.2.16.5. **no port-backup group**

Use this command to destroy the port-backup group.

Format
no port-backup group <group id>

Mode
Global Config

5.2.16.6. **port-backup group active**

Use this command to set active port for a port-backup group.

Format
port-backup group <group id> active

Default
NA

Mode
Interface Config

5.2.16.7. **no port-backup group active**

Use this command to reset active port for a port-backup group.

Format
no port-backup group <group id> active

Mode
Interface Config

5.2.16.8. **port-backup group backup**

Use this command to set backup port for a port-backup group.
5.2.16.9. **no port-backup group backup**

Use this command to reset backup port for a port-backup group.

Format
no port-backup group <group id> backup

Mode
Interface Config

5.2.16.10. **port-backup group enable**

Use this command to enable a port-backup group.

Format
port-backup group enable <group id>

Default
Disable

Mode
Global Config

5.2.16.11. **port-backup group mac-move-update**

Use this command to enable the MAC address-table move update feature for a port-backup group.

Format
port-backup group <group id> mac-move-update

Default
Disable

Mode
Global Config

5.2.16.12. **no port-backup group mac-move-update**

Use this command to disable the MAC address-table move update feature for a port-backup group.

Format
no port-backup group <group id> mac-move-update

Mode
Global Config
5.2.16.13. **port-backup group failback-time**

Use this command to set auto-failback time for a port-backup group. Setting the value to 0 means that auto-failback time feature is disabled.

Format

```
port-backup group <group id> failback-time 0
port-backup group <group id> failback-time <10-60>
```

Default

60s

Mode

Global Config

5.2.16.14. **no port-backup group failback-time**

Use this command to reset auto-failback time for a port-backup group.

Format

```
no port-backup group <group id> failback-time
```

Mode

Global Config
5.3. Provisioning (IEEE 802.1p) Commands

This section describes the commands you use to configure provisioning (IEEE 802.1p,) which allows you to prioritize ports.

5.3.1. `switchport priority all`

This command configures the port priority assigned for untagged packets for all ports presently plugged into the device. Any subsequent per port configuration will override this configuration setting.

Format: `switchport priority all <0-7>`
Default: 0
Mode: Global Config

5.3.2. `no switchport priority all`

This command restores the priority value to default value for all interfaces.

Format: `no switchport priority all`
Mode: Global Config

5.3.3. `switchport priority`

This command configures the default 802.1p port priority assigned for untagged packets for a specific interface.

Format: `switchport priority <0-7>`
Default: 0
Mode: Interface Config

5.3.4. `no switchport priority`

This command restores the priority configuration to default value.

Format: `no switchport priority`
Mode: Interface Config
5.4. Management Commands

5.4.1. Network Commands

5.4.1.1. show ip interface

This command displays configuration settings associated with the switch’s network interface. The network interface is the logical interface used for in-band connectivity with the switch via any of the switch’s front panel ports. The configuration parameters associated with the switch’s network interface do not affect the configuration of the front panel ports through which traffic is switched or routed.

Format show ip interface

Default None

Mode Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>Indicates whether the VLAN ID is used for this vlan interface.</td>
</tr>
<tr>
<td>Interface Status</td>
<td>Indicates whether the interface is up or down.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address of the interface. The factory default value is 0.0.0.0</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>The IP subnet mask for this interface. The factory default value is 0.0.0.0</td>
</tr>
<tr>
<td>MAC Address</td>
<td>The MAC address used for in-band connectivity.</td>
</tr>
<tr>
<td>Network Configuration</td>
<td>Indicates which network protocol is being used. The options are bootp</td>
</tr>
<tr>
<td>Protocol Current</td>
<td></td>
</tr>
</tbody>
</table>

5.4.1.2. show ip filter

This command displays management IP filter status and all designated management stations.

Format show ip filter

Default None

Mode Privileged Exec
5.4.1.3. mtu

Use the mtu command to set the maximum transmission unit (MTU) size, in bytes, for frames that ingress or egress the interface. You can use the mtu command to configure jumbo frame support for physical and port-channel (LAG) interfaces.

Note: To receive and process packets, the Ethernet MTU must include any extra bytes that Layer-2 headers might require. To configure the IP MTU size, which is the maximum size of the IP packet (IP Header + IP payload).

Format

```
mtu <1518-9412>
```

Default

1518 (untagged)

Mode

Interface Config

5.4.1.4. no mtu

This command sets the default MTU size (in bytes) for the interface.

Format

```
no mtu
```

Mode

Interface Config

5.4.1.5. interface vlan

This command is used to create a vlan interface and enter Interface-vlan configuration mode.

Format

```
interface vlan <vlan-id>
```

Parameter

<table>
<thead>
<tr>
<th>Parameter <vlan-id></th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID (Range: 1 - 4093).</td>
<td></td>
</tr>
</tbody>
</table>

Default

None

Mode

Global Config

5.4.1.6. ip address

This command configures an IP address on an interface or range of interfaces. You can also use this command to configure one or more secondary IP addresses on the interface. The command supports RFC 3021 and accepts using 31-bit prefixes on IPv4 point-to-point links. This command adds the label IP address in the command "show ip interface".
Format

```
ip address <ipaddr> {subnetmask | /prefix-length} [secondary]
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipaddr</td>
<td>The IP address of the interface.</td>
</tr>
<tr>
<td>subnetmask</td>
<td>A 4-digit dotted-decimal number which represents the subnet mask of the interface.</td>
</tr>
<tr>
<td>masklen</td>
<td>Implements RFC 3021. Using the / notation of the subnet mask, this is an integer that indicates the length of subnet mask. Range is 5 to 32 bits.</td>
</tr>
</tbody>
</table>

Default

- IP address: 0.0.0.0
- Subnet Mask: 0.0.0.0

Mode

Interface-Vlan Config

Example: The following example of the command shows the configuration of the subnet mask with an IP address in the dotted decimal format on interface vlan 100.

```
(M4500-32C) (if-vlan100)#ip address 192.168.10.2 255.255.255.254
(M4500-32C) (if-vlan100)#
```

5.4.1.7. no ip address

This command deletes an IP address from an interface. The value for ipaddr is the IP address of the interface in a.b.c.d format where the range for a,b,c, and d is 1-255. The value for subnetmask is a 4-digit dotted-decimal number which represents the Subnet Mask of the interface. To remove all of the IP addresses (primary and secondary) configured on the interface, enter the command no ip address.

Format

```
no ip address <ipaddr> {subnetmask | /prefix-length} [secondary]
```

Mode

Interface-Vlan Config

5.4.1.8. ip default-gateway

This command sets the IP Address of the default gateway.

Format

```
ip default-gateway <gateway-addr>
no ip default-gateway
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><gateway-addr></td>
<td>IP address of the default gateway.</td>
</tr>
</tbody>
</table>
5.4.1.9. ip address dhcp

This command enables the DHCPv4 client on an in-band interface so that it can acquire network information, such as the IP address, subnet mask, and default gateway, from a network DHCP server.

Format ip address dhcp [client-id | restart]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>client-id</td>
<td>Enable the DHCP client to specify the unique client identifier (option 61).</td>
</tr>
<tr>
<td>restart</td>
<td>Restarts the DHCP process.</td>
</tr>
</tbody>
</table>

Default None

Mode Interface Config

5.4.1.10. no ip address dhcp

Use this command to release a leased address and disable DHCPv4 on an interface.

Format no ip address dhcp [client-id]

Mode Interface Config

5.4.1.11. ip filter

This command is used to enable the IP filter function.

Format ip filter

Default Disabled

Mode Global Config
5.4.1.12. **no ip filter**

Disable ip filter.

Format
no ip filter

Mode
Global Config

5.4.1.13. **ip filter <name> {ipv4|ipv6}<ipAddr>[<mask>]**

This command is used to set an IP address to be a filter.

Format
ip filter <name> {ipv4 <ipAddr> [<mask>] | ipv6 <prefix/length>}
no ip filter <name>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><name></td>
<td>The name of the IP filter.</td>
</tr>
<tr>
<td><ipAddr></td>
<td>Specifies an IP address to the filter.</td>
</tr>
<tr>
<td><mask></td>
<td>Specifies the mask for a range filter.</td>
</tr>
<tr>
<td><prefix/length></td>
<td>Specifies an IPv6 prefix and prefix length.</td>
</tr>
</tbody>
</table>

Default
None

Mode
Global Config

5.4.1.14. **no ip filter <name>**

Remove this IP address from filter.

Format
no ip filter <name>

Mode
Global Config

5.4.2. **Serial Interface Commands**

5.4.2.1. **show line console**

This command displays serial communication settings for the switch.

Format
show line console
5.4.2.2. line console

This command is used to enter Line configuration mode

Format line console

Default None

Mode Global Config

5.4.2.3. baudrate

This command specifies the communication rate of the terminal interface. The supported rates are 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200.

Format baudrate {1200 | 2400 | 4800 | 9600 | 19200 | 38400 | 57600 | 115200}
5.4.2.4. no baudrate

This command sets the communication rate of the terminal interface to **115200**.

Format
line console

Mode
Line Config

5.4.2.5. exec-timeout

This command specifies the maximum connect time (in minutes) without console activity. A value of 0 indicates that a console can be connected indefinitely. The time range is 0 to 160.

Format
exec-timeout <0-160>

Default
5

Mode
Line Config

5.4.2.6. no exec-timeout

This command sets the maximum connect time (in minutes) without console activity to 5.

Format
no exec-timeout

Mode
Line Config

5.4.2.7. password-threshold

This command is used to set the password instruction threshold limiting the number of failed login attempts.

Format
password-threshold <0-120>

Default
3

Mode
Line Config
5.4.2.8. no password-threshold

This command sets the maximum value to the default.

Format no password-threshold

Mode Line Config

5.4.2.9. silent-time

This command uses to set the amount of time the management console is inaccessible after the number of unsuccessful logon tries exceeds the threshold value.

Format silent-time <0-65535>

Default 0

Mode Line Config

5.4.2.10. no silent-time

This command sets the maximum value to the default.

Format no silent-time

Mode Line Config

5.4.2.11. terminal length

This command uses to configure the columns per page for the management console.

Format terminal length <10-100>

Default 24

Mode Privileged Exec
5.4.2.12. line password

This command is used to specify the password for the line mode.

Format
password [〈password〉]

Default
None

Mode
Line Config

no password (Line Config)

This command set the password for the line mode to default.

Format
nopassword

Mode
Line Config

5.4.3. Telnet Session Commands

5.4.3.1. telnet

This command establishes a new outbound telnet connection to a remote host.

Format
telnet 〈ip-address|hostname〉 [port] [debug] [line]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>〈ip-address</td>
<td>hostname〉</td>
</tr>
<tr>
<td>port</td>
<td>A valid decimal integer in the range of 0 to 65535, where the default value is 23.</td>
</tr>
<tr>
<td>debug</td>
<td>Display current enabled telnet options.</td>
</tr>
<tr>
<td>line</td>
<td>Set the outbound telnet operational mode as ‘linemode’, where by default, the operational mode is ‘character mode’.</td>
</tr>
</tbody>
</table>

Default
None

Mode
Privileged Exec
User Exec
5.4.3.2. show line vty

This command displays telnet settings.

Format
show line vty

Default
None

Mode
Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Connection Login Timeout (minutes)</td>
<td>This object indicates the number of minutes a remote connection session is allowed to remain inactive before being logged off. A zero means there will be no timeout. May be specified as a number from 0 to 160. The factory default is 5.</td>
</tr>
<tr>
<td>Maximum Number of Remote Connection Sessions</td>
<td>This object indicates the number of simultaneous remote connection sessions allowed. The factory default is 5.</td>
</tr>
<tr>
<td>Allow New Telnet Sessions</td>
<td>Indicates that new telnet sessions will not be allowed when set to no. The factory default value is yes.</td>
</tr>
<tr>
<td>Telnet Server Admin Mode</td>
<td>The telnet server admin mode status. The factory default is enable.</td>
</tr>
<tr>
<td>Telnet Server Port</td>
<td>The listen port number of Telnet service.</td>
</tr>
<tr>
<td>Password Threshold</td>
<td>When the logon attempt threshold is reached on the console port, the system interface becomes silent for a specified amount of time before allowing the next logon attempt. (Use the silent time command to set this interval.) When this threshold is reached for Telnet, the Telnet logon interface closes.</td>
</tr>
<tr>
<td>Terminal Length</td>
<td>The columns per page for terminal vty port.</td>
</tr>
</tbody>
</table>

5.4.3.3. line vty

This command is used to enter vty (Telnet) configuration mode.

Format
line vty

Default
None

Mode
Global Config

5.4.3.4. exec-timeout

This command sets the remote connection session timeout value, in minutes. A session is active as long as the session has been idle for the value set. A value of 0 indicates that a session remains active indefinitely. The time is a decimal value from 0 to 160.
Changing the timeout value for active sessions does not become effective until the session is reaccessed. Any keystroke will also activate the new timeout duration.

Format
exec-timeout <1-160>

Default
5

Mode
Line Vty

Example:
(M4500-32C) #configure
(M4500-32C) (Config)#line vty
(M4500-32C) (Config-vty)#exec-timeout 10

5.4.3.5. no exec-time out

This command sets the remote connection session timeout value, in minutes, to the default.

Format
no exec-timeout

Mode
Line Vty

5.4.3.6. password-threshold

This command is used to set the password instruction threshold limited for the number of failed login attempts.

Format
password-threshold <0-120>

Default
3

Mode
Line Vty

Example:
(M4500-32C) #configure
(M4500-32C) (Config)#line vty
(M4500-32C) (Config-vty)#password-threshold 10
5.4.3.7. no password-threshold

This command sets the maximum value to the default

Format no password-threshold
Mode Line Vty

5.4.3.8. maxsessions

This command specifies the maximum number of remote connection sessions that can be established. A value of 0 indicates that no remote connection can be established. The range is 0 to 5.

Format maxsessions <0-5>
Default 5
Mode Line Vty

Example:

(M4500-32C) #configure
(M4500-32C) (Config)#line vty
(M4500-32C) (Config-vty)#maxsessions 5

5.4.3.9. no maxsessions

This command sets the maximum value to be 5.

Format no maxsessions
Mode Line Vty

5.4.3.10. server enable

This command enables/disables telnet server. If telnet server is enabled, all telnet sessions can be established until there are no more sessions available. If telnet server is disabled, all telnet sessions are closed.

Format server enable
Default Enabled
5.4.3.11. **no server enable**

This command disables telnet server. If telnet server is disabled, all telnet sessions are dropped.

Format
no server enable

Mode
Line Vty

5.4.3.12. **sessions**

This command regulates new telnet sessions. If sessions are enabled, new telnet sessions can be established until there are no more sessions available. If sessions are disabled, no new telnet sessions are established. An established session remains active until the session is ended or an abnormal network error ends it.

Format
sessions

Default
Enabled

Mode
Line Vty

5.4.3.13. **no sessions**

This command disables telnet sessions. If sessions are disabled, no new telnet sessions are established.

Format
no sessions

Mode
Line Vty

5.4.3.14. **telnet sessions**

This command regulates new outbound telnet connections. If enabled, new outbound telnet sessions can be established until it reaches the maximum number of simultaneous outbound telnet sessions allowed. If disabled, no new outbound telnet session can be established. An established session remains active until the session is ended or an abnormal network error ends it.

Format
telnet sessions

Default
Enabled

Mode
Global Config
5.4.3.15. **no telnet sessions**

This command disables new outbound telnet connections. If disabled, no new outbound telnet connection can be established.

Format
no telnet sessions

Mode
Global Config

5.4.3.16. **telnet maxsessions**

This command specifies the maximum number of simultaneous outbound telnet sessions. A value of 0 indicates that no outbound telnet session can be established.

Format
telnet maxsessions <0-5>

Default
5

Mode
Global Config

5.4.3.17. **no telnet maxsessions**

This command sets the maximum value to be 5.

Format
no telnet maxsessions

Mode
Global Config

5.4.3.18. **telnet exec-timeout**

This command sets the outbound telnet session timeout value in minute.

Changing the timeout value for active sessions does not become effective until the session is reaccessed. Any keystroke will also activate the new timeout duration.

Format
telnet exec-timeout <1-160>

Default
5

Mode
Global Config
5.4.3.19. **no telnet exec-timeout**

This command sets the remote connection session timeout value, in minutes, to the default.

Format
no telnet exec-timeout

Mode
Global Config

5.4.3.20. **show telnet**

This command displays the current outbound telnet settings.

Format
show telnet

Default
None

Mode
Privileged Exec

User Exec

Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outbound Telnet Login Timeout (in minutes)</td>
<td>Indicates the number of minutes an outbound telnet session is allowed to remain inactive before being logged off. A value of 0, which is the default, results in no timeout.</td>
</tr>
<tr>
<td>Maximum Number of Outbound Telnet Sessions</td>
<td>Indicates the number of simultaneous outbound telnet connections allowed.</td>
</tr>
<tr>
<td>Allow New Outbound Telnet Sessions</td>
<td>Indicates whether outbound telnet sessions will be allowed.</td>
</tr>
</tbody>
</table>

5.4.4. **SNMP Server Commands**

5.4.4.1. **show snmp**

This command displays SNMP community information and SNMP trap/inform receivers. Trap/Inform messages are sent across a network to an SNMP Network Manager. These messages alert the manager to events occurring within the switch.

You can add, change, or delete communities. The switch does not have to be reset for changes to take effect.
The SNMP agent of the switch complies with SNMP versions 1, 2c, and 3 (for more about the SNMP specification, see the SNMP RFCs). The SNMP agent sends traps through TCP/IP to an external SNMP manager based on the SNMP configuration (the trap receiver and other SNMP community parameters).

Note: By default, no community strings such as ‘private’ or ‘public’ exist for SNMPv1 and SNMPv2. In addition, the MD5 authentication protocol is used for SNMPv3, and the ‘None’ authentication protocol is not allowed.

Format
show snmp

Default
None

Mode
Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community-String</td>
<td>The community string to which this entry grants access. A valid entry is a case-sensitive alphanumerical string of up to 20 characters. Each row of this table must contain a unique community name.</td>
</tr>
<tr>
<td>Community-Access</td>
<td>The access level for this community string.</td>
</tr>
<tr>
<td>View Name</td>
<td>The view this community has access to.</td>
</tr>
<tr>
<td>IP Address</td>
<td>Access to this community is limited to this IP address.</td>
</tr>
<tr>
<td>Group Name</td>
<td>The community this mapping configures.</td>
</tr>
<tr>
<td>Target Address</td>
<td>An IP address (or portion thereof) from which this device will accept SNMP packets with the associated community.</td>
</tr>
<tr>
<td>Type</td>
<td>The type of message that will be sent, either traps or informs.</td>
</tr>
<tr>
<td>Community</td>
<td>The community traps will be sent to.</td>
</tr>
<tr>
<td>Version</td>
<td>The version of SNMP the trap will be sent as.</td>
</tr>
<tr>
<td>SNMP v1</td>
<td>Uses SNMP v1 to send traps to the receiver.</td>
</tr>
<tr>
<td>SNMP v2</td>
<td>Uses SNMP v2 to send traps to the receiver.</td>
</tr>
<tr>
<td>SNMP v3</td>
<td>Uses SNMP v3 to send traps to the receiver.</td>
</tr>
<tr>
<td>UDP Port</td>
<td>The UDP port the trap or inform will be sent to.</td>
</tr>
<tr>
<td>Filter name</td>
<td>The filter the traps will be limited by for this host.</td>
</tr>
<tr>
<td>TO Sec</td>
<td>The number of seconds before informs will time out when sending to this host.</td>
</tr>
<tr>
<td>Retries</td>
<td>The number of times informs will be sent after timing out.</td>
</tr>
</tbody>
</table>
5.4.4.2. snmp-server sysname

This command sets the name of the switch. The range for name is from 1 to 64 alphanumeric characters.

Format
snmp-server sysname <name>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><name></td>
<td>Range is from 1 to 64 alphanumeric characters.</td>
</tr>
</tbody>
</table>

Default
None

Mode
Global Config

5.4.4.3. snmp-server location

This command sets the physical location of the switch. The range for name is from 1 to 255 alphanumeric characters.

Format
snmp-server location <loc>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><loc></td>
<td>Range is from 1 to 255 alphanumeric characters.</td>
</tr>
</tbody>
</table>

Default
None

Mode
Global Config
5.4.4.4. snmp-server contact

This command sets the name of the organization responsible for the network. The name can be from 1 to 255 alphanumeric characters.

Format: `snmp-server contact <name>`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><name></td>
<td>The name can be from 1 to 255 alphanumeric characters.</td>
</tr>
</tbody>
</table>

Default: None

Mode: Global Config

5.4.4.5. snmp-server community

This command adds a new SNMP community, and optionally sets the access mode, allowed IP address, and creates a view for the community. The allowed IP address supports IPv4 and IPv6 address but does not support IP mask value to denote a range of IPv6 addresses.

Note: Community names in the SNMP community table must be unique. If you make multiple entries using the same community name, the first entry is kept and processed and all duplicate entries are ignored.

Format: `snmp-server community <community-string> [ipaddress <ipaddress> | ro | rw | su | view <viewname>]`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><Community-String></td>
<td>A name associated with the switch and with a set of SNMP managers that manage it with a specified privileged level. The length of community-name can be up to 20 case-sensitive characters.</td>
</tr>
<tr>
<td>ipaddress</td>
<td>The associated community SNMP packet sending address and is used along with the client IP mask value to denote a range of IP addresses from which SNMP clients may use that community to access the device. A value of 0.0.0.0 allows access from any IP address. Otherwise, this value is ANDed with the mask to determine the range of allowed client IP addresses.</td>
</tr>
<tr>
<td>ro</td>
<td>rw</td>
</tr>
<tr>
<td><viewname></td>
<td>The name of the view to create or update.</td>
</tr>
</tbody>
</table>

Default: None

Mode: Global Config
5.4.4.6. no snmp-server community <community-string>

This command deletes snmp community.

Format: no snmp-server community <community-string>

Mode: Global Config

5.4.4.7. snmp-server community-group

This command configures a community access string to permit access via the SNMPv1 and SNMPv2c protocols.

Format: snmp-server community-group <community-string> <group-name> [ipaddress <ip-address>]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><community-string></td>
<td>The community which is created and then associated with the group. The range is 1 to 20 characters.</td>
</tr>
<tr>
<td><group-name></td>
<td>The name of the group that the community is associated with. The range is 1 to 30 characters.</td>
</tr>
<tr>
<td><ip-address></td>
<td>Optionally, the IPv4 address that the community may be accessed from.</td>
</tr>
</tbody>
</table>

Default: None

Mode: Global Config

5.4.4.8. no snmp-server community-group <community-string>

This command deletes snmp community group.

Format: no snmp-server community-group <community-string>

Mode: Global Config

5.4.4.9. show snmp engineid

This command displays the currently configured SNMP engineID.

Format: show snmp engineid

Default: None

Mode: Privileged Exec

Display Message
Example: The following shows examples of the CLI display output for the commands.

(M4500-32C) (Config)#show snmp engine id
Local SNMP engineID : 80001c4032c600c83ad47

5.4.4.10. snmp-server engineid

This command configures snmp engineID on the local device.

Note: Changing the engineID will invalidate all SNMP configuration that exists on the box.

Format snmp-server engineid local {<engine-id> | default}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><engine-id></td>
<td>A hexadecimal string identifying the engine-id. Engine-id must be an even length in the range of 6 to 32 hexadecimal characters.</td>
</tr>
<tr>
<td>default</td>
<td>Sets the engine-id to the default string, based on the device MAC address.</td>
</tr>
</tbody>
</table>

Default The engineID is configured automatically, based on the device MAC address.

Mode Global Config

5.4.4.11. no snmp-server engineid

This command removes snmp engineID.

Format no snmp-server engineid local

Mode Global Config
5.4.4.12. show snmp filters

This command displays the configured filters used when sending traps.

Format show snmp filters [<filter-name>]
Default None
Mode Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The filter name for this entry.</td>
</tr>
<tr>
<td>OID Tree</td>
<td>The OID tree this entry will include or exclude.</td>
</tr>
<tr>
<td>Type</td>
<td>Indicates if this entry includes or excludes the OID Tree.</td>
</tr>
</tbody>
</table>

Example: The following shows examples of the CLI display output for the commands.

```
(M4500-32C) (Config)#show snmp filters
Name                      OID Tree          Type
----------------------------------------------------
 test                      fastPathSwitching  Included
```

5.4.4.13. snmp-server filter

This command creates a filter entry for use in limiting which traps will be sent to a host.

Format snmp-server filter <filter-name> <oid-tree> [excluded | included]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><filter-name></td>
<td>The label for the filter being created. The range is 1 to 30 characters.</td>
</tr>
<tr>
<td><oid-tree></td>
<td>The OID subtree to include or exclude from the filter. Subtrees may be specified by numerical (1.3.6.2.4) or keywords (system), and asterisks may be used to specify a subtree family (1.3.*.4).</td>
</tr>
<tr>
<td>excluded</td>
<td>The tree is excluded from the filter.</td>
</tr>
<tr>
<td>included</td>
<td>The tree is included in the filter.</td>
</tr>
</tbody>
</table>

Default None
Mode Global Config
5.4.4.14. **no snmp-server filter <filter-name> [<oid-tree>]**

This command removes the specified filter.

Format
`no snmp-server filter <filter-name> [<oid-tree>]`

Mode
Global Config

5.4.4.15. **show snmp user**

This command displays the currently configured SNMPv3 users.

Format
`show snmp user [<username>]`

Default
None

Mode
Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name of the user.</td>
</tr>
<tr>
<td>Group Name</td>
<td>The group that defines the SNMPv3 access parameters.</td>
</tr>
<tr>
<td>Auth Method</td>
<td>The authentication algorithm configured for this user.</td>
</tr>
<tr>
<td>Privilege Method</td>
<td>The encryption algorithm configured for this user.</td>
</tr>
<tr>
<td>Remote Engine ID</td>
<td>The engineID for the user defined on the client machine.</td>
</tr>
</tbody>
</table>

Example: The following shows examples of the CLI display output for the commands.

```
(M4500-32C) (Config)#show snmp user

Name   Group Name   Auth Meth   Priv Meth   Remote Engine ID
------- ----------- ----------- ---------- ----------- ---------------------
 test   DefaultRead MD5         DES        80001c4c032c600c83ad47
```
5.4.4.16. snmp-server user

This command creates an SNMPv3 user for access to the system.

Format snmp-server user <name> <group-name> [remote <engine-idstring>] [[auth-md5 | auth-md5-key <md5-key>] | auth-sha | auth-sha-key <sha-key>] [priv-des-key <des-key>]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><name></td>
<td>The username the SNMPv3 user will connect to the switch as. The range is 1 to 30 characters.</td>
</tr>
<tr>
<td><group-name></td>
<td>The name of the group the user belongs to. The range is 1 to 30 characters.</td>
</tr>
<tr>
<td><engine-id-string></td>
<td>The engine-id of the remote management station that this user will be connecting from. The range is 6 to 32 characters.</td>
</tr>
<tr>
<td>auth-md5</td>
<td>The keyword to enable you to set the plain-text password for MD5 authentication.</td>
</tr>
<tr>
<td>auth-sha</td>
<td>The keyword to enable you to set the plain-text password for SHA authentication.</td>
</tr>
<tr>
<td><md5-key></td>
<td>A pregenerated MD5 authentication key. The length is 32 characters.</td>
</tr>
<tr>
<td><sha-key></td>
<td>A pregenerated SHA authentication key. The length is 48 characters.</td>
</tr>
<tr>
<td><priv-des-key></td>
<td>A pregenerated DES encryption key. The length is 32 characters.</td>
</tr>
</tbody>
</table>

Default None

Mode Global Config

5.4.4.17. no snmp-server user

This command removes the specified SNMPv3 user.

Format no snmp-server user <name> [remote <engine-idstring>]

Mode Global Config

5.4.4.18. show snmp group

This command displays the configured groups.

Format show snmp group [groupname]

Default None

Mode Privileged Exec
Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name of the group.</td>
</tr>
<tr>
<td>Security Model</td>
<td>Indicates which protocol can access the system via this group.</td>
</tr>
<tr>
<td>Security Level</td>
<td>Indicates the security level allowed for this group.</td>
</tr>
<tr>
<td>Read View</td>
<td>The view this group provides read access to.</td>
</tr>
<tr>
<td>Write View</td>
<td>The view this group provides write access to.</td>
</tr>
<tr>
<td>Notify View</td>
<td>The view this group provides trap access to.</td>
</tr>
</tbody>
</table>

Example: The following shows examples of the CLI display output for the commands.

```
(M4500-48XF8C) #show snmp group
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Context</th>
<th>Security</th>
<th>Views</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prefix</td>
<td>Model</td>
<td>Level</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>DefaultRead</td>
<td>""</td>
<td>V1</td>
<td>NoAuth-NoPriv</td>
</tr>
<tr>
<td>DefaultRead</td>
<td>""</td>
<td>V2</td>
<td>NoAuth-No Priv</td>
</tr>
<tr>
<td>DefaultRead</td>
<td>""</td>
<td>V3</td>
<td>NoAuth-NoPriv</td>
</tr>
<tr>
<td>DefaultRead</td>
<td>""</td>
<td>V3</td>
<td>Auth-NoPriv</td>
</tr>
<tr>
<td>DefaultRead</td>
<td>""</td>
<td>V3</td>
<td>Auth-Priv</td>
</tr>
<tr>
<td>DefaultSuper</td>
<td>""</td>
<td>V1</td>
<td>NoAuth-NoPriv</td>
</tr>
<tr>
<td>DefaultSuper</td>
<td>""</td>
<td>V2</td>
<td>NoAuth-NoPriv</td>
</tr>
<tr>
<td>DefaultSuper</td>
<td>""</td>
<td>V3</td>
<td>NoAuth-NoPriv</td>
</tr>
<tr>
<td>DefaultWrite</td>
<td>""</td>
<td>V1</td>
<td>NoAuth-NoPriv</td>
</tr>
<tr>
<td>DefaultWrite</td>
<td>""</td>
<td>V2</td>
<td>NoAuth-NoPriv</td>
</tr>
<tr>
<td>DefaultWrite</td>
<td>""</td>
<td>V3</td>
<td>NoAuth-NoPriv</td>
</tr>
<tr>
<td>DefaultWrite</td>
<td>""</td>
<td>V3</td>
<td>Auth-NoPriv</td>
</tr>
</tbody>
</table>

Parameter Definition

- **Name**: The name of the group.
- **Security Model**: Indicates which protocol can access the system via this group.
- **Security Level**: Indicates the security level allowed for this group.
- **Read View**: The view this group provides read access to.
- **Write View**: The view this group provides write access to.
- **Notify View**: The view this group provides trap access to.
5.4.4.19. **snmp-server group**

This command creates an SNMP access group.

Format
```
snmp-server group <group-name> [v1 | v2 | v3 {auth | priv}] [{read <readview>} | {write <writeview>} | {context <contextprefix>} | {notify <notifyview>}]```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;group-name&gt;</td>
<td>The group name to be used when configuring communities or users. The range is 1 to 30 characters.</td>
</tr>
<tr>
<td>v1</td>
<td>This group can only access via SNMPv1.</td>
</tr>
<tr>
<td>v2</td>
<td>This group can only access via SNMPv2c.</td>
</tr>
<tr>
<td>v3</td>
<td>This group can only access via SNMPv3.</td>
</tr>
<tr>
<td>&lt;readview&gt;</td>
<td>The view this group will use during GET requests. The range is 1 to 30 characters.</td>
</tr>
<tr>
<td>&lt;writeview&gt;</td>
<td>The view this group will use during SET requests. The range is 1 to 30 characters.</td>
</tr>
<tr>
<td>&lt;notifyview&gt;</td>
<td>The view this group will use when sending out traps. The range is 1 to 30 characters.</td>
</tr>
</tbody>
</table>

**Default**  Generic groups are created for all versions and privileges using the default views.

**Mode**  Global Config

5.4.4.20.  **no snmp-server group**

This command removes the specified group.

**Format**  
```
no snmp-server group <group-name> [v1 | v2 | v3 {auth | noauth | priv}] [{context <contextprefix>} | {notify <notifyview>}]```

Mode Global Config

5.4.4.21. **show snmp views**

This command displays the currently configured views.

Format
```
show snmp views [<viewname>]```
Default None

Mode Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The view name for this entry.</td>
</tr>
<tr>
<td>OID Tree</td>
<td>The OID tree that this entry will include or exclude.</td>
</tr>
<tr>
<td>Type</td>
<td>Indicates if this entry includes or excludes the OID tree.</td>
</tr>
</tbody>
</table>

Example: The following shows examples of the CLI display output for the commands.

```
(M4500-32C) (Config)#show snmp views
```

<table>
<thead>
<tr>
<th>Name</th>
<th>OID Tree</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>iso</td>
<td>Included</td>
</tr>
<tr>
<td>Default</td>
<td>snmpVacmMIB</td>
<td>Excluded</td>
</tr>
<tr>
<td>Default</td>
<td>usmUser</td>
<td>Excluded</td>
</tr>
<tr>
<td>Default</td>
<td>snmpCommunityTable</td>
<td>Excluded</td>
</tr>
<tr>
<td>DefaultSuper</td>
<td>iso</td>
<td>Included</td>
</tr>
</tbody>
</table>

5.4.4.22. snmp-server view

This command creates or modifies an existing view entry that is used by groups to determine which objects can be accessed by a community or user.

Format `snmp-server view <view-name> <oid-tree> [excluded | included]`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;view-name&gt;</td>
<td>The label for the view being created. The range is 1 to 30 characters.</td>
</tr>
<tr>
<td>&lt;oid-tree&gt;</td>
<td>The OID subtree to include or exclude from the filter. Subtrees may be specified by numerical (1.3.6.2.4) or keywords (system), and asterisks may be used to specify a subtree family (1.3.*.4).</td>
</tr>
<tr>
<td>excluded</td>
<td>The tree is excluded from the view.</td>
</tr>
<tr>
<td>included</td>
<td>The tree is included in the view.</td>
</tr>
</tbody>
</table>

Default Views are created by default to provide access to the default groups.
5.4.4.23.  **no snmp-server view**

This command removes the specified view.

**Format**  
no snmp-server view <view-name> [oid-tree]

**Mode**  
Global Config

### 5.4.5.  SNMP Trap Commands

#### 5.4.5.1.  **snmp-server host <host-addr> traps**

This command configures traps to be sent to the specified host.

**Format**  
snmp-server host <host-addr> traps version {1 <community> | 2 <community> | 3 <username> [auth | priv]} [filter <filtername>] [udp-port <1-65535>]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;host-addr&gt;</td>
<td>The IPv4 or IPv6 address of the host to send the trap to.</td>
</tr>
<tr>
<td>version 1</td>
<td>Sends SNMPv1 traps.</td>
</tr>
<tr>
<td>version 2</td>
<td>Sends SNMPv2 traps.</td>
</tr>
<tr>
<td>&lt;community&gt;</td>
<td>Community string sent as part of the notification. The range is 1 to 20 characters.</td>
</tr>
<tr>
<td>version 3</td>
<td>Sends SNMPv3 traps.</td>
</tr>
<tr>
<td>&lt;username&gt;</td>
<td>Username of SNMPv3.</td>
</tr>
<tr>
<td>auth</td>
<td>Enables authentication of a packet without encrypting.</td>
</tr>
<tr>
<td>priv</td>
<td>Enables authentication and encrypting of a packet.</td>
</tr>
<tr>
<td>&lt;filtername&gt;</td>
<td>The filter name to associate with this host. Filters can be used to specify which traps are sent to this host. The range is 1 to 30 characters.</td>
</tr>
<tr>
<td>udp-port &lt;1-65535&gt;</td>
<td>The SNMP trap receiver port. The default is port 162.</td>
</tr>
</tbody>
</table>

**Default**  
None

**Mode**  
Global Config
5.4.5.2. `no snmp-server host <host-addr>`

This command deletes trap receivers.

**Format**  
`no snmp-server host <host-addr>`

**Mode**  
Global Config

5.4.5.3. `show trapflags`

This command displays trap conditions. Configure which traps the switch should generate by enabling or disabling the trap condition. If a trap condition is enabled and the condition is detected, the switch's SNMP agent sends the trap to all enabled trap receivers. The switch does not have to be reset to implement the changes. Cold and warm start traps are always generated and cannot be disabled.

**Format**  
`show trapflags`

**Default**  
None

**Mode**  
Privileged Exec

**Display Message**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication Flag</td>
<td>May be enabled or disabled. The factory default is enabled. Indicates whether authentication failure traps will be sent.</td>
</tr>
<tr>
<td>Link Up/Down Flag</td>
<td>May be enabled or disabled. The factory default is enabled. Indicates whether link status traps will be sent.</td>
</tr>
<tr>
<td>Multiple Users Flag</td>
<td>May be enabled or disabled. The factory default is enabled. Indicates whether a trap will be sent when the same user ID is logged into the switch more than once at the same time (either via telnet or serial port).</td>
</tr>
<tr>
<td>Spanning Tree Flag</td>
<td>May be enabled or disabled. The factory default is enabled. Indicates whether spanning tree traps will be sent.</td>
</tr>
<tr>
<td>ACL Traps</td>
<td>May be enabled or disabled. The factory default is disabled. Indicates whether ACL traps will be sent.</td>
</tr>
<tr>
<td>BGP Traps</td>
<td>May be enabled or disabled. The factory default is disabled. Indicates whether BGP traps will be sent.</td>
</tr>
<tr>
<td>OSPFv2 Traps</td>
<td>May be enabled or disabled. The factory default is disabled. Indicates whether OSPF traps will be sent.</td>
</tr>
<tr>
<td>PIM Traps</td>
<td>May be enabled or disabled. The factory default is disabled. Indicates whether PIM traps will be sent.</td>
</tr>
<tr>
<td>OSPFv3 Traps</td>
<td>May be enabled or disabled. The factory default is disabled. Indicates whether OSPFv3 traps will be sent.</td>
</tr>
</tbody>
</table>
Example: The following shows examples of the CLI display output for the commands.

(M4500-32C) (Config)#show trapflags

Authentication Flag.............................. Enable
Link Up/Down Flag.............................. Enable
Multiple Users Flag.............................. Enable
Spanning Tree Flag.............................. Enable
ACL Traps........................................ Disable
BGP Traps.......................................... Disable
OSPFv2 traps.................................... Disable
PIM Traps.......................................... Disable
OSPFv3 Traps..................................... Disable
Power Supply Module state trap............... Enable
Temperature trap.................................. Enable
Fan trap............................................ Enable
FIP snooping Traps............................... Enable
Transceiver Flag.................................. Disable

5.4.5.4. snmp trap link-status all

This command enables link status traps for all interfaces.

Note: This command is valid only when the Link Up/Down Flag is enabled. See ‘snmp-server enable traps linkmode’ command.
5.4.5.5. **no snmp trap link-status all**

This command disables link status traps for all interfaces.

**Format**

```
no snmp trap link-status all
```

**Default**

Disabled

**Mode**

Global Config

5.4.5.6. **snmp-server enable traps acl-trapflags**

This command enables the acl trap.

**Format**

```
snmp-server enable traps acl-trapflags
```

**Default**

Disabled

**Mode**

Global Config

5.4.5.7. **no snmp-server enable traps acl-trapflags**

This command disables the acl trap.

**Format**

```
no snmp-server enable traps acl-trapflags
```

**Mode**

Global Config

5.4.5.8. **snmp-server enable traps authentication**

This command enables the Authentication trap.

**Format**

```
snmp-server enable traps authentication
```

**Default**

Enabled

**Mode**

Global Config
5.4.5.9. **no snmp-server enable traps authentication**

This command enables the Authentication trap.

**Format**  
no snmp-server enable traps authentication

**Mode**  
Global Config

5.4.5.10. **snmp-server enable traps bgp state-changes limited**

This command enables the BGP trap.

**Format**  
snmp-server enable traps bgp state-changes limited

**Default**  
Disabled

**Mode**  
Global Config

5.4.5.11. **no snmp-server enable traps bgp state-changes limited**

This command disables the BGP trap.

**Format**  
no snmp-server enable traps bgp state-changes limited

**Mode**  
Global Config

5.4.5.12. **snmp-server enable traps fan**

This command enables the fan status trap.

**Format**  
snmp-server enable traps fan

**Default**  
Enabled

**Mode**  
Global Config

5.4.5.13. **no snmp-server enable traps fan**

This command disables the fan status trap.

**Format**  
no snmp-server enable traps fan
5.4.5.14. **snmp-server enable traps linkmode**

This command enables Link Up/Down traps for the entire switch. When enabled, link traps are sent only if the Link Trap flag setting associated with the port is enabled (see ‘snmp trap link-status’ command).

**Format**  
```snmp-server enable traps linkmode```

Default
Enabled

Mode
Global Config

5.4.5.15. **no snmp-server enable traps linkmode**

This command disables Link Up/Down traps for the entire switch.

Format
```no snmp-server enable traps linkmode```

**Mode**  
Global Config

5.4.5.16. **snmp-server enable traps multiusers**

This command enables Multiple User traps. When the traps are enabled, a Multiple User Trap is sent when a user logs in to the terminal interface (EIA 232 or telnet) and there is an existing terminal interface session.

**Format**  
```snmp-server enable traps multiusers```

Default
Enabled

Mode
Global Config

no snmp-server enable traps multiusers

This command disables Multiple User trap.

Format
```no snmp-server enable traps multiusers```

**Mode**  
Global Config
5.4.5.17. **snmp-server enable traps ospf**

This command enables OSPF traps.

**Format**

```
snmp-server enable traps ospf {all | errors {all | authentication-failure | bad-packet | config-error | virt-authentication-failure | virt-bad-packet | virt-config-error} | lsa {all | lsa-maxage | lsa-originate} | overflow {all | lsdb-overflow | lsdb-approaching-overflow} | retransmit {all | packets | virt-packets} | state-change {all | if-state-change | neighbor-state-change | virtif-state-change | virtneighbor-state-change}}
```

**Default**

Disabled

**Mode**

Global Config

5.4.5.18. **no snmp-server enable traps ospf**

This command disables OSPF trap.

**Format**

```
no snmp-server enable traps ospf {all | errors {all | authentication-failure | bad-packet | config-error | virt-authentication-failure | virt-bad-packet | virt-config-error} | lsa {all | lsa-maxage | lsa-originate} | overflow {all | lsdb-overflow | lsdb-approaching-overflow} | retransmit {all | packets | virt-packets} | state-change {all | if-state-change | neighbor-state-change | virtif-state-change | virtneighbor-state-change}}
```

**Mode**

Global Config

5.4.5.19. **snmp-server enable traps ospfv3**

This command enables OSPFv3 traps.

**Format**

```
snmp-server enable traps ospfv3 {all | errors {all | bad-packet | config-error | virt-bad-packet | virt-config-error} | lsa {all | lsa-maxage | lsa-originate} | overflow {all | lsdb-overflow | lsdb-approaching-overflow} | retransmit {all | packets | virt-packets} | state-change {all | if-state-change | neighbor-state-change | virtif-state-change | virtneighbor-state-change}}
```

**Default**

Disabled

**Mode**

Global Config

5.4.5.20. **no snmp-server enable traps ospfv3**

This command disables OSPFv3 trap.

**Format**

```
no snmp-server enable traps ospfv3 {all | errors {all | bad-packet | config-error | virt-bad-packet | virt-config-error} | lsa {all | lsa-maxage | lsa-originate} | overflow {all | lsdb-overflow | lsdb-approaching-overflow} | retransmit {all | packets | virt-packets} | state-change {all | if-state-change | neighbor-state-change | virtif-state-change | virtneighbor-state-change}}
```

**Mode**

Global Config
5.4.5.21. `snmp-server enable traps pim`

This command enables PIM traps.

**Format**  
`snmp-server enable traps pim`

**Default**  
Disabled

**Mode**  
Global Config

5.4.5.22. `no snmp-server enable traps pim`

This command disables PIM trap.

**Format**  
`no snmp-server enable traps pim`

**Mode**  
Global Config

5.4.5.23. `snmp-server enable traps powersupply`

This command enables power supply status traps.

**Format**  
`snmp-server enable traps powersupply`

**Default**  
Enabled

**Mode**  
Global Config

5.4.5.24. `no snmp-server enable traps powersupply`

This command disables power supply status trap.

**Format**  
`no snmp-server enable traps powersupply`

**Mode**  
Global Config
5.4.5.25.  **snmp-server enable traps stpmode**

This command enables the sending of new root traps and topology change notification traps.

**Format**  
`snmp-server enable traps stpmode`

**Default**  
Enabled

**Mode**  
Global Config

5.4.5.26.  **no snmp-server enable traps stpmode**

This command disables the sending of new root traps and topology change notification traps.

**Format**  
`no snmp-server enable traps stpmode`

**Mode**  
Global Config

5.4.5.27.  **snmp-server enable traps temperature**

This command enables the temperature status trap.

**Format**  
`snmp-server enable traps temperature`

**Default**  
Enabled

**Mode**  
Global Config

5.4.5.28.  **no snmp-server enable traps temperature**

This command disables the temperature status trap.

**Format**  
`no snmp-server enable traps temperature`

**Mode**  
Global Config

5.4.5.29.  **snmp-server enable traps transceiver**

This command enables the transceiver trap.

**Format**  
`snmp-server enable traps transceiver`
5.4.5.30.  \textit{no snmp-server enable traps transceiver}

This command disables the transceiver trap.

\textbf{Format}  \textit{no snmp-server enable traps transceiver}

\textbf{Default}  Disabled

\textbf{Mode}  Global Config

5.4.5.31.  \textit{snmp-server enable traps violation}

This command enables the violation trap.

\textbf{Format}  \textit{snmp-server enable traps violation}

\textbf{Default}  Disabled

\textbf{Mode}  Global Config

\hspace{1cm} Interface Config

5.4.5.32.  \textit{no snmp-server enable traps violation}

This command disables the violation trap.

\textbf{Format}  \textit{no snmp-server enable traps violation}

\textbf{Mode}  Global Config

\hspace{1cm} Interface Config

5.4.5.33.  \textit{show snmp source-interface}

This command displays the configured global source interface used for the SNMP client. The IP address of the selected interface is used as source IP for all communications with the server.

\textbf{Format}  \textit{show snmp source-interface}

\textbf{Default}  None
**Mode** Privileged Exec

**Display Message**

**Parameter** | **Definition**
---|---
**SNMP trap Client Source Interface** | The interface configured as the source interface for the SNMP trap/inform client.

**SNMP trap Client IPv4 Address** | The IP address configured on the SNMP client source interface.

Example: The following shows examples of the CLI display output for the commands.

```plaintext
(M4500-32C) (Config)#show snmp source-interface

SNMP trap Client Source Interface.............. serviceport
SNMP trap Client Source IPv4 Address............ 172.16.3.60 [Up]
SNMP trap Client Source IPv6 Address............ fe80::2e60:fff:fe83:ad47 [Up]
```

### 5.4.5.34. `snmptrap source-interface`

Use this command in Global configuration mode to configure the global source-interface (Source IP address) for all SNMP communications between the SNMP client and the server. This command takes effect for both SNMP trap and inform client.

**Format** `snmptrap source-interface {<slot/port> | loopback <loopback-id> | serviceport | tunnel <tunnel-id> | vlan <vlan-id>}`

**Parameter**	**Definition**
**<slot/port>** | Specifies the interface to use as the source interface.

**<loopback-id>** | Specifies the loopback interface to use as the source interface. The range of the loopback ID is 0 to 63.

**<tunnel-id>** | Specifies the tunnel interface to use as the source interface. The range of the tunnel ID is 0 to 7.

**<vlan-id>** | Specifies the VLAN interface to use as the source interface. The range of VLAN ID is 1 to 4093.

**Default** Disabled

**Mode** Global Config
5.4.5.35.  no snmptrap source-interface

This command removes the global source-interface for all SNMP communication between the SNMP client and the server.

**Format**  
no snmptrap source-interface

**Mode**  
Global Config

5.4.5.36.  snmp trap link-status

This command enables link up/down traps for the specified port.

**Format**  
snmp trap link-status

**Default**  
Enabled

**Mode**  
Interface Config

5.4.5.37.  no snmp trap link-status

This command disables link status traps for the specified interfaces.

**Format**  
no snmp trap link-status all

**Mode**  
Interface Config

5.4.6.  SNMP Inform Commands

5.4.6.1.  snmp-server host <host-addr> informs

This command configures informs to be sent to the specified host.

**Format**  
snmp-server host <host-addr> informs version 2 <community> [filter <filtername>] [udp-port <1-65535>] [retries <1-255>] [timeout <1-300>]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;host-addr&gt;</td>
<td>The IPv4 or IPv6 address of the host to send the inform to.</td>
</tr>
<tr>
<td>version 2</td>
<td>Sends SNMPv2 informs.</td>
</tr>
</tbody>
</table>
5.4.6.2. `no snmp-server host <host-addr>`

This command deletes inform receivers.

**Format**
```
no snmp-server host <host-addr>
```

**Mode**
Global Config

5.4.7. **Secure Shell (SSH) Commands**

5.4.7.1. `show ip ssh`

This command displays the SSH settings.

**Format**
```
show ip ssh
```

**Default** None

**Mode** Privileged Exec

**Display Message**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative Mode</td>
<td>This field indicates whether the administrative mode of SSH is enabled or disabled.</td>
</tr>
<tr>
<td>SSH Port</td>
<td>The listen port number of SSH service.</td>
</tr>
</tbody>
</table>
5.4.7.2. **show ip ssh user-public-key current-user**

This command displays the public key content of current login session.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>Username of current login session.</td>
</tr>
<tr>
<td>Key Type</td>
<td>Type of user public key. Possible values are DSA or RSA.</td>
</tr>
<tr>
<td>Context of Public Key</td>
<td>Full context of current user’s public key.</td>
</tr>
</tbody>
</table>

5.4.7.3. **show ip ssh user-public-key who-has-key**

This command displays a username list which indicates the owners of public keys, and it only allows user “admin” to execute this command.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>Username of user who has public key.</td>
</tr>
<tr>
<td>Key Type</td>
<td>Type of user public key. Possible values are DSA or RSA.</td>
</tr>
<tr>
<td>Context of Public Key</td>
<td>Full context of public key.</td>
</tr>
</tbody>
</table>
5.4.7.4. ip ssh

This command is used to enable SSH.

Format  ip ssh

Default  Enabled

Mode  Global Config

5.4.7.5. no ip ssh

This command is used to disable SSH.

Format  no ip ssh

Mode  Global Config

5.4.7.6. ip ssh maxsessions

This command specifies the maximum number of SSH connection sessions that can be established. A value of 0 indicates that no ssh connection can be established. The range is 0 to 5.

Format  ip ssh maxsessions <0-5>

Default  5

Mode  Global Config

5.4.7.7. no ip ssh maxsessions

This command sets the maximum number of SSH connection sessions that can be established to the default value.
5.4.7.8. *ip ssh port*

This command specifies the listen port number of SSH service. The range is 1 to 65535.

**Format**  
`ip ssh port <1-65535>`

**Default**  
1234

**Mode**  
Global Config

5.4.7.9. *no ip ssh port*

This command sets the listen port number of SSH service to the default value.

**Format**  
`no ip ssh port`

**Mode**  
Global Config

5.4.7.10. *ip ssh timeout*

This command specifies the maximum idle time for each SSH login session. The range is 1 to 160 minutes.

**Format**  
`ip ssh port <1-160>`

**Default**  
5

**Mode**  
Global Config

5.4.7.11. *no ip ssh timeout*

This command sets the maximum idle time for each SSH login session to the default value.

**Format**  
`no ip ssh timeout`

**Mode**  
Global Config

5.4.7.12. *ip ssh user-password-auth*

This command is used to enable the SSH authentication mode of user password.

**Format**  
`ip ssh user-password-auth`
5.4.7.13.  **no ip ssh user-password-auth**

This command is used to disable the SSH authentication mode of user password.

**Format**  
```
no ip ssh user-password-auth
```

**Mode**  
Global Config

5.4.7.14.  **ip ssh user-public-key-auth**

This command is used to enable the SSH authentication mode of user public key.

**Format**  
```
ip ssh user-public-key-auth
```

**Default**  
Disabled

**Mode**  
Global Config

5.4.7.15.  **no ip ssh user-public-key-auth**

This command is used to disable the SSH authentication mode of user public key.

**Format**  
```
no ip ssh user-public-key-auth
```

**Mode**  
Global Config

5.4.8.  **Management Security Commands**

5.4.8.1.  **crypto key generation {RSA|DSA}**

This command is used to generate an RSA or DSA key pair for SSH. Please note that the SSHv1 key will not be generated.

**Format**  
```
crypto key generate {RSA | DSA}
```

**Default**  
None

**Mode**  
Global Config
5.4.8.2. **no crypto key generate {RSA | DSA}**

This command is used to delete the RSA or DSA key from the device.

**Format**  
no crypto key generate {RSA | DSA}

**Mode**  
Global Config

5.4.8.3. **crypto certificate generation**

This command is used to generate a certificate for HTTPS.

**Format**  
crypto certificate generate

**Default**  
None

**Mode**  
Global Config

5.4.8.4. **no crypto certificate generate**

This command is used to delete the certificate from the device.

**Format**  
no crypto certificate generate

**Mode**  
Global Config

5.4.9. **DHCP Client Commands**

5.4.9.1. **dhcp client vendor-id-option**

This command is used to enable the inclusion of the DHCP Option 60, Vendor Class Identifier, in the requests transmitted to the DHCP server by the DHCP client in this switch. Use the **no** form to restore to default value.

**Format**  
dhcp client vendor-id-option

**Default**  
Not include DHCP Option 60

**Mode**  
Global Config
5.4.9.2. no dhcp client vendor-id-option

This command is used to restore to default value.

Format  no dhcp client vendor-id-option
Mode    Global Config

5.4.9.3. dhcp client vendor-id-option-string

This command is used to set the DCHP Option 60 string in the requests transmitted to the DHCP server by the DHCP client in this switch. The length of the string is from 0 to 128 characters. Use the no form to restore to default value.

Format  dhcp client vendor-id-option-string <string>
Default No string defined
Mode    Global Config

5.4.9.4. no dhcp client vendor-id-option-string

This command is used to restore to default value.

Format  no dhcp client vendor-id-option-string
Mode    Global Config

5.4.9.5. show dhcp client vendor-id-option

This command is used to display the configured administration mode of the vendor-id-option and the vendor-id string to be included in DHCP requests.

Format  show dhcp client vendor-id-option
Default None
Mode    Privilege Exec

Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP Client Vendor Identifier Option</td>
<td>The administration mode of the Vendor ID Option</td>
</tr>
</tbody>
</table>
5.4.9.6. show dhcp lease

This command is used to display the DHCP client lease parameters.

**Format**  
show dhcp lease [interface {<slot/port> | vlan <vlan-id>}]  

**Default**  
None

**Mode**  
Privilege Exec

**Display Message**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>The IP address allocated by DHCP server and correspond interface.</td>
</tr>
<tr>
<td>Subnet mask</td>
<td>The IP subnet mask allocated by DHCP server for the interface.</td>
</tr>
<tr>
<td>DHCP lease server</td>
<td>The IPv4 address of the DHCP server that leased the address</td>
</tr>
<tr>
<td>State</td>
<td>The state of the DHCP client on this interface</td>
</tr>
<tr>
<td>DHCP transaction id</td>
<td>The transaction ID of the DHCP client</td>
</tr>
<tr>
<td>Lease</td>
<td>The time (in seconds) that the IP address was leased by the server</td>
</tr>
<tr>
<td>Renewal</td>
<td>The time (in seconds) when the next DHCP RENEW request is sent by DHCP client to renew the leased IP address</td>
</tr>
<tr>
<td>Rebind</td>
<td>The time (in seconds) when the DHCP Rebind process starts</td>
</tr>
<tr>
<td>Retry count</td>
<td>The number of times the DHCP client sends a DHCP REQUEST before the server responds</td>
</tr>
</tbody>
</table>

5.4.10. sfFlow Commands

5.4.10.1. show sflow agent

The user can go to the CLI Privilege Exec to get the sFlow agent information, use the **show sflow agent** Privilege command.

**Format**  
show sflow agent

**Default**  
None
Mode  Privilege Exec

Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>sFlow Version</td>
<td>Uniquely identifies the version and implementation of this MIB. The version string must have the following structure: MIB Version; Organization; Software Revision where: • MIB Version: 1.3, the version of this MIB. • Organization: Netgear. • Revision: The version of FW</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address associated with this agent.</td>
</tr>
</tbody>
</table>

5.4.10.2.  show sflow pollers

The user can go to the CLI Privilege Exec to get the sFlow polling instances created on the switch, use the show sflow pollers Privilege command.

Format  show sflow pollers

Default  None

Mode  Privilege Exec

Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poller Data Source</td>
<td>The sFlowDataSource (slot/port) for this sFlow sampler. This agent will support Physical ports only.</td>
</tr>
<tr>
<td>Receiver Index</td>
<td>The sFlowReceiver associated with this sFlow counter poller.</td>
</tr>
<tr>
<td>Poller Interval</td>
<td>The number of seconds between successive samples of the counters associated with this data source.</td>
</tr>
</tbody>
</table>

5.4.10.3.  show sflow receivers

The user can go to the CLI Privilege Exec to get the configuration information related to the sFlow receivers, use the show sflow receivers Privilege command.

Format  show sflow receivers [< rcvr- index >]

Default  None

Mode  Privilege Exec

Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
</table>
### 5.4.10.4. show sflow samplers

The user can go to the CLI Privilege Exec to get the sFlow sampling instances created on the switch, use the `show sflow samplers` Privilege command.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiver Index</td>
<td>The sFlow Receiver associated with the sampler/poller.</td>
</tr>
<tr>
<td>Owner String</td>
<td>The identity string for receiver, the entity making use of this sFlowRcvrTable entry.</td>
</tr>
<tr>
<td>Time Out</td>
<td>The time (in seconds) remaining before the receiver is released and stops sending samples to sFlow receiver. The no timeout value of this parameter means that the sFlow receiver is configured as a non-timeout entry.</td>
</tr>
<tr>
<td>Max Datagram Size</td>
<td>The maximum number of bytes that can be sent in a single sFlow datagram.</td>
</tr>
<tr>
<td>Port</td>
<td>The destination Layer4 UDP port for sFlow datagrams.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The sFlow receiver IP address.</td>
</tr>
<tr>
<td>Address Type</td>
<td>The sFlow receiver IP address type. For an IPv4 address, the value is 1.</td>
</tr>
<tr>
<td>Datagram Version</td>
<td>The sFlow protocol version to be used while sending samples to sFlow receiver.</td>
</tr>
<tr>
<td>Sampler Data Source</td>
<td>The sFlowDataSrouce for this sFlow sampler. This agent supports physical ports only.</td>
</tr>
<tr>
<td>Receiver Index</td>
<td>The sFlowReceiver configured for this sFlow sampler.</td>
</tr>
<tr>
<td>Remote Agent</td>
<td>The remote agent instance index number.</td>
</tr>
<tr>
<td>Ingress Sampling Rate</td>
<td>The sampling rate for the ingress.</td>
</tr>
<tr>
<td>Flow Sampling Rate</td>
<td>The statistical sampling rate for packet sampling from this source.</td>
</tr>
<tr>
<td>Egress Sampling Rate</td>
<td>The sampling rate for the egress.</td>
</tr>
<tr>
<td>Max Header Size</td>
<td>The maximum number of bytes that should be copied from a sampled packet to form a flow sample.</td>
</tr>
</tbody>
</table>
5.4.10.5.  show sflow source-interface

The user can go to the CLI Privilege Exec to get the configured source interface for sFlow, use the **show sflow source-interface** Privilege command.

**Format**  
show sflow source-interface

**Default**  
None

**Mode**  
Privilege Exec

**Display Message**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>sFlow Client Source interface</td>
<td>The interface ID of the physical or logical interface configured as the sFlow client source interface.</td>
</tr>
<tr>
<td>sFlow Client Source IPv4 Address</td>
<td>The IP address of the interface configured as the sFlow client source interface.</td>
</tr>
</tbody>
</table>

5.4.10.6.  sflow receiver maximum datagram

Use this command to configure the sFlow collector maximum datagram size. This specifies the maximum number of data bytes that can be sent in a single sample datagram. The management entity should set this value to avoid fragmentation of the sFlow datagrams. The allowed range is 200-9312.

**Format**  
sflow receiver <index> maxdatagram <200-9312>

**Default**  
1400

**Mode**  
Global Config

5.4.10.7.  no sflow receiver maxdatagram <index>

Use the **no sflow receiver <index> maxdatagram** return to default value 1400.

**Format**  
no sflow receiver <index> maxdatagram

**Mode**  
Global Config

5.4.10.8.  sflow receiver owner

Use this command to configure the sFlow collector owner string.

**Format**  
sflow receiver <index> owner <owner> {notimeout | timeout <0 - 2147483647>}

NETGEAR M4500 Series Switches CLI Command Reference Manual  281
5.4.10.9.  **no sflow receiver <index>**

Use the **no sflow receiver <index>** to remove the session.

**Format**  
no sflow receiver <index> [owner]

**Mode**  
Global Config

5.4.10.10.  **sflow receiver ip**

Use this command to assign an IPv4 address to the sFlow collector. When sFlow hardware sampling is enabled, the switch/hardware sends sampled packets encapsulated in sFlow custom packet to this IP address. If set to 0.0.0.0, no sFlow datagrams will be sent. The default is 0.0.0.0.

**Format**  
sflow receiver <index> ip <ip>

**Default**  
0.0.0.0

**Mode**  
Global Config

5.4.10.11.  **no sflow receiver <index> ip**

Use the **no sflow receiver <index> ip** to clear collector ip address.

**Format**  
no sflow receiver <index> ip
5.4.10.12. **sflow receiver port**

Use this command to configure the destination UDP port for the sFlow collector.

**Format**

```
sflow receiver <index> port <1-65535>
```

**Default**

6343

**Mode**

Global Config

5.4.10.13. **no sflow receiver <index> port**

Use the **no sflow receiver <index> port** command to return to the default UDP port 6343.

**Format**

```
no sflow receiver <index> port
```

**Mode**

Global Config

5.4.10.14. **sflow poller interval**

Use this command to configure the sFlow instance polling interval. A poll interval of zero (0) disables counter sampling. A poll interval of zero (0) disables counter sampling. When set to zero (0), all the poller parameters are set to their corresponding default value. A value of N means once in N seconds a counter sample is generated.

**Format**

```
sflow poller interval <0-86400>
```

**Default**

0

**Mode**

Interface Config

**Note:** The sFlow task is heavily loaded when the sFlow polling interval is configured at the minimum value (i.e., one second for all the sFlow supported interfaces). In this case, the sFlow task is always busy collecting the counters on all the configured interfaces. This can cause the device to hang for some time when the user tries to configure or issue show sFlow commands. To overcome this situation, sFlow polling interval configuration on an interface or range of interfaces is controlled as mentioned below:

1. The maximum number of allowed interfaces for the polling intervals max (1, (interval – 10)) to min ((interval + 10), 86400) is: interval * 5
2. For every one second increment in the polling interval that is configured, the number of allowed interfaces that can be configured increases by 5.
5.4.10.15.  **no sflow poller interval**

Use the **no sflow poller interval** return to default value zero.

**Format**  no sflow poller interval  
**Mode**  Interface Config  

5.4.10.16.  **sflow sampler index**

Use this command to configure a new sFlow sampler instance on an interface or a range of interfaces for this data source if the specified receiver is valid. A data source configured to collect flow samples is called a sampler. Flow samples for the sFlow sampler are sent to the sFlow receiver. Only active receivers can be set. If a receiver expires, then all samplers associated with the receiver will also expire. The range of <index> is 1-8.

**Format**  sflow sampler <index>  
**Default**  None  
**Mode**  Interface Config  

5.4.10.17.  **no sflow sampler**

Use the **no sflow sampler** return to default setting.

**Format**  no sflow sampler  
**Mode**  Interface Config  

5.4.10.18.  **sflow poller index**

A data source configured to collect counter samples is called a poller. Use this command to enable a new sFlow poller instance on an interface or a range of interfaces for this data source if the specified receiver is valid. The range of <index> is 1-8, which indicates the sFlow receiver associated with the poller.

**Format**  sflow poller <index>  
**Default**  None  
**Mode**  Interface Config  

5.4.10.19.  **no sflow poller**

Use the **no sflow poller** return to default setting.
5.4.10.20.  sflow source-interface

Use this command to specify the physical or logical routing interface to use as the sFlow client source interface. If configured, the address of source interface is used for all sFlow communications between the sFlow receiver and the sFlow client. Otherwise there is no change in behavior. If service port is configured as the source interface, sFlow packets will be transmitted via source port only. If the configured interface is down, the sFlow client falls back to normal behavior. User can go to the CLI Interface Configuration Mode to configure a new sFlow source interface, use the sflow source-interface global configuration command.

Format  sflow source-interface {<slot/port> | loopback <loopback-id> | serviceport | tunnel <tunnel-id> | vlan <vlan-id>}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;slot/port&gt;</td>
<td>Specifies the interface to use as the source interface.</td>
</tr>
<tr>
<td>&lt;loopback-id&gt;</td>
<td>Specifies the loopback interface to use as the source interface. The range of the loopback ID is 0 to 7.</td>
</tr>
<tr>
<td>&lt;tunnel-id&gt;</td>
<td>Specifies the tunnel interface to use as the source interface. The range of the tunnel ID is 0 to 7.</td>
</tr>
<tr>
<td>&lt;vlan-id&gt;</td>
<td>Specifies the VLAN interface to use as the source interface. The range of the VLAN ID is 1 to 4093.</td>
</tr>
<tr>
<td>serviceport</td>
<td>Specifies the service port as the outgoing interface.</td>
</tr>
</tbody>
</table>

Default  None

Mode  Global Config

5.4.10.21.  no sflow source-interface

Use the no sflow source-interface remove the source interface setting

Format  no sflow source-interface

Mode  Global Config

5.4.10.22.  sflow sampler rate

Use this command to configure the statistical sampling rate for packet sampling from this source. A value of zero (0) disables sampling. A value of N means that out of N incoming packets, 1 packet will be sampled. The range of
<rate> is 1024-65536 and 0.

**Format**  
sflow sampler rate <rate>

**Default**  
0

**Mode**  
Interface Config

### 5.4.10.23. no sflow sampler rate

Use the no sflow sampler rate return to default setting.

**Format**  
no sflow sampler rate

**Mode**  
Interface Config

### 5.4.10.24. sflow sampler maxheadersize

Use this command to configure the maximum number of bytes that should be copied from the sampler packet. The range is 20-256. When set to zero (0), all the sampler parameters are set to their corresponding default value.

**Format**  
sflow sampler maxheadersize <size>

**Default**  
128

**Mode**  
Interface Config

### 5.4.10.25. no sflow sampler maxheadersize

Use the no sflow sampler maxheadersize return to default setting.

**Format**  
no sflow sampler maxheadersize

**Mode**  
Interface Config

### 5.4.11. Service Port Commands

#### 5.4.11.1. show serviceport

This command displays service port configuration information.

**Format**  
show serviceport
**Display Message**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Interface Status</strong></td>
<td>Indicates whether the interface is up or down.</td>
</tr>
<tr>
<td><strong>IP Address</strong></td>
<td>The IP address of the interface. The factory default value is 192.168.0.238.</td>
</tr>
<tr>
<td><strong>Subnet Mask</strong></td>
<td>The IP subnet mask for this interface. The factory default value is 255.255.255.0.</td>
</tr>
<tr>
<td><strong>Default Gateway</strong></td>
<td>The default gateway for this IP interface. The factory default value is 0.0.0.0.</td>
</tr>
<tr>
<td><strong>IPv6 Administrative Mode</strong></td>
<td>Whether enabled or disabled. Default value is enabled.</td>
</tr>
<tr>
<td><strong>IPv6 Prefix is</strong></td>
<td>The IPv6 address and length. Default is Link Local format.</td>
</tr>
<tr>
<td><strong>IPv6 Default Router</strong></td>
<td>The default gateway address on the service port. The factory default value is an unspecified address.</td>
</tr>
<tr>
<td><strong>Configured IPv4 Protocol</strong></td>
<td>Indicate what IPv4 network protocol was used on the last, or current power-up cycle, if any.</td>
</tr>
<tr>
<td><strong>Configured IPv6 Protocol</strong></td>
<td>Indicate what IPv6 network protocol was used on the last, or current power-up cycle, if any.</td>
</tr>
<tr>
<td><strong>IPv6 AutoConfig Mode</strong></td>
<td>Whether IPv6 Stateless address autoconfiguration is enabled or disabled. Default value is disabled.</td>
</tr>
<tr>
<td><strong>IPv6 Link-local Scope ID</strong></td>
<td>The scope ID for this interface</td>
</tr>
<tr>
<td><strong>Burned In MAC Address</strong></td>
<td>The burned in MAC address used for in-band connectivity.</td>
</tr>
<tr>
<td><strong>DHCP Client Identifier</strong></td>
<td>The client identifier is displayed in the output of the command only if DHCP is enabled with the client-id option on the service port.</td>
</tr>
</tbody>
</table>

### 5.4.11.2. show serviceport ipv6 dhcp statistics

This command displays the statistics of the DHCPv6 client running on the serviceport management interface.

**Format**    show serviceport ipv6 dhcp statistics

**Default**   None

**Mode**      Privileged Exec

**User Exec**
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCPv6 Advertisement Packets Received</td>
<td>The number of DHCPv6 Advertisement packets received on the network.</td>
</tr>
<tr>
<td>DHCPv6 Reply Packets Received</td>
<td>The number of DHCPv6 Reply packets received on the network interface.</td>
</tr>
<tr>
<td>Received DHCPv6 Advertisement Packets Discard</td>
<td>The number of DHCPv6 Advertisement packets discarded on the network.</td>
</tr>
<tr>
<td>Received DHCPv6 Reply Packets Discarded</td>
<td>The number of DHCPv6 Reply packets discarded on the network interface.</td>
</tr>
<tr>
<td>DHCPv6 Malformed Packets Received</td>
<td>The number of DHCPv6 packets that are received malformed on the network.</td>
</tr>
<tr>
<td>Total DHCPv6 Packets Received</td>
<td>The total number of DHCPv6 packets received on the network interface.</td>
</tr>
<tr>
<td>DHCPv6 Solicit Packets Transmitted</td>
<td>The number of DHCPv6 Solicit packets transmitted on the network interface.</td>
</tr>
<tr>
<td>DHCPv6 Request Packets Transmitted</td>
<td>The number of DHCPv6 Request packets transmitted on the network interface.</td>
</tr>
<tr>
<td>DHCPv6 Renew Packets Transmitted</td>
<td>The number of DHCPv6 Renew packets transmitted on the network interface.</td>
</tr>
<tr>
<td>DHCPv6 Rebind Packets Transmitted</td>
<td>The number of DHCPv6 Rebind packets transmitted on the network interface.</td>
</tr>
<tr>
<td>DHCPv6 Release Packets Transmitted</td>
<td>The number of DHCPv6 Release packets transmitted on the network interface.</td>
</tr>
<tr>
<td>Total DHCPv6 Packets Transmitted</td>
<td>The total number of DHCPv6 packets transmitted on the network interface.</td>
</tr>
</tbody>
</table>

Example: The following shows example CLI display output for the command.

```
(M4500-32C) #show serviceport ipv6 dhcp statistics

DHCPv6 Client Statistics

DHCPv6 Advertisement Packets Received......... 0
DHCPv6 Reply Packets Received.................. 0
Received DHCPv6 Advertisement Packets Discard.. 0
Received DHCPv6 Reply Packets Discarded........ 0
```
5.4.11.3.  **show serviceport ipv6 neighbors**

Use this command to display information about the IPv6 neighbor entries cached on the service port. The information is updated to show the type of the entry.

**Format**  
show serviceport ipv6 neighbors

**Default**  
None

**Mode**  
Privileged Exec

User Exec

**Display Message**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 Address</td>
<td>The IPv6 address of the neighbor.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>The MAC Address of the neighbor.</td>
</tr>
<tr>
<td>isRtr</td>
<td>Shows if the neighbor is a router. If TRUE, the neighbor is a router; if FALSE, it is not a router.</td>
</tr>
<tr>
<td>Neighbor State</td>
<td>The state of the neighbor cache entry. The possible values are: Incomplete, Reachable, Stale, Delay, Probe, and Unknown.</td>
</tr>
<tr>
<td>Age</td>
<td>The time in seconds that has elapsed since an entry was added to the cache.</td>
</tr>
<tr>
<td>Type</td>
<td>The type of neighbor entry. The type is Static if the entry is manually configured and Dynamic if dynamically resolved.</td>
</tr>
</tbody>
</table>

Example: The following shows example CLI display output for the command.

(M4500-32C) #show serviceport ipv6 neighbors

<table>
<thead>
<tr>
<th>Neighbor</th>
<th>Age</th>
</tr>
</thead>
</table>
IPv6 Address                Type     MAC Address     isRtr    State     (Secs)
------------------------------------     -----------------     -----     --------     ------
fe80::290:e8ff:feaa:35     Dynamic  00:90:e8:aa:00:35     True    Stale     3
fe80::a9e:1ff:feff:eed4     Dynamic  08:9e:01:ff:ee:d4     True    Stale     3

5.4.11.4.  serviceport ip

This command sets the IP address, the netmask and the gateway of the service port. User can specify the none option to clear the IPv4 address, mask, and the default gateway.

Format  serviceport ip {<ipaddr> <netmask> [ <gateway>] | none}

Parameter  Definition

<iipaddr>  The user manually configures the IP address for the switch.

<netmask>  The user manually configures the subnet mask for the switch.

<gateway>  The user manually configures the default gateway.

none  Resets the IP address, netmask, and default gateway.

Default  None

Mode  Global Config

5.4.11.5.  serviceport protocol

This command specifies the network management port configuration protocol. If you modify this value, the change is effective immediately. If you use the dhcp parameter, the switch periodically sends requests to a DHCP server until a response is received. If you use the dhcp6 parameter, the switch periodically sends requests to a DHCPv6 server until a response is received. If you use the none parameter, you must configure the network information for the switch manually.


Parameter  Definition

none  Disable the DHCP client on the service port. Option dhcp6 is used to disable the DHCPv6 client on the service port.

dhcp  Periodically sends requests to a DHCP server until a response is received. Option client-id is used to send DHCP client messages with the client identifier option (DHCP Option 61). Option restart is used to restart DHCP client.
### dhcp6

Periodically sends requests to a DHCPv6 server until a response is received. Option `restart` is used to restart DHCPv6 client.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;address&gt;</td>
<td>IPv6 prefix in IPv6 global address format.</td>
</tr>
<tr>
<td>&lt;prefix-length&gt;</td>
<td>IPv6 prefix length value.</td>
</tr>
<tr>
<td>[eui64]</td>
<td>Formulate IPv6 address in eui64 address format.</td>
</tr>
<tr>
<td>autoconfig</td>
<td>Configure stateless global address autoconfiguration capability.</td>
</tr>
</tbody>
</table>

---

**Default**  
DHCP with client-id

**Mode**  
Global Config

### 5.4.11.6. `serviceport ipv6 enable`

Use this command to enable IPv6 operation on the service port.

**Format**  
`serviceport ipv6 enable`

**Default**  
Enabled

**Mode**  
Global Config

---

### 5.4.11.7. `no serviceport ipv6 enable`

Use this command to disable IPv6 operation on the service port.

**Format**  
`no serviceport ipv6 enable`

**Mode**  
Global Config

---

### 5.4.11.8. `serviceport ipv6 address`

Use this command to configure IPv6 global addressing (i.e. Default routers) information for the service port.

**Format**  
`serviceport ipv6 address <address>/<prefix-length> [eui64] | autoconfig`

---

**Parameter**  
**Definition**

- `<address>`  
IPv6 prefix in IPv6 global address format.

- `<prefix-length>`  
IPv6 prefix length value.

- `[eui64]`  
Formulate IPv6 address in eui64 address format.

- `autoconfig`  
Configure stateless global address autoconfiguration capability.
5.4.11.9.   **no serviceport ipv6 address**

This command removes all configured IPv6 prefixes on the service port interface. Use this command with the address option to remove the manually configured IPv6 global address. Use the command with the autoconfig option to disable the stateless global address autoconfiguration on the service port.

**Format**  
no serviceport ipv6 address [{<address>/<prefix-length> [eui64] | autoconfig}]

**Mode**  
Global Config

5.4.11.10.   **serviceport ipv6 gateway**

Use this command to configure IPv6 gateway (i.e. Default routers) information for the service port.

Instead of a gateway address, the format accepts a combination of IPv6 prefixes and gateways that are explicitly configured and those that are set through auto-address configuration with a connected IPv6 router on their service port interface.

**Format**  
serviceport ipv6 gateway <gateway-address>

**Default**  
None

**Mode**  
Global Config

5.4.11.11.   **no serviceport ipv6 gateway**

This command removes IPv6 gateways on the service port interface.

**Format**  
no serviceport ipv6 gateway

**Mode**  
Global Config

5.4.11.12.   **clear serviceport ipv6 dhcp statistics**

This command clears IPv6 DHCP Statistics.

**Format**  
clear serviceport ipv6 dhcp statistics
5.4.11.13.  **serviceport ipv6 neighbor**

Use this command to configure IPv6 neighbor information for the service port.

**Format**  
```
serviceport ipv6 neighbor <ipv6-address><macaddr>
```

**Default**  None

**Mode**  Privileged Exec

5.4.11.14.  **no serviceport ipv6 neighbor**

Use this command to remove IPv6 neighbor on the service port interface.

**Format**  
```
no serviceport ipv6 neighbor <ipv6-address><macaddr>
```

**Mode**  Global Config

5.4.12. **Time Range Commands**

5.4.12.1.  **show time-range**

Use this command to display a time range and all the absolute/periodic time entries that are defined for the time range. Use the name parameter to identify a specific time range to display. When name is not specified, all the time ranges defined in the system are displayed.

**Format**  
```
show time-range [<name>]
```

**Default**  None

**Mode**  Privileged Exec

**Display Message**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin mode</td>
<td>The administrative mode of time ranges for ACLs.</td>
</tr>
<tr>
<td>Current number of all Time Ranges</td>
<td>Number of time ranges configured on the switch.</td>
</tr>
</tbody>
</table>
5.4.12.2.  time-range

Use this command to enable or disable the time range Admin mode.

Format  time-range

Default  Enabled

Mode    Global Config

5.4.12.3.  no time-range

This command sets the time-range Admin mode to disable.

Format  no time-range

Mode    Global Config

5.4.12.4.  time-range <name>

Use this command to create a time range identified by name, consisting of one absolute time entry and/or one or more periodic time entries. The name parameter is a case-sensitive, alphanumeric string from 1 to 31 characters that uniquely identifies the time range. An alpha-numeric string is defined as consisting of only alphabetic, numeric, dash, underscore, or space characters.

If a time range by this name already exists, this command enters Time-Range config mode to allow updating the time range entries.

Format  time-range <name>

<table>
<thead>
<tr>
<th>Maximum number of all Time Ranges</th>
<th>The maximum number of time ranges can be configured.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Range Name</td>
<td>Name of the time range.</td>
</tr>
<tr>
<td>Time Range Status</td>
<td>Status of the time range (active/inactive).</td>
</tr>
<tr>
<td>Absolute Start Time</td>
<td>Start time and day for absolute time entry.</td>
</tr>
<tr>
<td>Absolute End Time</td>
<td>End time and day for absolute time entry.</td>
</tr>
<tr>
<td>Periodic Entries</td>
<td>Number of periodic entries in a time-range.</td>
</tr>
<tr>
<td>Periodic Start Time</td>
<td>Start time and day for periodic entry.</td>
</tr>
<tr>
<td>Periodic End Time</td>
<td>End time and day for periodic entry.</td>
</tr>
</tbody>
</table>
### 5.4.12.5. `no time-range <name>`

This command deletes a time-range identified by name.

**Format**  
`no time-range <name>`

**Mode**  
Global Config

### 5.4.12.6. `absolute`

Use this command to add an absolute time entry to a time range. Only one absolute time entry is allowed per time-range. The time parameter is based on the currently configured time zone.

The `[start time date]` parameters indicate the time and date at which the configuration that referenced the time range starts going into effect. The time is expressed in a 24-hour clock, in the form of hours:minutes. For example, 8:00 is 8:00 am and 20:00 is 8:00 pm.

The date is expressed in the format day month year. If no start time and date are specified, the configuration statement is in effect immediately.

The `[end time date]` parameters indicate the time and date at which the configuration that referenced the time range is no longer in effect. The end time and date must be after the start time and date. If no end time and date are specified, the configuration statement is in effect indefinitely.

**Format**  

**Default**  
None

**Mode**  
Time-Range Config

### 5.4.12.7. `no absolute`

This command deletes the absolute time entry in the time range.

**Format**  
`no absolute`

**Mode**  
Time-Range Config
5.4.12.8. periodic

Use this command to add a periodic time entry to a time range. The time parameter is based off of the currently configured time zone.

The first occurrence of the days-of-the-week argument is the starting day(s) from which the configuration that referenced the time range starts going into effect. The second occurrence is the ending day or days from which the configuration that referenced the time range is no longer in effect. If the end days-of-the-week are the same as the start, they can be omitted.

This argument can be any single day or combinations of days: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday. Other possible values are:

- daily — Monday through Sunday
- weekdays — Monday through Friday
- weekend — Saturday and Sunday

If the ending days of the week are the same as the starting days of the week, they can be omitted. The first occurrence of the time argument is the starting hours:minutes which the configuration that referenced the time range starts going into effect. The second occurrence is the ending hours:minutes at which the configuration that referenced the time range is no longer in effect.

The hours:minutes are expressed in a 24-hour clock. For example, 8:00 is 8:00 am and 20:00 is 8:00 pm.

You can decide how often this periodic entry becomes active. If the value for <frequency> is set to 0, the option is disabled and a periodic entry becomes active only once.

Format periodic {([days-of-the-week] time) to {([days-of-the-week] time) | <frequency>}}

Default None

Mode Time-Range Config

5.4.12.9. no periodic

This command deletes a periodic time entry from a time range.

Format no periodic {([days-of-the-week] time) to {([days-of-the-week] time) | <frequency>}}

Mode Time-Range Config

5.4.13. Command Scheduler Commands

5.4.13.1. kron occurrence

Kron Occurrence is defined as a scheduled event. Policy lists are configured to run after a period of time since the scheduling was set, or at a specified calendar date and time.
| Format | kron occurrence <name> {at <hh:mm> {<1-31> <month> <2000-2037> | <DAY> {oneshot | recurring}| oneshot | recurring} | in <ddd:hh:mm> {oneshot | recurring}} |
|--------|-------------------------------------------------------------------------------------------------------------|
| **Parameter** | **Definition** |
| <name> | Specifies an occurrence name. |
| at | Date of the kron occurrence. |
| <hh:mm> | Time of the day for the occurrence. |
| <1-31> | Day of the month. |
| <month> | Month of the year, for example, jan, feb, and so on. |
| <2000-2037> | Specifies the year. |
| <DAY> | Day of the week, for example, mon, tue, and so on. |
| oneshot | Schedule the kron occurrence exactly once. |
| recurring | Schedule the kron occurrence repeatedly. |
| in | Delta time to kron occurrence. |
| <ddd:hh:mm> | The day, hour, and minutes in the format ddd:hh:mm. The valid range is as follows: ddd: 0-999; hh: 0-23; mm: 0-59. |

**Default**  
None

**Mode**  
Global Config

### 5.4.13.2. **no kron occurrence <name>**

This command deletes a scheduler event by the specific name.

**Format**  
no kron occurrence <name>

**Mode**  
Global Config

### 5.4.13.3. **policy-list <name>**

This command associates a policy list with an occurrence. When the occurrence is fired, the policy-list will be executed. Maximum 16 policy-lists could be added into an occurrence.

**Format**  
policy-list <name>

**Default**  
None
5.4.13.4.  **no policy-list <name>**

This command dissociates the specified policy-list by name with the occurrence.

**Format**  
no policy-list <name>

**Mode**  
Kron Occurrence Config

5.4.13.5.  **kron policy-list**

Policy lists consist of one or more lines of fully-qualified EXEC CLI commands. All commands in a policy list are executed when the policy list is run by Command Scheduler using the kron occurrence command.

The policy lists is run in the order in which it was configured. If an existing policy list name is used, new entries are added to the end of the policy list.

**Format**  
kron policy-list <name>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;name&gt;</td>
<td>Specifies a policy-list name.</td>
</tr>
</tbody>
</table>

**Default**  
None

**Mode**  
Global Config

5.4.13.6.  **no kron policy-list <name>**

This command deletes a policy list by the specific name.

**Format**  
no kron policy-list <name>

**Mode**  
Global Config

5.4.13.7.  **cli <line><line><line> ...**

Specify the EXEC CLI commands to a policy list. Maximum 16 EXEC CLI commands could be added into a policy-list.

**Format**  
cli <LINE> <LINE> <LINE> ...
5.4.13.8.  no cli <line> <line> <line> ...

This command deletes a list of CLI command lines.

Format  no cli <LINE> <LINE> <LINE> ...

Mode     Kron Policy-list Config

5.4.14. Switch Database Management Template Commands

A Switch Database Management (SDM) template is a description of the maximum resources a switch or router can use for various features. Different SDM templates allow different combinations of scaling factors, enabling different allocations of resources depending on how the device is used. In other words, SDM templates enable you to reallocate system resources to support a different mix of features based on your network requirements.

5.4.14.1.  show sdm prefer

Use this command to display the current active SDM template and its scaling parameters, or to display the scaling parameters for an inactive template. When invoked with no optional keywords, this command lists the current active template and the template that will become active on the next reboot if it is different from the current active template. To list the scaling parameters of a specific template, use that template’s keyword as an argument to the command.

Format  show sdm prefer [dual-ipv4-and-ipv6 {alpm | data-center | dcvpn-data-center | default}] [ipv4-routing {data-center {default | plus} | dcvpn-data-center | default}]

Default None

Mode     Privileged Exec

Options

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>dual-ipv4-and-ipv6 alpm</td>
<td>(Optional) Lists the scaling parameters for the alpm template.</td>
</tr>
<tr>
<td>dual-ipv4-and-ipv6 data-center</td>
<td>(Optional) Lists the scaling parameters for the Dual IPv4 and IPv6 template supporting more ECMP next hops.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>dual-ipv4-and-ipv6 dcvpn-data-center</td>
<td>(Optional) Lists the scaling parameters for the Dual IPv4 and IPv6 template for the DCVPN feature.</td>
</tr>
<tr>
<td>dual-ipv4-and-ipv6 default</td>
<td>(Optional) Lists the scaling parameters for the template supporting IPv4 and IPv6.</td>
</tr>
<tr>
<td>ipv4-routing data-center default</td>
<td>(Optional) Lists the scaling parameters for the IPv4-only template supporting more ECMP next hops.</td>
</tr>
<tr>
<td>ipv4-routing data-center plus</td>
<td>(Optional) Lists the scaling parameters for the IPv4-only template maximizing the number of unicast routes and also supporting more ECMP next hops.</td>
</tr>
<tr>
<td>ipv4-routing dcvpn-data-center</td>
<td>(Optional) Lists the scaling parameters for the IPv4-only template for DCVPN feature.</td>
</tr>
<tr>
<td>ipv4-routing default</td>
<td>(Optional) Lists the scaling parameters for the IPv4-only template maximizing the number of unicast routes.</td>
</tr>
</tbody>
</table>

**Display Message**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARP Entries</td>
<td>Maximum number of ARP entries supported in a specific SDM template.</td>
</tr>
<tr>
<td>IPv4 Unicast Routes</td>
<td>Maximum number of IPv4 routes supported in a specific SDM template.</td>
</tr>
<tr>
<td>IPv6 NDP Entries</td>
<td>Maximum number of NDP entries supported in a specific SDM template.</td>
</tr>
<tr>
<td>IPv6 Unicast Routes</td>
<td>Maximum number of IPv6 routes supported in a specific SDM template.</td>
</tr>
<tr>
<td>ECMP Next Hops</td>
<td>Maximum number of ECMP next hops supported in a specific SDM template.</td>
</tr>
<tr>
<td>IPv4 Multicast Routes</td>
<td>Maximum number of IPv4 multicast routes supported in a specific SDM template.</td>
</tr>
<tr>
<td>IPv6 Multicast Routes</td>
<td>Maximum number of IPv6 multicast routes supported in a specific SDM template.</td>
</tr>
</tbody>
</table>

### 5.4.14.2. sdm prefer

Use this command to change the template that will be active after the next reboot.

**Format**

```
 sdm prefer {dual-ipv4-and-ipv6 {alpm | data-center | dcvpn-data-center | default} | ipv4-routing {data-center {default | plus} | dcvpn-data-center | default}}
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>dual-ipv4-and-ipv6 alpm</td>
<td>Accommodate larger routes.</td>
</tr>
</tbody>
</table>
301

Dual-IPv4-and-IPv6 Data-Center
Increase the number of ECMP next hops in each route to 32 and reduce the number of IPv4 and IPv6 unicast routes.

Dual-IPv4-and-IPv6 DCVPN-Data-Center
Maximize the number of IPv4 and IPv6 unicast routes while supporting DCVPN feature.

Dual-IPv4-and-IPv6 Default
Maximize the number of IPv4 and IPv6 unicast routes while limiting the number of ECMP next hops in each route to 4.

IPv4-Routing Data-Center Default
Increase the number of ECMP next hops to 32 and reduce the number of IPv4 routes.

IPv4-Routing Data-Center Plus
Increase the number of ECMP next hops to 32 while keeping the maximum IPv4 routes.

IPv4-Routing DCVPN-Data-Center
Maximize the number of IPv4 unicast routes while supporting DCVPN feature.

IPv4-Routing Default
Maximize the number of IPv4 unicast routes while limiting the number of ECMP next hops in each route to 4.

Default: dual-ipv4-and-ipv6 alpm

Mode: Global Config

5.4.14.3. no sdm prefer

This command reverts to the default template after the next reboot.

Format: no sdm prefer

Mode: Global Config

5.4.15. Remote Monitoring Commands

Remote Monitoring (RMON) is a method of collecting a variety of data about network traffic. RMON supports 64-bit counters (RFC 3273) and High Capacity Alarm Table (RFC 3434).

NOTE: There is no configuration command for ether stats and high capacity ether stats. The data source for ether stats and high capacity ether stats are configured during initialization.

5.4.15.1. show rmon alarms

This command displays the entries in the RMON alarm table.

Format: show rmon {alarms | alarm <index>}

Mode: Privileged EXEC
Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>An index that uniquely identifies an entry in the table. Each entry defines a diagnostic sample at a particular interval for an object on the device. The range is 1 to 65535.</td>
</tr>
<tr>
<td>OID</td>
<td>The object identifier of the particular variable to be sampled. Only variables that resolve to an ASN.1 primitive type of integer.</td>
</tr>
<tr>
<td>interval</td>
<td>The interval in seconds over which the data is sampled and compared with the rising and falling thresholds. The range is 1 to 2147483647. The default is 1.</td>
</tr>
<tr>
<td>Sample Type</td>
<td>The value of the statistic during the last sampling period. This object is a read-only, 32-bit signed value.</td>
</tr>
<tr>
<td>rising threshold</td>
<td>The rising threshold for the sample statistics. The range is 2147483648 to 2147483647. The default is 1.</td>
</tr>
<tr>
<td>rising event index</td>
<td>The index of the eventEntry that is used when a rising threshold is crossed. The range is 1 to 65535. The default is 1.</td>
</tr>
<tr>
<td>falling threshold</td>
<td>The falling threshold for the sample statistics. The range is 2147483648 to 2147483647. The default is 1.</td>
</tr>
<tr>
<td>falling event index</td>
<td>The index of the eventEntry that is used when a falling threshold is crossed. The range is 1 to 65535. The default is 2.</td>
</tr>
<tr>
<td>startup alarm</td>
<td>The alarm that may be sent. Possible values are rising, falling or both rising-falling. The default is rising-falling.</td>
</tr>
<tr>
<td>owner</td>
<td>The owner string associated with the entry. The default is monitorAlarm.</td>
</tr>
</tbody>
</table>

Example:

(M4500-48XF8C) #show rmon alarms

<table>
<thead>
<tr>
<th>Index</th>
<th>OID</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>----</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>alarmInterval.1</td>
<td>mibbrowser</td>
</tr>
</tbody>
</table>

(M4500-48XF8C) #show rmon alarm 1

Alarm 1

---------

OID: alarmInterval.1
Last Sample Value: 5
Interval: 5
Sample Type: absolute
Startup Alarm: rising-falling
Rising Threshold: 100
Falling Threshold: 10
Rising Event: 1
Falling Event: 2
Owner: mibbrowser

5.4.15.2. show rmon collection history

This command displays the entries in the RMON history control table.

Format    show rmon collection history [interfaces <slot/port>]
Mode      Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>An index that uniquely identifies an entry in the historyControl table. Each such entry defines a set of samples at a particular interval for an interface on the device. The range is 1 to 65535.</td>
</tr>
<tr>
<td>interface</td>
<td>The source interface for which historical data is collected.</td>
</tr>
<tr>
<td>interval</td>
<td>The interval in seconds over which the data is sampled. The range is 1 to 3600. The default is 1800.</td>
</tr>
<tr>
<td>requested samples</td>
<td>The requested number of discrete time intervals over which data is to be saved. The range is 1 to 65535. The default is 50.</td>
</tr>
<tr>
<td>granted samples</td>
<td>The number of discrete sampling intervals over which data shall be saved. This object is read-only. The default is 10.</td>
</tr>
<tr>
<td>owner</td>
<td>The owner string associated with the entry. The default is monitorHistoryControl.</td>
</tr>
</tbody>
</table>
Example:

(M4500-48XF8C) #show rmon collection history

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Interval</th>
<th>Requested</th>
<th>Granted</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Samples</td>
<td>Samples</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td>1</td>
<td>0/1</td>
<td>30</td>
<td>50</td>
<td>10</td>
<td>monitorHistoryControl</td>
</tr>
<tr>
<td>2</td>
<td>0/1</td>
<td>1800</td>
<td>50</td>
<td>10</td>
<td>monitorHistoryControl</td>
</tr>
<tr>
<td>3</td>
<td>0/2</td>
<td>30</td>
<td>50</td>
<td>10</td>
<td>monitorHistoryControl</td>
</tr>
<tr>
<td>4</td>
<td>0/2</td>
<td>1800</td>
<td>50</td>
<td>10</td>
<td>monitorHistoryControl</td>
</tr>
<tr>
<td>5</td>
<td>0/3</td>
<td>30</td>
<td>50</td>
<td>10</td>
<td>monitorHistoryControl</td>
</tr>
<tr>
<td>6</td>
<td>0/3</td>
<td>1800</td>
<td>50</td>
<td>10</td>
<td>monitorHistoryControl</td>
</tr>
</tbody>
</table>

--More-- or (q)uit

(M4500-48XF8C) #show rmon collection history interfaces 0/1

<table>
<thead>
<tr>
<th>Index</th>
<th>Interface</th>
<th>Interval</th>
<th>Requested</th>
<th>Granted</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Samples</td>
<td>Samples</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td>1</td>
<td>0/1</td>
<td>30</td>
<td>50</td>
<td>10</td>
<td>monitorHistoryControl</td>
</tr>
<tr>
<td></td>
<td>0/1</td>
<td>1800</td>
<td>50</td>
<td>10</td>
<td>monitorHistoryControl</td>
</tr>
</tbody>
</table>

5.4.15.3. show rmon events

This command displays the entries in the RMON event table.

Format          show rmon events

Mode            Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
</table>

NETGEAR M4500 Series Switches CLI Command Reference Manual
<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>index</strong></td>
<td>An index that uniquely identifies an entry in the event table. Each such entry defines one event that is to be generated when the appropriate conditions occur. The range is 1 to 65535.</td>
</tr>
<tr>
<td><strong>description</strong></td>
<td>A comment describing the event entry. The default is alarmEvent.</td>
</tr>
<tr>
<td><strong>type</strong></td>
<td>The type of notification that the probe makes about the event. Possible values are None, Log, SNMP Trap, Log and SNMP Trap. The default is None.</td>
</tr>
<tr>
<td><strong>community</strong></td>
<td>The SNMP community specific by this octet string which is used to send an SNMP trap. The default is public.</td>
</tr>
<tr>
<td><strong>owner</strong></td>
<td>The owner string associated with the entry.</td>
</tr>
<tr>
<td><strong>last time sent</strong></td>
<td>The last time over which a log or a SNMP trap message is generated.</td>
</tr>
</tbody>
</table>

Example:

(M4500-48XF8C) #show rmon events

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
<th>Type</th>
<th>Community</th>
<th>Owner</th>
<th>Last time sent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>test</td>
<td>log</td>
<td>public</td>
<td>monitorEvent</td>
<td>May 04 2020 01:04:35</td>
</tr>
</tbody>
</table>

5.4.15.4. **show rmon history**

This command displays the specified entry in the RMON history table.

**Format**  
show rmon history <index> {errors | other | throughput} [period <seconds>]

**Mode**  
Privileged EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Common Fields</strong></td>
<td>The index (identifier) for the RMON history entry within the RMON history group. Each such entry defines a set of samples at a particular interval for an interface on the device.</td>
</tr>
<tr>
<td><strong>Sample set</strong></td>
<td>The owner string associated with the history control entry. The default is monitorHistoryControl.</td>
</tr>
<tr>
<td><strong>Interface</strong></td>
<td>The interface that was sampled.</td>
</tr>
<tr>
<td><strong>Interval</strong></td>
<td>The time between samples, in seconds.</td>
</tr>
<tr>
<td>Requested samples</td>
<td>The number of samples (interval) requested for the RMON history entry.</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------------------------------------------------</td>
</tr>
<tr>
<td>Granted samples</td>
<td>The number of samples granted for the RMON history entry.</td>
</tr>
<tr>
<td>Maximum table size</td>
<td>Maximum number of entries that the history table can hold.</td>
</tr>
</tbody>
</table>

**Output for Errors Parameter**

<table>
<thead>
<tr>
<th>Time</th>
<th>Time at which the sample is collected, displayed as period seconds.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC Align</td>
<td>Number of CRC align errors.</td>
</tr>
<tr>
<td>Undersize</td>
<td>Total number of undersize packets. Packets are less than 64 octets long (excluding framing bits, including FCS octets).</td>
</tr>
<tr>
<td>Oversize</td>
<td>Total number of oversize packets. Packets are longer than 1518 octets (excluding framing bits, including FCS octets).</td>
</tr>
<tr>
<td>Fragments</td>
<td>Total number of fragment packets. Packets are not an integral number of octets in length or had a bad Frame Check Sequence (FCS), and are less than 64 octets in length (excluding framing bits, including FCS octets).</td>
</tr>
<tr>
<td>Jabbers</td>
<td>Total number of jabber packets. Packets are longer than 1518 octets (excluding framing bits, including FCS octets), and are not an integral number of octets in length or had a bad Frame Check Sequence (FCS).</td>
</tr>
</tbody>
</table>

**Output for Other Parameter**

<table>
<thead>
<tr>
<th>Time</th>
<th>Time at which the sample is collected, displayed as period seconds.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dropped Collisions</td>
<td>Total number of dropped collisions.</td>
</tr>
</tbody>
</table>

**Output for Throughput Parameter**

<table>
<thead>
<tr>
<th>Time</th>
<th>Time at which the sample is collected, displayed as period seconds.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octets</td>
<td>Total number of octets received on the interface.</td>
</tr>
<tr>
<td>Packets</td>
<td>Total number of packets received (including error packets) on the interface.</td>
</tr>
<tr>
<td>Broadcast</td>
<td>Total number of good broadcast packets received on the interface.</td>
</tr>
<tr>
<td>Multicast</td>
<td>Total number of good multicast packets received on the interface.</td>
</tr>
<tr>
<td>Util</td>
<td>Port utilization of the interface associated with the history index specified.</td>
</tr>
</tbody>
</table>
Example:

(M4500-48XF8C) #show rmon history 1 errors

Sample set: 1   Owner: monitorHistoryControl

Interface: 0/1   Interval: 30

Requested Samples: 50   Granted Samples: 10

Maximum table size: 630

<table>
<thead>
<tr>
<th>Time</th>
<th>CRC Align</th>
<th>Undersize</th>
<th>Oversize</th>
<th>Fragments</th>
<th>Jabbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 06 2020 07:03:43</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>May 06 2020 07:04:13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>May 06 2020 07:04:44</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>May 06 2020 07:05:14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>May 06 2020 07:05:44</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>May 06 2020 07:06:14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>May 06 2020 07:06:44</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>May 06 2020 07:07:14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>May 06 2020 07:07:44</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>May 06 2020 07:08:15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(M4500-48XF8C) #show rmon history 1 other

Sample set: 1   Owner: monitorHistoryControl

Interface: 0/1   Interval: 30

Requested Samples: 50   Granted Samples: 10

Maximum table size: 630

<table>
<thead>
<tr>
<th>Time</th>
<th>Dropped Collisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>May 06 2020 07:04:13</td>
<td>0</td>
</tr>
<tr>
<td>May 06 2020 07:04:44</td>
<td>0</td>
</tr>
<tr>
<td>May 06 2020 07:05:14</td>
<td>0</td>
</tr>
</tbody>
</table>
(M4500-48XF8C) #show rmon history 1 throughput

Sample set: 1  Owner: monitorHistoryControl

Interface: 0/1  Interval: 30

Requested Samples: 50  Granted Samples: 10

Maximum table size: 630

<table>
<thead>
<tr>
<th>Time</th>
<th>Octets</th>
<th>Packets</th>
<th>Broadcast</th>
<th>Multicast</th>
<th>Util</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 06 2020 07:04:13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>May 06 2020 07:04:44</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>May 06 2020 07:05:14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>May 06 2020 07:05:44</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>May 06 2020 07:06:14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>May 06 2020 07:06:44</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>May 06 2020 07:07:14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>May 06 2020 07:07:44</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>May 06 2020 07:08:15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>May 06 2020 07:08:45</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

5.4.15.5.  **show rmon log**

This command displays the entries in the RMON log table.

**Format**  show rmon log [event-index]
**Mode** Privileged EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum table size</td>
<td>Maximum number of entries that the log table can hold.</td>
</tr>
<tr>
<td>Event</td>
<td>Event index for which the log is generated.</td>
</tr>
<tr>
<td>Description</td>
<td>A comment describing the event entry for which the log is generated.</td>
</tr>
<tr>
<td>Time</td>
<td>Time at which the event is generated.</td>
</tr>
</tbody>
</table>

**Example:**

(M4500-48XF8C) #show rmon log

Event    Description    Time
-----    ---------------    -----

(M4500-48XF8C) #show rmon log 1

Maximum table size: 10

Event    Description    Time
-----    ---------------    -----

5.4.15.6. show rmon statistics interfaces

This command displays the RMON statistics for the given interfaces.

**Format** show rmon statistics interfaces <slot/port>

**Mode** Privileged EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>slot/port</td>
</tr>
<tr>
<td>Dropped</td>
<td>Total number of dropped events on the interface.</td>
</tr>
<tr>
<td>Octets</td>
<td>Total number of octets received on the interface.</td>
</tr>
</tbody>
</table>
Example:

(M4500-48XF8C) #show rmon statistics interfaces 0/1

Port: 0/1
Dropped: 0
Octets: 772245  Packets: 6477
Broadcast: 0  Multicast: 6477
CRC Align Errors: 0  Collisions: 0
Undersize Pkts: 0  Oversize Pkts: 0
Fragments: 0  Jabbers: 0
64 Octets: 414  65 - 127 Octets: 6063
128 - 255 Octets: 0  256 - 511 Octets: 0
512 - 1023 Octets: 0  1024 - 1518 Octets: 0
HC Overflow Pkts: 0  HC Pkts: 6477
HC Overflow Octets: 0  HC Octets: 772245
HC Overflow Pkts 64 Octets: 0  HC Pkts 64 Octets: 414

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets</td>
<td>Total number of packets received (including error packets) on the interface.</td>
</tr>
<tr>
<td>Broadcast</td>
<td>Total number of good broadcast packets received on the interface.</td>
</tr>
<tr>
<td>Multicast</td>
<td>Total number of good multicast packets received on the interface.</td>
</tr>
<tr>
<td>CRC Align Errors</td>
<td>Total number of packets received have a length (excluding framing bits, including FCS octets) of between 64 and 1518 octets inclusive.</td>
</tr>
<tr>
<td>Collisions</td>
<td>Total number of collisions on the interface.</td>
</tr>
<tr>
<td>Undersize Pkts</td>
<td>Total number of undersize packets. Packets are less than 64 octets long (excluding framing bits, including FCS octets).</td>
</tr>
<tr>
<td>Oversize Pkts</td>
<td>Total number of oversize packets. Packets are longer than 1518 octets (excluding framing bits, including FCS octets).</td>
</tr>
<tr>
<td>Fragments</td>
<td>Total number of fragment packets. Packets are not an integral number of octets in length or had a bad Frame Check Sequence (FCS), and are less than 64 octets in length (excluding framing bits, including FCS octets).</td>
</tr>
<tr>
<td>Jabbers</td>
<td>Total number of jabber packets. Packets are longer than 1518 octets (excluding framing bits, including FCS octets), and are not an integral number of octets in length or had a bad Frame Check Sequence (FCS).</td>
</tr>
</tbody>
</table>
HC Overflow Pkts 65 - 127 Octets: 0  HC Pkts 65 - 127 Octets: 6063
HC Overflow Pkts 128 - 255 Octets: 0  HC Pkts 128 - 255 Octets: 0
HC Overflow Pkts 256 - 511 Octets: 0  HC Pkts 256 - 511 Octets: 0
HC Overflow Pkts 512 - 1023 Octets: 0  HC Pkts 512 - 1023 Octets: 0
HC Overflow Pkts 1024 - 1518 Octets: 0  HC Pkts 1024 - 1518 Octets: 0

5.4.15.7.  show rmon hcalarms

This command displays the entries in the RMON high-capacity alarm table.

Format  show rmon { hcalarms | hcalarm <index>}

Mode  Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>An arbitrary integer index value used to uniquely identify the high capacity alarm entry. The range is 1 to 65535.</td>
</tr>
<tr>
<td>OID</td>
<td>The object identifier of the particular variable to be sampled. Only variables that resolve to an ASN.1 primitive type of integer.</td>
</tr>
<tr>
<td>Interval</td>
<td>The interval in seconds over which the data is sampled and compared with the rising and falling thresholds. The range is 1 to 2147483647. The default is 1.</td>
</tr>
<tr>
<td>Sample Type</td>
<td>The method of sampling the selected variable and calculating the value to be compared against the thresholds. Possible types are Absolute Value or Delta Value. The default is Absolute Value.</td>
</tr>
</tbody>
</table>

Startup Alarm

Rising Threshold High  The upper 32 bits of the absolute value for threshold for the sampled statistic. The range is 0 to 4294967295. The default is 0.

Rising Threshold Low   The lower 32 bits of the absolute value for threshold for the sampled statistic. The range is 0 to 4294967295. The default is 1.

Rising Threshold Status  This object indicates the sign of the data for the rising threshold, as defined by the objects hcAlarmRisingThresAbsValueLow and hcAlarmRisingThresAbsValueHigh. Possible values are valueNotAvailable, valuePositive, or valueNegative. The default is valuePositive.

Falling Threshold High  The upper 32 bits of the absolute value for threshold for the sampled statistic. The range is 0 to 4294967295. The default is 0.
**Example:**

(M4500-48XF8C) #show rmon hcalarms

<table>
<thead>
<tr>
<th>Index</th>
<th>OID</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>-----</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>1</td>
<td>alarmInterval.1</td>
<td>monitorHCAlarm</td>
</tr>
</tbody>
</table>

(M4500-48XF8C) #show rmon hcalarm 1

Alarm 1

--------

OID: alarmInterval.1

Last Sample Value: 5

Interval: 1

Sample Type: absolute

Startup Alarm: rising-falling

Rising Threshold High: 0

Rising Threshold Low: 1

Rising Threshold Status: Positive

Falling Threshold High: 0
Falling Threshold Low: 1
Falling Threshold Status: Positive
Rising Event: 1
Falling Event: 2
Startup Alarm: Rising-Falling
Owner: monitorHCAAlarm

5.4.15.8. rmon alarm

This command sets the RMON alarm entry in the RMON alarm MIB group.

**Format**
rmon alarm <index> <variable> <interval> {absolute | delta} rising-threshold <rising threshold> [{rising event index}] falling-threshold <falling threshold> [{falling event index}] [startup {rising | falling | rising-falling}] [owner <owner string>]

**Default**
None

**Mode**
Global Config

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>An index that uniquely identifies an entry in the table. Each entry defines a diagnostic sample at a particular interval for an object on the device. The range is 1 to 65535.</td>
</tr>
<tr>
<td>variable</td>
<td>The object identifier of the particular variable to be sampled. Only variables that resolve to an ASN.1 primitive type of integer.</td>
</tr>
<tr>
<td>interval</td>
<td>The interval in seconds over which the data is sampled and compared with the rising and falling thresholds. The range is 1 to 2147483647. The default is 1.</td>
</tr>
<tr>
<td>absolute</td>
<td>The value of the statistic during the last sampling period. This object is a read-only, 32-bit signed value.</td>
</tr>
<tr>
<td>rising threshold</td>
<td>The rising threshold for the sample statistics. The range is -2147483648 to 2147483647. The default is 1.</td>
</tr>
<tr>
<td>rising event index</td>
<td>The index of the eventEntry that is used when a rising threshold is crossed. The range is 1 to 65535. The default is 1.</td>
</tr>
<tr>
<td>falling threshold</td>
<td>The falling threshold for the sample statistics. The range is -2147483648 to 2147483647. The default is 1.</td>
</tr>
<tr>
<td>falling event index</td>
<td>The index of the eventEntry that is used when a falling threshold is crossed. The range is 1 to 65535. The default is 2.</td>
</tr>
<tr>
<td>{rising</td>
<td>falling</td>
</tr>
</tbody>
</table>
Example:

(M4500-48XF8C) (Config)#rmon alarm 1 ifInErrors.2 30 absolute rising-threshold 100
1 falling-threshold 10 2 startup rising owner myOwner

5.4.15.9.  \textit{no rmon alarm}

This command deletes the RMON alarm entry

\textbf{Format}

\textbf{Mode}  Global Config

5.4.15.10.  \textit{rmon hcalarm}

This command sets the RMON hcalarm entry in the High Capacity RMON alarm MIB group.

\textbf{Format}  \texttt{rmon hcalarm \langle index\rangle \langle variable\rangle \langle interval\rangle \{absolute | delta\} rising-threshold high \langle value\rangle low \langle value\rangle status \{positive | negative\} [rising-event-index] falling-threshold high \langle value\rangle low \langle value\rangle status \{positive | negative\} [falling-event-index] [startup \{rising | falling | rising-falling\}] [owner \langle owner\ string\rangle]}

\textbf{Default}  None

\textbf{Mode}  Global Config

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{index}</td>
<td>An arbitrary integer index value used to uniquely identify the high capacity alarm entry. The range is 1 to 65535.</td>
</tr>
<tr>
<td>\textit{variable}</td>
<td>The object identifier of the particular variable to be sampled. Only variables that resolve to an ASN.1 primitive type of integer.</td>
</tr>
<tr>
<td>\textit{interval}</td>
<td>The interval in seconds over which the data is sampled and compared with the rising and falling thresholds. The range is 1 to 2147483647. The default is 1.</td>
</tr>
<tr>
<td>\textit{sample type}</td>
<td>The method of sampling the selected variable and calculating the value to be compared against the thresholds. Possible types are Absolute Value or Delta Value. The default is Absolute Value.</td>
</tr>
<tr>
<td>\textit{rising-threshold value high}</td>
<td>The lower 32 bits of the absolute value for threshold for the sampled statistic. The range is 0 to 4294967295. The default is 1.</td>
</tr>
</tbody>
</table>
**Example:**

```
(M4500-48XF8C) (Config)# rmon hcalarm 1 ifInOctets.1 30 absolute rising-threshold
high 1 low 100 status positive 1 falling-threshold high 1 low 10 status positive
startup rising owner myOwner
```

### 5.4.15.11. **no rmon hcalarm**

This command deletes the RMON hcalarm entry.

**Format**

```
no rmon hcalarm <index>
```

**Mode**

Global Config

### 5.4.15.12. **rmon event**

This command sets the RMON event entry in the RMON event MIB group.

**Format**

```
rmon event <event number> [description <string> | log | owner <owner string> | trap <community>]
```

**Default**

None

**Mode**

Global Config
**5.4.15.13. no rmon event**

This command deletes the rmon event entry.

**Format**

no rmon event <event number>

**Mode**

Global Config

**5.4.15.14. rmon collection history**

This command sets the history control parameters of the RMON historyControl MIB group.

**NOTE:** This command is not supported on interface range. Each RMON history control collection entry can be configured on only one interface. If you try to configure on multiple interfaces, DUT displays an error.

**Format**

rmon collection history <index> [buckets <number> | interval <interval> | owner <owner string>]

**Default**

None

**Mode**

Interface Config

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>An index that uniquely identifies an entry in the historyControl table. Each such entry defines a set of samples at a particular interval for an interface on the device. The range is 1 the 65535.</td>
</tr>
</tbody>
</table>

Example:

```
(M4500-48XF8C) (Config)# rmon event 1 log description test
```
5.4.15.15.  **no rmon collection history**

This command will delete the history control group entry with the specified index number.

**Format**  
no rmon collection history <index>

**Mode**  
Interface Config

5.4.16. **Statistics Application Commands**

The statistics application lets you query port utilization statistics, flow-based statistics, and packet reception statistics on programmable time slots. The statistics application collects the statistics at a configurable time range. You can specify the port number(s) or a range of ports for statistics to be displayed. The configured time range applies to all ports. Detailed statistics are collected between a specified time range in date and time format. You can define the time range as an absolute time entry, a periodic time, or both. For example, you can specify the statistics to be collected and displayed between 9:00 12 NOV 2011 (START) and 21:00 12 NOV 2012 (END) or schedule it on every Mon, Wed, and Fri 9:00 (START) to 21:00 (END).

You can receive the statistics in the following ways:

- User requests through the CLI for a set of counters.
- Configuring the device to display statistics using syslog or email alert. The syslog or email alert messages are sent by the statistics application at END time.

You can configure the device to display statistics on the console. The collected statistics are presented on the console at END time.

5.4.16.1. **stats group (Global Config)**

This command creates a new group with the specified id or name and configures the time range and the reporting mechanism for that group.
Format

```
stats group group {id | name} tierange time <range name> reporing list of reporting methods
no stats group group {id | name}
```

Mode

Global Config

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Group ID, name</strong></td>
<td>Name of the group of statistics or its identifier to apply on the interface. The range is:</td>
</tr>
<tr>
<td></td>
<td>1. received</td>
</tr>
<tr>
<td></td>
<td>2. received-errors</td>
</tr>
<tr>
<td></td>
<td>3. transmitted</td>
</tr>
<tr>
<td></td>
<td>4. transmitted-errors</td>
</tr>
<tr>
<td></td>
<td>5. received-transmitted</td>
</tr>
<tr>
<td></td>
<td>6. port-utilization</td>
</tr>
<tr>
<td></td>
<td>7. congestion</td>
</tr>
<tr>
<td></td>
<td>The default is none.</td>
</tr>
<tr>
<td><strong>Time range name</strong></td>
<td>Name of the time range for the group or the flow-based rule. The range is from 1 to 31 alphanumeric characters. The default is none.</td>
</tr>
<tr>
<td><strong>List of reporting methods</strong></td>
<td>Report the statistics to the configured method. The range is:</td>
</tr>
<tr>
<td></td>
<td>0. none</td>
</tr>
<tr>
<td></td>
<td>1. console</td>
</tr>
<tr>
<td></td>
<td>2. syslog</td>
</tr>
<tr>
<td></td>
<td>3. e-mail</td>
</tr>
<tr>
<td></td>
<td>The default is none.</td>
</tr>
</tbody>
</table>

Example:

The following shows examples of the command.

```
(Routing) (Config)# stats group received timerange test reporting console email syslog
(Routing) (Config)# stats group received-errors timerange test reporting email syslog

(Routing) (Config)# stats group received-transmitted timerange test reporting none

(Routing) (Config)# no stats group received

(Routing) (Config)# no stats group received-errors

(Routing) (Config)# no stats group received-transmitted
```
5.4.16.2. stats flow-based (Global Config)

This command configures flow based statistics rules for the given parameters over the specified time range. Only an IPv4 address is allowed as source and destination IP address.

**Format**
stats flow-based <rule-id> timerange time range name [{srcip ip-address} {dstip ip-address} {srccmac mac-address} {dstmac mac-address} {src tcp portid} {dst tcp portid} {src udp portid} {dst udp portid}]
no stats flow-based <rule-id>

**Mode**
Global Config

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule ID</td>
<td>The flow-base rule ID. The range is 1 to 16. The default is None.</td>
</tr>
<tr>
<td>Time range name</td>
<td>Name of the time range for the group or the flow-based rule. The range is from 1 to 31 alphanumeric characters. The default is None.</td>
</tr>
<tr>
<td>Srcip ip-address</td>
<td>Configure the source IP address of the rule.</td>
</tr>
<tr>
<td>Dstip ip-address</td>
<td>Configure the destination IP address of the rule.</td>
</tr>
<tr>
<td>Srccmac mac-address</td>
<td>Configure the source MAC address of the rule.</td>
</tr>
<tr>
<td>Dstmac mac-address</td>
<td>Configure the destination MAC address of the rule.</td>
</tr>
<tr>
<td>Srctcp portid</td>
<td>Configure the source TCP port for the rule.</td>
</tr>
<tr>
<td></td>
<td>The range is 1 to 65535.</td>
</tr>
<tr>
<td>Dsttcp portid</td>
<td>Configure the destination TCP port for the rule.</td>
</tr>
<tr>
<td></td>
<td>The range is 1 to 65535.</td>
</tr>
<tr>
<td>Srctxtcp portid</td>
<td>Configure the source UDP port for the rule.</td>
</tr>
<tr>
<td></td>
<td>The range is 1 to 65535.</td>
</tr>
<tr>
<td>Dstudp portid</td>
<td>Configure the destination UDP port for the rule.</td>
</tr>
<tr>
<td></td>
<td>The range is 1 to 65535.</td>
</tr>
</tbody>
</table>

**Example:**
The following shows examples of the command.

```bash
(Routing) (Config)# stats flow-based 1 timerange test srcip 1.1.1.1 dstip 2.2.2.2 srcmac 1234 dstmac 1234 srctcp portid 123 dsttcp portid 123 srcudp portid 123 dstudp portid 123
```
(Routing) (Config)#stats flow-based 2 timerange test srcip 1.1.1.1 dstip 2.2.2.2 srctcppport 123 dsttcppport 123 srcudpport 123 dstudpport 123

(Routing) (Config)# no stats flow-based 1

(Routing) (Config)# no stats flow-based 2

5.4.16.3. stats flow-based reporting

This command configures the reporting mechanism for all the flow-based rules configured on the system. There is no per flow-based rule reporting mechanism. Setting the reporting method as none resets all the reporting methods.

**Format**  
stats flow-based reporting list of reporting methods

**Mode**  
Global Config

**Example:**
The following shows examples of the command.

(Routing) (Config)# stats flow-based reporting console email syslog

(Routing) (Config)# stats flow-based reporting email syslog

(Routing) (Config)# stats flow-based reporting none

5.4.16.4. stats group (Interface Config)

This command applies the group specified on an interface or interface-range.

**Format**  
stats group {group-id | name}

no stats group {group-id | name}

**Mode**  
Interface Config

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Group ID, name</strong></td>
<td>Name of the group of statistics or its identifier to apply on the interface. The range is:</td>
</tr>
<tr>
<td></td>
<td>1. received</td>
</tr>
<tr>
<td></td>
<td>2. received-errors</td>
</tr>
<tr>
<td></td>
<td>3. transmitted</td>
</tr>
<tr>
<td></td>
<td>4. transmitted-errors</td>
</tr>
</tbody>
</table>
Example:
The following shows examples of the command.

(Routing) (Interface 0/1-0/10)# stats group 1
(Routing) (Interface 0/1-0/10)# stats group 2
(Routing) (Interface 0/1-0/10)# no stats group 1
(Routing) (Interface 0/1-0/10)# no stats group 2

5.4.16.5.  stats flow-based (Interface Config)

This command applies the flow-based rule specified by the id on an interface or interface-range.

Format  stats flow-based <rule-id>
        no stats flow-based <rule-id>

Mode  Interface Config

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule ID</td>
<td>The flow-base rule ID. The range is 1 to 16. The default is None.</td>
</tr>
</tbody>
</table>

Example:
The following shows examples of the command.

(Routing) (Interface 0/1-0/10)# stats flow-based 1
(Routing) (Interface 0/1-0/10)# stats flow-based 2

5.4.16.6.  show stats group

This command displays the configured time range and the interface list for the group specified and shows collected statistics for the specified time-range name on the interface list after the time-range expiry.
Format:  show stats group {group-id | name}

Mode:    Privileged EXEC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group ID, name</td>
<td>Specify the ID or name of the group. The ID and name associations are as follows:</td>
</tr>
<tr>
<td></td>
<td>1. received</td>
</tr>
<tr>
<td></td>
<td>2. received-errors</td>
</tr>
<tr>
<td></td>
<td>3. transmitted</td>
</tr>
<tr>
<td></td>
<td>4. transmitted-errors</td>
</tr>
<tr>
<td></td>
<td>5. received-transmitted</td>
</tr>
<tr>
<td></td>
<td>6. port-utilization</td>
</tr>
<tr>
<td></td>
<td>7. congestion</td>
</tr>
<tr>
<td></td>
<td>The default is none.</td>
</tr>
</tbody>
</table>

Example:
The following shows examples of the command.

(Routing) #show stats group received

Group: received Time Range: test Interface List

-----------------
0/2, 0/4, lag 1

Counter ID  Interface  Counter Value
-----------------  ---------  ------------
Rx Total        0/2      951600
Rx Total        0/4      304512
Rx Total        lag 1    0
Rx 64           0/2      0
Rx 64           0/4      4758
Rx 64           lag 1    0
Rx 65to128      0/2      0
Rx 65to128 0/4 0
Rx 65to128 lag 1 0
Rx 128to255 0/2 4758
Rx 128to255 0/4 0
Rx 128to255 lag 1 0
Rx 256to511 0/2 0

(Routing) #show stats group port-utilization

Group: port-utilization Time Range: test Interface List

-------------

0/2, 0/4, lag 1

Interface Utilization (%)

------------- -----------

0/2 0
0/4 0
lag 1 0

5.4.16.7. show stats flow-based

This command displays the configured time range, flow-based rule parameters and the interface list for the flow specified.

Format  show stats flow-based {rule-id | all}

Mode    Privileged EXEC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule ID</td>
<td>The flow-base rule ID. The range is 1 to 16. The default is None.</td>
</tr>
</tbody>
</table>

Example:
The following shows examples of the command.

(Routing) #show stats flow-based all
Flow based rule Id............................. 1
Time Range................................. test
Source IP..................................... 1.1.1.1
Source MAC................................. 1234
Source TCP Port............................ 123
Source UDP Port............................ 123
Destination IP.............................. 2.2.2.2
Destination MAC........................... 1234
Destination TCP Port..................... 123
Destination UDP Port..................... 123
Interface List
-------------
0/1 - 0/2

Interface Hit Count
-----------------
0/1 100
0/2 0

Flow based rule Id............................. 2
Time Range................................. test
Source IP..................................... 1.1.1.1
Source TCP Port............................ 123
Source UDP Port............................ 123
Destination IP.............................. 2.2.2.2
Destination TCP Port..................... 123
Destination UDP Port..................... 123
Interface List
-------------
0/1 - 0/2
Interface Hit Count

-------- --------
0/1 100
0/2 0

(Routing) #show stats flow-based 2

Flow based rule Id................................. 2
Time Range........................................ test
Source IP........................................ 1.1.1.1
Source TCP Port................................. 123
Source UDP Port................................. 123
Destination IP.................................... 2.2.2.2
Destination TCP Port......................... 123
Destination UDP Port......................... 123

Interface List

--------
0/1 - 0/2

Interface Hit Count

-------- --------
0/1 100
0/2 0
5.5. Spanning Tree Protocol Commands

This section describes the commands you use to configure Spanning Tree Protocol (STP). STP helps prevent network loops, duplicate messages, and network instability.

Note: STP is enabled on the switch and on all ports and LAGs by default.

Note: If STP is disabled, the system does not forward BPDU messages.

5.5.1. show spanning-tree

This command displays spanning tree settings for the common and internal spanning tree. The following details are displayed.

Format  show spanning-tree

Mode     Privileged EXEC
          User EXEC

Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge Priority</td>
<td>Specifies the bridge priority for the Common and Internal Spanning tree (CST). The value lies between 0 and 61440. It is displayed in multiples of 4096.</td>
</tr>
<tr>
<td>Bridge Identifier</td>
<td>The bridge identifier for the CST. It is made up using the bridge priority and the base MAC address of the bridge.</td>
</tr>
<tr>
<td>Time Since Topology Change</td>
<td>Time in seconds.</td>
</tr>
<tr>
<td>Topology Change Count</td>
<td>Number of times changed.</td>
</tr>
<tr>
<td>Topology Change in progress</td>
<td>Boolean value of the Topology Change parameter for the switch indicating if a topology change is in progress on any port assigned to the common and internal spanning tree.</td>
</tr>
<tr>
<td>Designated Root</td>
<td>The bridge identifier of the root bridge. It is made up from the bridge priority and the base MAC address of the bridge.</td>
</tr>
<tr>
<td>Root Path Cost</td>
<td>Value of the Root Path Cost parameter for the common and internal spanning tree.</td>
</tr>
<tr>
<td>Root Port Identifier</td>
<td>Identifier of the port to access the Designated Root for the CST</td>
</tr>
<tr>
<td>Bridge Max Age</td>
<td>Maximum message age.</td>
</tr>
<tr>
<td>Bridge Max Hops</td>
<td>The maximum number of hops for the spanning tree.</td>
</tr>
<tr>
<td>Max Tx Hold Count</td>
<td>The max value of bridge tx hold count for the spanning tree.</td>
</tr>
<tr>
<td>Bridge Forwarding Delay</td>
<td>A timeout value to be used by all Bridges in the Bridged LAN. The value of Forward Delay is set by the Root.</td>
</tr>
<tr>
<td>Hello Time</td>
<td>Configured value of the parameter for the CST.</td>
</tr>
<tr>
<td>Bridge Hold Time</td>
<td>Minimum time between transmission of Configuration Bridge Protocol Data Units (BPDUs).</td>
</tr>
<tr>
<td>CST Regional Root</td>
<td>Bridge Identifier of the CST Regional Root. It is made up using the bridge priority and the base MAC address of the bridge.</td>
</tr>
<tr>
<td>Regional Root Path Cost</td>
<td>Path Cost to the CST Regional Root.</td>
</tr>
</tbody>
</table>
5.5.2. **show spanning-tree interface**

This command displays the settings and parameters for a specific switch port within the common and internal spanning tree. The `<slot/port>` is the desired switch port. The following details are displayed on execution of the command.

**Format**

```
show spanning-tree interface {<slot/port> | port-channel <portchannel-id>}
```

**Mode**

- Privileged EXEC
- User EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hello Time</td>
<td>Admin hello time for this port.</td>
</tr>
<tr>
<td>Port Mode</td>
<td>Enabled or disabled.</td>
</tr>
<tr>
<td>BPDU Guard</td>
<td>Enabled or disabled BPDU Guard</td>
</tr>
<tr>
<td>BPDU Guard Effect</td>
<td>The effect of BPDU Guard when the BPDU Guard is enabled</td>
</tr>
<tr>
<td>Root Guard</td>
<td>Enabled or disabled Root Guard</td>
</tr>
<tr>
<td>Loop Guard</td>
<td>Enabled or disabled Loop Guard</td>
</tr>
<tr>
<td>TCN Guard</td>
<td>Enabled or disabled TCN Guard</td>
</tr>
<tr>
<td>Auto Edge</td>
<td>Enabled or disabled the feature that causes a port that has not seen a BPDU for edge delay time, to become an edge port and transition to forwarding faster.</td>
</tr>
<tr>
<td>Port Up Time Since Counters</td>
<td>Time since port was reset, displayed in days, hours, minutes, and seconds.</td>
</tr>
<tr>
<td>Last Cleared</td>
<td></td>
</tr>
<tr>
<td>STP BPDUs Transmitted</td>
<td>Spanning Tree Protocol Bridge Protocol Data Units sent.</td>
</tr>
<tr>
<td>STP BPDUs Received</td>
<td>Spanning Tree Protocol Bridge Protocol Data Units received.</td>
</tr>
<tr>
<td>RSTP BPDUs Transmitted</td>
<td>Rapid Spanning Tree Protocol Bridge Protocol Data Units sent.</td>
</tr>
<tr>
<td>RSTP BPDUs Received</td>
<td>Rapid Spanning Tree Protocol Bridge Protocol Data Units received.</td>
</tr>
<tr>
<td>MSTP BPDUs Transmitted</td>
<td>Multiple Spanning Tree Protocol Bridge Protocol Data Units sent.</td>
</tr>
<tr>
<td>MSTP BPDUs Received</td>
<td>Multiple Spanning Tree Protocol Bridge Protocol Data Units received.</td>
</tr>
</tbody>
</table>

5.5.3. **show spanning-tree vlan**

This command displays the association between a VLAN and a multiple tree instance. The `<vlan-id>` corresponds to an existing VLAN ID. The `<vlan-id>` range is 1 to 4093.

**Format**

```
show spanning-tree vlan <vlan-id>
```

**Default**

None

**Mode**

- Privileged EXEC
- User EXEC

Example: The following example shows the CLI display output for the command show spanning-tree vlan1.

```
M4500-32C) #show spanning-tree vlan 1
```
### 5.5.4. show spanning-tree mst detailed

This command displays the detailed settings for an MST instance. The instance \(<0-4094>\) is a number that corresponds to the desired existing multiple spanning tree instance ID. The following details are displayed.

**Format**

```
show spanning-tree mst detailed <mstid>
```

**Mode**

- Privileged EXEC
- User EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MST Instance ID</td>
<td>The multiple spanning tree instance ID.</td>
</tr>
<tr>
<td>MST Bridge Priority</td>
<td>The bridge priority of current MST.</td>
</tr>
<tr>
<td>MST Bridge Identifier</td>
<td>The bridge ID of current MST.</td>
</tr>
<tr>
<td>Time Since Topology Change</td>
<td>In seconds.</td>
</tr>
<tr>
<td>Topology Change Count</td>
<td>Number of times the topology has changed for this multiple spanning tree instance.</td>
</tr>
<tr>
<td>Topology Change in progress</td>
<td>Value of the Topology Change parameter for the multiple spanning tree instance.</td>
</tr>
<tr>
<td>Designated Root</td>
<td>Identifier of the Regional Root for this multiple spanning tree instance.</td>
</tr>
<tr>
<td>Root Path Cost</td>
<td>Path Cost to the Designated Root for this multiple spanning tree instance.</td>
</tr>
<tr>
<td>Root Port Identifier</td>
<td>Port to access the Designated Root for this multiple spanning tree instance.</td>
</tr>
<tr>
<td>Associated FIDs</td>
<td>List of forwarding database identifiers associated with this instance.</td>
</tr>
<tr>
<td>Associated VLANs</td>
<td>List of VLAN IDs associated with this instance.</td>
</tr>
</tbody>
</table>

### 5.5.5. show spanning-tree mst summary

This command displays summary information about all multiple spanning tree instances in the switch. On execution, the following details are displayed.

**Format**

```
show spanning-tree mst summary
```

**Mode**

- Privileged EXEC
- User EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MST Instance ID List</td>
<td>List of multiple spanning trees IDs currently configured.</td>
</tr>
<tr>
<td>For each MSTID:</td>
<td></td>
</tr>
<tr>
<td>• Associated FIDs</td>
<td>• List of forwarding database identifiers associated with this instance.</td>
</tr>
<tr>
<td>• Associated VLANs</td>
<td>• List of VLAN IDs associated with this instance.</td>
</tr>
</tbody>
</table>
5.5.6. show spanning-tree mst port detailed

This command displays the detailed settings and parameters for a specific switch port within a particular multiple spanning tree instance. The parameter <mstid> is a number that corresponds to the desired existing multiple spanning tree instance. The <slot/port> is the desired switch port.

**Format**  
show spanning-tree mst port detailed <mstid> {<slot/port> | port-channel <portchannel-id>}

**Mode**  
Privileged EXEC  
User EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MST Instance ID</td>
<td>The ID of the existing MST instance.</td>
</tr>
<tr>
<td>Port Identifier</td>
<td>The port identifier for the specified port within the selected MST instance. It is made up from the port priority and the interface number of the port.</td>
</tr>
<tr>
<td>Port Priority</td>
<td>The priority for a particular port within the selected MST instance. The port priority is displayed in multiples of 16.</td>
</tr>
<tr>
<td>Port Forwarding State</td>
<td>Current spanning tree state of this port.</td>
</tr>
<tr>
<td>Port Role</td>
<td>Each enabled MST Bridge Port receives a Port Role for each spanning tree. The port role is one of the following values: Root Port, Designated Port, Alternate Port, Backup Port, Master Port or Disabled Port.</td>
</tr>
<tr>
<td>Auto-Calculated Port Path Cost</td>
<td>Indicates whether auto calculation for port path cost is enabled.</td>
</tr>
<tr>
<td>Port Path Cost</td>
<td>Configured value of the Internal Port Path Cost parameter.</td>
</tr>
<tr>
<td>Designated Root</td>
<td>The Identifier of the designated root for this port.</td>
</tr>
<tr>
<td>Designated Port Cost</td>
<td>Path Cost offered to the LAN by the Designated Port.</td>
</tr>
<tr>
<td>Designated Bridge</td>
<td>Bridge Identifier of the bridge with the Designated Port.</td>
</tr>
<tr>
<td>Designated Port Identifier</td>
<td>Port on the Designated Bridge that offers the lowest cost to the LAN.</td>
</tr>
</tbody>
</table>

If you specify 0 (defined as the default CIST ID) as the mstid, this command displays the settings and parameters for a specific switch port within the common and internal spanning tree. The slot/port is the desired switch port. In this case, the following are displayed.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Identifier</td>
<td>The port identifier for this port within the CST.</td>
</tr>
<tr>
<td>Port Priority</td>
<td>The priority of the port within the CST.</td>
</tr>
<tr>
<td>Port Forwarding State</td>
<td>The forwarding state of the port within the CST.</td>
</tr>
<tr>
<td>Port Role</td>
<td>The role of the specified interface within the CST.</td>
</tr>
<tr>
<td>Auto-Calculated Port Path Cost</td>
<td>Indicates whether auto calculation for port path cost is enabled or not (disabled).</td>
</tr>
<tr>
<td>Port Path Cost</td>
<td>The configured path cost for the specified interface.</td>
</tr>
<tr>
<td>Auto-Calculated External Port Path Cost</td>
<td>Indicates whether auto calculation for external port path cost is enabled.</td>
</tr>
<tr>
<td>External Port Path Cost</td>
<td>The cost to get to the root bridge of the CIST across the boundary of the region. This means that if the port is a boundary port for an MSTP region, then the external path cost is used.</td>
</tr>
</tbody>
</table>
5.5.7. `show spanning-tree mst port summary`

This command displays the settings of one or all ports within the specified multiple spanning tree instance. The parameter `<mstid>` indicates a particular MST instance. The `<msted>` range is 0 to 4096. The parameter `<slot/port>` indicates the desired switch port.

If you specify 0 (defined as the default CIST ID) as the mstid, the status summary displays for one or all ports within the common and internal spanning tree.

**Format**  
`show spanning-tree mst port summary <mstid> [{<slot/port> | active | port-channel <portchannel-id>}]`

**Mode**  
- Privileged EXEC
- User EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MST Instance ID</td>
<td>The MST instance associated with this port.</td>
</tr>
<tr>
<td>Interface slot/port</td>
<td></td>
</tr>
<tr>
<td>STP Mode</td>
<td>Indicates whether spanning tree is enabled or disabled on the port.</td>
</tr>
<tr>
<td>Type</td>
<td>Currently not used.</td>
</tr>
<tr>
<td>STP State</td>
<td>The forwarding state of the port in the specified spanning tree instance.</td>
</tr>
<tr>
<td>Port Role</td>
<td>The role of the specified port within the spanning tree.</td>
</tr>
<tr>
<td>Desc</td>
<td>Indicates whether the port is in loop inconsistent state or not.</td>
</tr>
</tbody>
</table>

Designated Root	Identifier of the designated root for this port within the CST.
Designated Port Cost	Path Cost offered to the LAN by the Designated Port.
Designated Bridge	The bridge containing the designated port.
Designated Port Identifier	Port on the Designated Bridge that offers the lowest cost to the LAN.
Topology Change Acknowledgement	Value of flag in next Configuration Bridge Protocol Data Unit (BPDU) transmission indicating if a topology change is in progress for this port.
Hello Time	The hello time in use for this port.
Edge Port	The configured value indicating if this port is an edge port.
Edge Port Status	The derived value of the edge port status. True if operating as an edge port; false otherwise.
Point To Point MAC Status	Derived value indicating if this port is part of a point to point link.
CST Regional Root	The regional root identifier in use for this port.
CST Internal Root Path Cost	The internal root path cost to the LAN by the designated external port.
Loop Inconsistent State	The MSTP loop inconsistent state of the port in a specific instance.
Transitions Into Loop Inconsistent State	The number of times this interface has transitioned into the MSTP loop inconsistent state.
Transitions Out Of Loop Inconsistent State	The number of times this interface has transitioned out of the MSTP loop inconsistent state.
5.5.8. show spanning-tree summary

This command displays spanning tree settings and parameters for the switch. The following details are displayed on execution of the command.

**Format**  
show spanning-tree summary

**Mode**  
- Privileged EXEC
- User EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning Tree Admin mode</td>
<td>Enabled or disabled.</td>
</tr>
<tr>
<td>Spanning Tree Forward BPDU</td>
<td>Enabled or disabled.</td>
</tr>
<tr>
<td>Spanning Tree Version</td>
<td>Version of 802.1 currently supported (IEEE 802.1s, IEEE 802.1w, or IEEE 802.1d) based upon the Force Protocol Version parameter.</td>
</tr>
<tr>
<td>Configuration Name</td>
<td>Identifier used to identify the configuration currently being used.</td>
</tr>
<tr>
<td>Configuration Revision Level</td>
<td>Identifier used to identify the configuration currently being used.</td>
</tr>
<tr>
<td>Configuration Digest Key</td>
<td>A generated Key used in the exchange of the BPDUs.</td>
</tr>
<tr>
<td>Configuration Format Selector</td>
<td>Specifies the version of the configuration format being used in the exchange of BPDUs. The default value is zero.</td>
</tr>
<tr>
<td>MST Instances</td>
<td>List of all multiple spanning tree instances configured on the switch.</td>
</tr>
</tbody>
</table>

5.5.9. show spanning-tree brief

This command displays spanning tree settings for the bridge. The following information appears.

**Format**  
show spanning-tree brief

**Mode**  
- Privileged EXEC
- User EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge Priority</td>
<td>Configured value.</td>
</tr>
<tr>
<td>Bridge Identifier</td>
<td>The bridge identifier for the selected MST instance. It is made up using the bridge priority and the base MAC address of the bridge.</td>
</tr>
<tr>
<td>Bridge Max Age</td>
<td>Configured value.</td>
</tr>
<tr>
<td>Bridge Max Hops</td>
<td>Bridge max-hops count for the device.</td>
</tr>
<tr>
<td>Bridge Hello Time</td>
<td>Configured value.</td>
</tr>
<tr>
<td>Bridge Forward Delay</td>
<td>Configured value.</td>
</tr>
<tr>
<td>Bridge Hold Time</td>
<td>Minimum time between transmission of Configuration Bridge Protocol Data Units (BPDUs).</td>
</tr>
</tbody>
</table>
5.5.10. spanning-tree

This command sets the spanning-tree operational mode to enabled.

Note: If the MST is enabled with MLAG, MST must be enabled on both MLAG peer devices.

Format  spanning-tree
Default  Enabled
Mode    Global Config

5.5.11. no spanning-tree

This command sets the spanning-tree operational mode to disabled. While disabled, the spanning-tree configuration is retained and can be changed, but is not activated.

Format  no spanning-tree
Mode    Global Config

5.5.12. spanning-tree bpdu-forwarding

This command sets the BPDU forwarding mode.

Format  spanning-tree bpdu-forwarding
Default  Enabled
Mode    Global Config

5.5.13. no spanning-tree bpdu-forwarding

This command sets the BPDU forwarding mode to disabled.

Format  no spanning-tree bpdu-forwarding
Mode    Global Config
5.5.14. spanning-tree protocol-migration

This command enables BPDU migration check on a given interface. The all option enables BPDU migration check on all interfaces.

Format  spanning-tree protocol-migration {<slot/port> | port-channel <portchannel-id> | all}
Default  None
Mode     Global Config

5.5.15. spanning-tree configuration name

This command sets the Configuration Identifier Name for use in identifying the configuration that this switch is currently using. The name is a string of up to 32 characters.

Note: If the MST is enabled with MLAG, the Configuration Identifier Name must be the same on both MLAG peer devices.

Format  spanning-tree configuration name <name>
Default  Base MAC address in hexadecimal notation
Mode     Global Config

5.5.16. no spanning-tree configuration name

This command sets the Configuration Identifier Name to “DEFAULT”.

Format  no spanning-tree configuration name
Mode     Global Config

5.5.17. spanning-tree configuration revision

This command sets the Configuration Identifier Revision Level for use in identifying the configuration that this switch is currently using. The Configuration Identifier Revision Level is a number in the range of 0 to 65535.

Format  spanning-tree configuration revision <0-65535>
Default  0
Mode     Global Config
5.5.18. no spanning-tree configuration revision

This command sets the Configuration Identifier Revision Level for use in identifying the configuration that this switch is currently using to the default value.

**Format**

```
no spanning-tree configuration revision
```

**Mode**

Global Config

5.5.19. spanning-tree mode

This command configures global spanning tree mode per VLAN spanning tree. On a switch, only one mode can be enabled at a time.

**Note:** Both RSTP and MSTP can be enabled with MLAG. The configuration of RSTP and MSTP on peers of MLAG must be the same to guarantee that MLAG can work correctly. If you configure one peer of MLAG as RSTP, the other peer must be RSTP. The same as MSTP.

**Format**

```
spanning-tree mode {mstp | rstp}
```

**Default**

mstp

**Mode**

Global Config

5.5.20. no spanning-tree mode

This command globally configures the switch to the default spanning-tree mode, MSTP.

**Format**

```
no spanning-tree mode
```

**Mode**

Global Config

5.5.21. spanning-tree forward-time

This command sets the Bridge Forward Delay parameter to a new value for the common and internal spanning tree. The forward-time value is in seconds within a range of 4 to 30, with the value being greater than or equal to “(Bridge Max Age / 2) + 1”.

**Format**

```
spanning-tree forward-time <4-30>
```

**Default**

15
**Mode**  Global Config

**5.5.22. no spanning-tree forward-time**

This command sets the Bridge Forward Delay parameter for the common and internal spanning tree to the default value.

**Format**  no spanning-tree forward-time

**Mode**  Global Config

**5.5.23. spanning-tree max-age**

This command sets the Bridge Max Age parameter to a new value for the common and internal spanning tree. The max-age value is in seconds within a range of 6 to 40, with the value being less than or equal to “2 times (Bridge Forward Delay - 1)” and greater than or equal to “2 times (Bridge Hello Time + 1)”.

**Format**  spanning-tree max-age <6-40>

**Default**  20

**Mode**  Global Config

**5.5.24. no spanning-tree max-age**

This command sets the Bridge Max Age parameter for the common and internal spanning tree to the default value.

**Format**  no spanning-tree max-age

**Mode**  Global Config

**5.5.25. spanning-tree forward-time max-age**

This command sets the Bridge Forward Delay and Max Age parameter to a new value for the common and internal spanning tree.

**Format**  spanning-tree forward-time <4-30> max-age <6-40>

**Default**  forward-time: 15
max-age: 20
5.5.26. spanning-tree max-hops

This command sets the MSTP Max Hops parameter to a new value for the common and internal spanning tree. The max-hops value is a range from 6 to 40.

Format  spanning-tree max-hops <6-40>
Default  20
Mode     Global Config

5.5.27. no spanning-tree max-hops

This command sets the Bridge Max Hops parameter for the common and internal spanning tree to the default value.

Format  no spanning-tree max-hops
Mode     Global Config

5.5.28. spanning-tree hold-count

This command sets the Bridge Tx Hold Count parameter to a new value for the common and internal spanning tree. The Tx Hold Count value is in a range of 1 to 10.

Format  spanning-tree hold-count <1-10>
Default  6
Mode     Global Config

5.5.29. no spanning-tree hold-count

This command sets the Bridge Tx Hold Count parameter for the common and internal spanning tree to the default value.

Format  no spanning-tree hold-count
Mode     Global Config
5.5.30. spanning-tree mst instance

This command adds a multiple spanning tree instance to the switch. The parameter mstid is a number within a range of 1 to 4094 that corresponds to the new instance ID to be added. The maximum number of multiple instances supported by the switch is 4.

**Format**    spanning-tree mst instance <mstid>

**Default**   None

**Mode**      Global Config

5.5.31. no spanning-tree mst instance

This command removes a multiple spanning tree instance from the switch and reallocates all VLANs allocated to the deleted instance to the common and internal spanning tree. The parameter mstid is a number that corresponds to the desired existing multiple spanning tree instance to be removed.

**Format**    no spanning-tree mst instance <mstid>

**Mode**      Global Config

5.5.32. spanning-tree mst priority

This command sets the bridge priority for a specific multiple spanning tree instance. The parameter mstid <0-4094> is a number that corresponds to the desired existing multiple spanning tree instance. The priority value is a number within a range of 0 to 61440 in increments of 4096.

If you specify 0 (defined as the default CIST ID) as the mstid, this command sets the Bridge Priority parameter to a new value for the common and internal spanning tree. The bridge priority value is a number within a range of 0 to 61440. The twelve least significant bits are masked according to the 802.1s specification. This causes the priority to be rounded down to the next lower valid priority.

**Format**    spanning-tree mst priority <mstid> <0-61440>

**Default**   32768

**Mode**      Global Config
5.5.33. no spanning-tree mst priority

This command sets the bridge priority for a specific multiple spanning tree instance to the default value. The parameter mstid <0-4094> is a number that corresponds to the desired existing multiple spanning tree instance.

If 0 (defined as the default CIST ID) is passed as the mstid, this command sets the Bridge Priority parameter for the common and internal spanning tree to the default value.

Format no spanning-tree mst priority <mstid>

Mode Global Config

5.5.34. spanning-tree mst vlan

This command adds an association between a multiple spanning tree instance and one or more VLANs so that the VLAN(s) are no longer associated with the common and internal spanning tree. The parameter mstid <0-4094> is a number that corresponds to the desired existing multiple spanning tree instance. The vlan-list can be specified as a single VLAN, a list, or a range of values. To specify a list of VLANs, enter a list of VLAN IDs, each separated by a comma with no spaces in between. To specify a range of VLANs, separate the beginning and ending VLAN ID with a dash (-). The VLAN IDs may or may not exist in the system.

Format spanning-tree mst vlan <mstid> <vlan-list>

Mode Global Config

5.5.35. no spanning-tree mst vlan

This command removes an association between a multiple spanning tree instance and one or more VLANs so that the VLAN(s) are again associated with the common and internal spanning tree.

Format no spanning-tree mst vlan <mstid> <vlan-list>

Mode Global Config

5.5.36. spanning-tree mst

This command sets the Path Cost or Port Priority for this port within the multiple spanning tree instance or in the common and internal spanning tree. If you specify an mstid <0-4094> parameter that corresponds to an existing multiple spanning tree instance, the configurations are done for that multiple spanning tree instance. If you specify 0 (defined as the default CIST ID) as the mstid, the configurations are done for the common and internal spanning tree instance.

If you specify the cost option, the command sets the path cost for this port within a multiple spanning tree instance or the common and internal spanning tree instance, depending on the mstid parameter. You can set
the path cost as a number in the range of 1 to 200000000 or auto. If you select auto the path cost value is set based on Link Speed.

If you specify the port-priority option, this command sets the priority for this port within a specific multiple spanning tree instance or the common and internal spanning tree instance, depending on the mstid parameter. The port-priority value is a number in the range of 0 to 240 in increments of 16.

Note: If the MST is enabled with MLAG, the path cost of the MLAG peer-link cannot be modified.

Format  
```
spanning-tree mst <mstid> {cost <1-200000000> | auto} | port-priority <0-240>
```

Default  
- cost: auto
  - port-priority: 128

Mode  Interface Config

### 5.5.37. no spanning-tree mst

This command sets the Path Cost or Port Priority for this port within the multiple spanning tree instance, or in the common and internal spanning tree to the respective default values. If you specify an mstid parameter that corresponds to an existing multiple spanning tree instance, you are configuring that multiple spanning tree instance. If you specify 0 (defined as the default CIST ID) as the mstid, you are configuring the common and internal spanning tree instance.

If you specify cost, this command sets the path cost for this port within a multiple spanning tree instance or the common and internal spanning tree instance, depending on the mstid parameter, to the default value, i.e., a path cost value based on the Link Speed.

If you specify port-priority, this command sets the priority for this port within a specific multiple spanning tree instance or the common and internal spanning tree instance, depending on the mstid parameter, to the default value.

Format  
```
no spanning-tree mst <mstid> {cost | port-priority}
```

Mode  Interface Config

### 5.5.38. spanning-tree port mode

This command sets the Administrative Switch Port State for this port to enabled.

Format  
```
spanning-tree port mode
```

Default  Enabled

Mode  Interface Config
5.5.39. no spanning-tree port mode

This command sets the Administrative Switch Port State for this port to disabled.

Format  no spanning-tree port mode
Mode    Interface Config

5.5.40. spanning-tree port model all

This command sets the Administrative Switch Port State for all ports to enabled.

Format  spanning-tree port mode all
Default  Enabled
Mode    Global Config

5.5.41. no spanning-tree port mode all

This command sets the Administrative Switch Port State for all ports to disabled.

Format  no spanning-tree port mode all
Mode    Global Config

5.5.42. spanning-tree auto-edge

Use this command to allow the interface to become an edge port if it does not receive any BPDUs within a given amount of time.

Format  spanning-tree auto-edge
Default  Enabled
Mode    Interface Config
5.5.43. **no spanning-tree auto-edge**

This command resets the auto-edge status of the port to the default value.

**Format**  
no spanning-tree auto-edge

**Mode**  
Interface Config

5.5.44. **spanning-tree cost**

Use this command to configure the external path cost for port used by a MST instance. When the auto keyword is used, the path cost from the port to the root bridge is automatically determined by the speed of the interface. To configure the cost manually, specify a cost value from 1 – 200000000.

Note: If the MST is enabled with MLAG, the path cost of the MLAG peer-link cannot be modified.

**Format**  
spanning-tree cost {<cost> | auto}

**Default**  
Auto

**Mode**  
Interface Config

5.5.45. **no spanning-tree cost**

This command resets the path cost to the default value.

**Format**  
no spanning-tree cost

**Mode**  
Interface Config

5.5.46. **spanning-tree edgeport**

This command specifies that an interface is an Edge Port within the common and internal spanning tree. This allows this port to transition to Forwarding State without delay.

**Format**  
spanning-tree edgeport

**Mode**  
Interface Config
5.5.47. no spanning-tree edgeport

This command specifies that this port is not an Edge Port within the common and internal spanning tree.

**Format**  
no spanning-tree edgeport

**Mode**  
Interface Config

5.5.48. spanning-tree edgeport bpdu guard

This command sets the Edgeport BPDU Guard enable/disable parameter on this switch.

**Format**  
spanning-tree edgeport bpdu guard

**Default**  
Disabled

**Mode**  
Global Config

5.5.49. no spanning-tree edgeport bpdu guard

This command sets the Edgeport BPDU Guard to the default value that is disabled.

**Format**  
no spanning-tree edgeport bpdu guard

**Mode**  
Global Config

5.5.50. spanning-tree bpdu guard

Use this command to enable BPDU Guard on an interface.

**Format**  
spanning-tree bpdu guard

**Default**  
Disabled

**Mode**  
Interface Config
5.5.51. no spanning-tree bpdu guard

Use this command to disable BPDU Guard on the interface.

Format  no spanning-tree bpdu guard
Mode    Interface Config

5.5.52. spanning-tree guard

Use this command to select whether loop guard or root guard is enabled on an interface or range of interfaces.

Format  spanning-tree guard {loop | root}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>loop</td>
<td>This command sets the Guard Mode to loop guard on this interface.</td>
</tr>
<tr>
<td>root</td>
<td>This command sets the Guard Mode to root guard on this interface.</td>
</tr>
</tbody>
</table>

Default  Disabled
Mode     Interface Config

5.5.53. no spanning-tree guard

Use this command to disable loop guard or root guard on the interface.

Format  no spanning-tree guard
Mode    Interface Config

5.5.54. spanning-tree tcnguard

Use this command to enable TCN guard on the interface. When enabled, TCN guard restricts the interface from propagating any topology change information received through that interface.

Format  spanning-tree tcnguard
Default Enabled
Mode    Interface Config
5.5.55. *no spanning-tree tcnguard*

Use this command to reset the TCN guard status of the port to the default value.

**Format**  
no spanning-tree tcnguard

**Mode**  
Interface Config
5.6. System Log Commands

5.6.1. show logging

This command displays configurations of logging application.

**Format**  
show logging

**Default**  
None

**Mode**  
Privileged Exec

**Example:**

```
(M4500-32C) #show logging

Logging Client Local Port : 514
Logging Client Source Interface : (not configured)
CLI Command Logging : disabled
Console Logging : enabled
Console Logging Severity Filter : error
Buffered Logging : enabled
Buffered Logging Severity Filter : info
Persistent Logging : disabled
Persistent Logging Severity Filter : alert

Syslog Logging : disabled
Syslog Logging Facility : user

Terminal Monitor : disabled
Terminal Logging Severity Filter : warning

Log Messages Received : 139
Log Messages Dropped : 0
Log Messages Relayed : 0

Log Command Messages Received : 2

(M4500-32C) #
```

5.6.2. show logging buffered

This command displays the log messages which record system operating and tracing information. The log buffered messages store in memory, therefore, it isn’t retained across a switch reset.

**Format**  
show logging buffered

**Default**  
None

**Mode**  
Privileged Exec
Example:

(M4500-32C) #show logging buffered

Buffered (In-Memory) Logging : enabled
Buffered Logging Wrapping Behavior : On
Buffered Log Count : 33

Apr 28 19:35:09: %1-6-NIM: [396203556] nim_rif.c(352) 117 % Set expansible port 0/50 count set to 1
Apr 28 19:35:09: %1-6-NIM: [396203556] nim_rif.c(352) 116 % Set expansible port 0/49 count set to 1
Apr 28 19:35:05: %1-5-TRAPMGR: [397614180] traputil.c(797) 115 % Temperature state change alarm: Unit Number: 1 Current: Normal, Previous: None
Apr 28 19:34:59: %1-5-TRAPMGR: [396792620] traputil.c(755) 114 % Succeeded User Login: Console started for user admin connected from EIA-232.
Apr 28 19:34:57: %1-5-TRAPMGR: [396792620] traputil.c(755) 113 % Entity Database: Configuration Changed
Apr 28 19:34:52: %1-2-General: [1212183788] Boot!(0) 112 % Event(0xaaaaaaaa)
Apr 28 19:34:52: %1-6-AUTO_INST: [1212183788] auto_install_control.c(1374) 111 % AutoInstall is stopped.
Apr 28 19:34:52: %1-5-SIM: [1212183788] sim_util.c(3841) 110 % Switch firmware operational: LY8, Runtime Code 5.4.01.10, Linux 3.8.13-rt9, U-Boot 2010.12 (Oct 03 2014 - 14:38:07) - ONIE 2014.05.03-7
Apr 28 19:34:52: %1-5-TRAPMGR: [396792620] traputil.c(755) 109 % Link Down: VLAN-1
Apr 28 19:34:52: %1-5-SIM: [1212183788] sim_svc_port.c(334) 108 % Service port IPv4 address has been set to 192.168.2.10.
Apr 28 19:34:52: %1-5-SIM: [1212183788] sim_svc_port.c(334) 107 % Service port IPv4 address has been set to 0.0.0.0.
Apr 28 19:34:52: %1-6-CLI_WEB: [1212183788] sysapi.c(2844) 106 % Configuration file <startup-config> read from flash!
Apr 28 19:34:51: %1-5-IP: [396819460] openr_policy.c(1438) 99 % Added RPPI routing policy client ospf0...
Apr 28 19:34:51: %1-6-CLI_WEB: [1212183788] cli_txtcfg.c(542) 98 % Configuration applied from file <startup-config>
Apr 28 19:34:51: %1-6-CLI_WEB: [1212183788] sysapi.c(2844) 97 % Configuration file <startup-config> read from flash!
Apr 28 19:34:50: %1-6-General: [1209039980] procmgr.c(800) 94 % Application Started (opensshd, ID = 8, PID = 936)
Apr 28 19:34:50: %1-5-General: [1209039980] procmgr.c(2436) 93 % Administrative Command:app-start opensshd
Apr 28 11:34:49: %1-6-DOT3AD: [396784740] dot3adCfgr.c(1192) 20 % Tech Support Registration failed for DOT3AD related commands
Apr 28 11:34:45: %1-6-General: [1209039980] procmgr.c(800) 19 % Application Started (traceroute-0, ID = 12, PID = 916
Apr 28 11:34:45: %1-5-General: [1209039980] procmgr.c(2436) 18 % Administrative Command:app-start traceroute-0
Apr 28 11:34:45: %1-6-General: [1209039980] procmgr.c(800) 17 % Application Started (ping-0, ID = 11, PID = 909
Apr 28 11:34:45: %1-5-General: [1209039980] procmgr.c(2436) 16 % Administrative Command:app-start ping-0
Apr 28 11:34:44: %1-5-OSAPI: [1289614252] osapi_monitor.c(145) 15 % Watchdog timer is started.
Apr 28 11:34:44: %1-6-General: [1209039980] procmgr.c(800) 14 % Application Started (ospf-00, ID = 10, PID = 851
Apr 28 11:34:44: %1-5-General: [1209039980] procmgr.c(2436) 13 % Administrative Command:app-start ospf-00
Apr 28 11:34:44: %1-6-General: [1209039980] procmgr.c(800) 12 % Application Started (vr-agent-0, ID = 9, PID = 845
Apr 28 11:34:44: %1-5-General: [1209039980] procmgr.c(2436) 10 % Administrative Command:app-start vr-agent-0
Apr 28 11:34:44: %1-6-VR_AGENT: [1289691836] vr_agent_api.c(73) 7 % initialized the clnt_addr:/tmp/fpcvragent.00,family:1
Apr 28 11:34:43: %1-1-SIM: [1289691836] sim_util.c(3877) 5 % Switch was reset due to operator intervention.
Apr 28 11:34:43: %1-5-BSP: [396148460] bootos.c(178) 4 % BSP initialization complete, starting switch firmware.

NETGEAR M4500 Series Switches CLI Command Reference Manual   346
5.6.3. logging buffered

This command is used to enable or disable logging to the in-memory log. If the log buffer is full, the log wrap around.

Format  [no] logging buffered
Default  Enabled
Mode    Global Config

5.6.4. logging buffered threshold

This command is used to configure the threshold of the logging buffer. The range of the threshold is from 1 to 100 percent. The threshold mode and wraparound mode are mutually exclusive. When you configure the threshold, logs do not wrap around. When you set a threshold value, the switch sends an alert when the threshold is exceeded. When the maximum capacity of the log is reached, logging stops. If you configured an email alert for this event, the switch sends an email.

Format  [no] logging buffered threshold <1-100>
Default  100
Mode    Global Config

5.6.5. logging buffered severity level

This command sets logging severity level. The logging buffered only records the messages which of level is equal or above severity level.

The parameters “severitylevel” could be specified as either an integer from 0 to 7 or symbolically through one of the following keywords: emergency (0), alert (1), critical (2), error (3), warning (4), notice (5), informational (6), debug (7).

Format  logging buffered [<severitylevel keyword> | <0 ~ 7>]
Default  Info
Mode    Global Config
In the following two examples, the severity level is set the warning level.

(M4500-32C) #logging buffered 4

(M4500-32C) #logging buffered warning

5.6.6. logging buffered wrap

This command enables wrapping of in-memory logging, it will overwrite old log records when full capacity reached. Otherwise when full capacity is reached, logging stops.

Format [no] logging buffered wrap

Default Enabled

Mode Global Config

5.6.7. clear logging buffered

This command clears all in-memory logs.

Format clear logging buffered

Default None

Mode Privilege EXEC

5.6.8. show logging traplogs

This command displays the trap log maintained by the switch. Trap log is not retained across a switch reset.

Format show logging traplogs

Default None

Mode Privileged Exec

Example:

(M4500-32C) #show logging traplogs

Number of Traps Since Last Reset.............. 5
Trap Log Capacity................................. 256
Number of Traps Since Log Last Viewed........ 5

Log System Up Time                          Trap
--- ---------------------------------------- ----------------------------------------
0 Apr 28 19:35:51 2000  Cold Start: Unit: 0
1 Apr 28 19:35:05 2000  Temperature state change alarm: Unit Number: 1
                         Current: Normal, Previous: None
2 Apr 28 19:34:59 2000  Succeeded User Login: Console started for user
                         admin connected from EIA-232.
3 Apr 28 19:34:57 2000  Entity Database: Configuration Changed
4 Apr 28 19:34:52 2000  Link Down: VLAN- 1

(M4500-32C) #

5.6.9.  show logging hosts

This command displays the configuration of logging hosts.

Format   show logging hosts
Default   None
Mode      Privileged Exec

Example:

(M4500-32C) #show logging hosts

Index   IP Address/Hostname  Type   Severity  Port  Status
------- ---------------------- ------ -------- ----- -----
1       10.1.1.100           ipv4    critical  514    Active
2       logging-server.test.dep  dns    critical  514    Active

(M4500-32C) #
5.6.10. logging host

This command is used to add addresses of remote log hosts.

The parameter “<hostaddress|hostname>” could be IPv4 address, or IPv6 address, or domain name. This parameter needs to match next parameter {dns | ipv4 | ipv6} to clarify its format.

The parameter “<ports>” means the service port number of remote log host.

The parameters “severitylevel” could be specified as either an integer from 0 to 7 or symbolically through one of the following keywords: emergency (0), alert (1), critical (2), error (3), warning (4), notice (5), informational (6), debug (7).

**Format**  
logging host <hostaddress|hostname> {dns | ipv4 | ipv6} [<port>] [<severitylevel>]

**Default**  
<port> is 514  
<severitylevel> is critical

**Mode**  
Global Config

Example: Adds two logging hosts: first one uses the format of IPv4 address, default port and, default severity level; second one uses the format of domain name, assigns server port to 514 and severity level to critical (2).

(M4500-32C) #configure  
(M4500-32C) (Config)#logging host 10.1.1.100 ipv4  
(M4500-32C) (Config)#logging host logging-server.test.dep dns 514 2

5.6.11. logging host remove

This command is used to remove a remote log host.

The parameter “<hostindex>” means logging host Index which could be found in the output of “show logging hosts”.

**Format**  
logging host remove <hostindex>

**Default**  
None

**Mode**  
Global Config

Example: Remove an existing log host which of index is 1.

(M4500-32C) #configure  
(M4500-32C) (Config)#logging host remove 1
5.6.12. logging host reconfigure

This command is used to reconfigure the setting of existing log host.

The parameter “<hostindex>” means logging host Index which could be found in the output of “show logging hosts”.

The parameter “<hostaddress|hostname>” could be IPv4 address, or IPv6 address, or domain name.

The parameter “<port>” means the service port number of remote log host.

The parameters “severitylevel” could be specified as either an integer from 0 to 7 or symbolically through one of the following keywords: emergency (0), alert (1), critical (2), error (3), warning (4), notice (5), informational (6), debug (7).

**Format**

logging host reconfigure <hostindex> {<hostaddress|hostname> | port <port> | severitylevel <severitylevel>}

**Default**

None

**Mode**

Global Config

**Example:** Changes the address of index 1 logging host to IPv4 address 2.2.2.2.

(M4500-32C) #configure

(M4500-32C) (Config)# logging host reconfigure 1 2.2.2.2

5.6.13. logging syslog

This command enables or disables syslog logging.

**Format**

[no] logging syslog

**Default**

Disabled

**Mode**

Global Config

5.6.14. logging syslog port

This command sets the local port number of the log client for logging messages.

**Format**

[no] logging syslog port <portid>

**Default**

514

**Mode**

Global Config
5.6.15. logging syslog facility

This command sets the default facility used in syslog messages for components that do not have an internally assigned facility.

The parameter “<facility>” can be one of the following keywords: kernel, user, mail, system, security, syslog, lpr, nntp, uucp, cron, auth, ftp, ntp, audit, alert, clock, local0, local1, local2, local3, local4, local5, local6, local7, all.

Format  logging syslog facility <facility>
Default user
Mode    Global Config

5.6.16. logging syslog source-interface

This command is used to specify the physical or logical interface to use as the Syslog client source interface. If configured, the address of source interface is used for all Syslog communications between the Syslog server and the Syslog client. Otherwise there is no change in behavior. If the configured interface is down, the Syslog client falls back to normal behavior.

Format  logging syslog source-interface {<slot/port> | loopback <loopback-id> | serviceport | tunnel <tunnel-id> | vlan <vlan-id>}
         no logging syslog source-interface
Default not configure
Mode    Global Config

5.6.17. logging console

This command enables or disables to print log message to console.

Format  [no] logging console
Default  Enabled
Mode    Global Config
5.6.18. logging console severity level

This command sets the severity level of logging console. The logging console only prints the messages which of level is equal or above severity level.

The parameters “severitylevel” could be specified as either an integer from 0 to 7 or symbolically through one of the following keywords: emergency (0), alert (1), critical (2), error (3), warning (4), notice (5), informational (6), debug (7).

**Format**  
logging console [severitylevel keyword | 0 ~ 7]

**Default**  
Info

**Mode**  
Global Config

**Example:** Below two examples are some configurations, it sets severity level of logging console to warning.

(M4500-32C) #logging console 4
(M4500-32C) #logging console warning

5.6.19. logging monitor

This command is used to enable or disable global configuration of terminal monitor. When logging monitor is enabled and terminal session (e.g. Telnet or SSH session) enables configuration of “terminal monitor”, the log messages will print to terminal session.

**Format**  
[no] logging monitor

**Default**  
Disabled

**Mode**  
Global Config

5.6.20. logging monitory severity level

This command sets the severity level of logging monitor. The logging monitor only prints the messages which of level is equal or above severity level.

The parameters “severitylevel” could be specified as either an integer from 0 to 7 or symbolically through one of the following keywords: emergency (0), alert (1), critical (2), error (3), warning (4), notice (5), informational (6), debug (7).

**Format**  
logging monitor [severitylevel keyword | 0 ~ 7]

**Default**  
Info

**Mode**  
Global Config
Example: Below two examples are some configurations, it sets severity level of logging monitor to warning.

(M4500-32C) #logging monitor 4

(M4500-32C) #logging monitor warning

5.6.21. show logging cli-command-log

This command displays the logging configuration and the received cli command messages.

The log may not show in time order since QNOS only keeps the last 5000 logs in file and the new log entries overwrite the old ones when the logs number is more than 5000.

Format    show logging cli-command-log

Default   None

Mode      Privileged Exec

Example:

(M4500-32C) #show logging cli-command-log

CLI Command Logging : enabled
CLI Command Log Maximum : 5000
CLI Command Log Current Count : 8

Jun 22 18:44:26: %Switch-1-LOG: [0xf7800754] 1 % CLI:EIA-232:admin:clear cli-command-log
Jun 22 18:50:15: %Switch-1-LOG: [0xdf956804] 2 % CLI:EIA-232:admin:Disconnected due to Idle Timeout
Jun 22 18:57:18: %Switch-1-LOG: [0xf7800754] 3 % CLI:EIA-232:admin:User admin logged in
Jun 22 19:05:36: %Switch-1-LOG: [0xf7800754] 4 % CLI:EIA-232:admin:show logging cli-command-log
Jun 22 19:06:28: %Switch-1-LOG: [0xf7800754] 5 % CLI:EIA-232:admin:configure
Jun 22 19:06:34: %DUT-1-LOG: [0xf7800754] 6 % CLI:EIA-232:admin:hostname DUT
Jun 22 19:06:40: %DUT-1-LOG: [0xf7800754] 7 % CLI:EIA-232:admin:hostname DUT
Jun 22 19:06:59: %Test-1-LOG: [0xf7800754] 8 % CLI:EIA-232:admin:hostname Test
(M4500-32C) #
### 5.6.22. logging cli-command

This command is used to enable or disable system logs the cli-command history to a file in global configuration mode.

QNOS supports up to 5000 entries in cli-command history log. If the logs are more than 5000 entries, QNOS removes the oldest log and writes the new entry. All the entries have the time stamp for reference.

**Format**  
[no] logging cli-command

**Default**  
Enabled

**Mode**  
Global Config

### 5.6.23. clear cli-command-log

This command is used to reset the CLI command log file and the count of received commands.

QNOS only clears and resets the cli-command history log by this command. No matter the logging cli-command function is enabled or not, users can clear the history log file.

**Format**  
clear cli-command-log

**Default**  
None

**Mode**  
Privileged Exec
5.7. Email Alert and Mail Server Commands

Email Alert is an extension of the logging system. This feature can immediately send urgent log messages to a specified mail address by email. It also can send non-urgent log messages created in a specified interval to a specified address. If there is no buffer to keep non-urgent log messages in the specified interval, the log messages will be sent and cleared.

5.7.1. show logging email config

This command displays the configurations of email alert.

**Format**  
show logging email config

**Default**  
None

**Mode**  
Privileged Exec

**Example:**

(M4500-32C) #show logging email config

Email Alert Logging............................ enabled

Email Alert From Address...................... switch@netgear.com

Email Alert Urgent Severity Level.............. alert

Email Alert Non Urgent Severity Level......... warning

Email Alert Trap Severity Level.............. info

Email Alert Notification Period.............. 30 min

Email Alert To Address Table:

For Msg Type ................................ urgent
Address1 ....................................... test01@email.com

For Msg Type ................................. non-urgent
Address1 ............................ test02@email.com

Email Alert Subject Table:

For Msg Type urgent, subject is.............. Urgent Log Messages
For Msg Type non-urgent, subject is.......... Non Urgent Log Messages

(M4500-32C) #
5.7.2. show logging email statistics

This command displays the statistics of email alert.

**Format**  show logging email statistics

**Default**  None

**Mode**  Privileged Exec

**Example:**

```plaintext
(M4500-32C) (Config)#show logging email statistics

Email Alert operation status...................... enabled

Email Alert Statistics:

No of email Failures so far..................... 1
No of email sent so far......................... 3
Time since last email Sent...................... 00 days 00 hours 00 mins 29 secs
```

(M4500-32C) (Config)#

5.7.3. show mail-server config

This command displays information about email server configuration.

**Format**  show mail-server {<ip-address | hostname> | all} config

**Default**  None

**Mode**  Privileged Exec

**Example:**

```plaintext
(M4500-32C) #show mail-server all config

Mail Servers Configuration:
```
5.7.4. **logging email**

This command enables or disables email alerting function.

**Format**  
[no] logging email

**Default**  
Disabled

**Mode**  
Global Config

5.7.5. **logging email urgent and non-urgent**

This command sets the lowest severity level for which log messages are emailed. If you specify a severity level, log messages at or above this severity level, but below the urgent severity level, are emailed in a non-urgent manner by collecting them together until the log time expires. You can specify the severity level as either an integer from 0 to 7 or symbolically through one of the following keywords: emergency(0), alert(1), critical(2), error(3), warning(4), notice(5), info(6), or debug(7).

**Format**  
logging email {urgent | non-urgent} {<severity> | none}

**Default**  
Urgent severity level is alert(1)
Non-Urgent severity level is warning (4)

**Mode**  
Global Config

Example: Set severity level of urgent mail to critical(2), and set severity level of non-urgent mail to notice(5).

(M4500-32C) #configure

(M4500-32C) (Config)#logging email urgent 2

(M4500-32C) (Config)# logging email non-urgent 5
5.7.6. logging email logtime

This command is used to configure how frequently non-urgent email messages are sent. Non-urgent messages are collected and sent in a batch email at the specified interval.

The parameter "<interval>" uses to specify how frequently non-urgent email messages are sent. The valid interval is 30 to 1440 minutes.

Format  
logging email logtime <interval>
no logging email logtime

Default  30

Mode  Global Config

5.7.7. logging email message-type and subject

This command is used to configure the subject line of the email for the specified type.

The parameter "<subject>" sets the subject line of the email.

Format  
logging email message-type {both | urgent | non-urgent} subject <subject>
no logging email message-type {both | urgent | non-urgent} subject

Default  type urgent is “Urgent Log Messages”
type non-urgent is “Non Urgent Log Messages”

Mode  Global Config

5.7.8. logging email message-type and to-addr

This command is used to configure the destination email address to which messages are sent. The message types supported are urgent, non-urgent, and both. For each supported severity level, multiple email addresses can be configured.

The parameter "<to-addr>" specifies a standard email address to be the destination address of urgent or non-urgent message.

Format  
[no] logging email message-type {both | urgent | non-urgent} to-addr <to-addr>

Default  None

Mode  Global Config

Example: Add an email address “toAddr01@email.com” to the destination address of urgent message, and add another email address “toAddr02@email.com” to the destination address of both urgent and non-urgent message.
5.7.9. logging email from-addr

This command is used to configure the email source address (the address of the sender, i.e., switch) to which messages are sent.

The parameter "<from-addr>" specifies a standard email address to be the source address of both urgent and non-urgent message.

**Format**

```
logging email from-addr <from-address>
no logging email from-addr
```

**Default**

switch@netgear.com

**Mode**

Global Config

**Example:** Set an email address “fromAddr@email.com” to the source address of both urgent and non-urgent message.

```
(M4500-32C) #configure
(M4500-32C) (Config)# logging email from-addr fromAddr@email.com
```

5.7.10. mail-server configuration

This command configures the parameters of SMTP server which is used to send email alert messages. This command changes CLI mode from Global Config Mode to Mail Server Config mode.

**Format**

```
[no] mail-server <ipaddress|ipv6address|host-name>
```

**Default**

None

**Mode**

Global Config

**Example:** Set mail server address to hostname “smtp.gmail.com” and change to Mail Server Config mode.

```
(M4500-32C) #configure
(M4500-32C) (Config)# mail-server smtp.gmail.com
(M4500-32C) (Mail-Server)#
```
5.7.11. mail-server security

This command sets the email alerting security protocol by enabling the switch to use TLSv1/STARTTLS authentication with the SMTP Server. If the TLSv1/STARTTLS mode is enabled on the switch but the SMTP server does not support TLSv1/STARTTLS mode, no email is sent to the SMTP server.

The parameter “none” means email server doesn’t use security protocol.

The parameter “starttls” means to use STARTTLS security protocol.

The parameter “tlsv1” means to use TLSv1 security protocol.

**Format**  
security {none | starttls | tlsv1}

**Default**  
none

**Mode**  
Mail Server Config

5.7.12. mail-server port

This command configures the TCP port to use for communication with the SMTP server. The recommended port for TLSv1 is 465, STARTTLS is 587, and for no security (i.e. none) is 25. However, any nonstandard port in the range 1 to 65535 is also allowed.

**Format**  
[no] port <465 | 25 | 1 to 65535>

**Default**  
25

**Mode**  
Mail Server Config

5.7.13. mail-server username

This command configures the username (or login ID) which is used to authenticate with the SMTP server.

**Format**  
[no] username <username>

**Default**  
None

**Mode**  
Mail Server Config
5.7.14. mail-server password

This command configures the password that is used to authenticate with the SMTP server.

You can set the password using one of the following options:

- Type the `password` keyword to configure the password in plain text. The password is displayed with * for each character that you type. The password must be in alphanumeric characters with a maximum length of 64 characters.

- Type the `password 7` keyword to configure the password in encrypted form. The password must be in hexadecimal digits with a length of 128 characters.

**Format**  
[no] password [7 <password>]

**Default**  
None

**Mode**  
Mail Server Config

In the following examples, the first example sets the password of mail server to plain text “testPassword”, and the second one sets the password to an encrypted string that is fixed at 128 hexadecimal digits.

```
(M4500-32C) #configure

(M4500-32C) (Config)# mail-server smtp.gmail.com

Enter new password:************

Confirm new password: ************

(M4500-32C) (Mail-Server)#

(M4500-32C) (Mail-Server)# password 7
0fd3d381c8a524979e5ba47893eefc48b12a08619953e1b6e42cde0931198ca717cb5ff8b49795a3497e283990827c5balce32855ced76a505726dfb1ee222c4b
```

5.7.15. clear logging email statistics

This command is used to clear the statistics of logging email.

**Format**  
clear logging email statistics

**Default**  
None

**Mode**  
Privilege EXEC
5.8. Script Management Commands

5.8.1. script apply

This command applies the commands in the script to the switch.

Format  script apply <scriptname>

Default  None

Mode  Privilege EXEC

5.8.2. script delete

This command deletes a specified script or all scripts on the switch.

Format  script delete  {<scriptname> | all}

Default  None

Mode  Privilege EXEC

5.8.3. script list

This command lists all scripts on the switch as well as the remaining available space.

Format  script list

Default  None

Mode  Privilege EXEC

Example:

(M4500-32C) #script list

<table>
<thead>
<tr>
<th>Configuration Script Name</th>
<th>Size(Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.scr</td>
<td>1092</td>
</tr>
<tr>
<td>t.scr</td>
<td>1092</td>
</tr>
</tbody>
</table>
2 configuration script(s) found.
5117 Kbytes free.
(M4500-32C) #

### 5.8.4. script show

This command displays the content of a script file.

**Format**  
`script show <scriptname>`

**Default**  
None

**Mode**  
Privilege EXEC

**Example:**

(M4500-32C) #script show test.scr

1 : !Current Configuration:

2 : !

3 : !System Description "M4500-32C, Runtime Code 7.0.0.1"

4 : !System Software Version "7.0.0.1"

5 : !System Up Time "0 days 0 hrs 1 mins 45 secs"

6 : !Additional Packages BGP-4,QOS,Multicast,IPv6,Routing,Data Center


8 : !

9 : configure

10 : hostname "Switch"

11 : serviceport protocol dhcp6

12 : vlan database

13 : exit

14 : time-range

15 : kron policy-list p1

16 : cli show version | redirect tftp://172.20.0.28/kr-t6.txt
17 : exit
18 : username "admin" passwd 7
d32036926a456949a1dd05f3768212c089add94bccd752314f0c05fedf66f52c407256118c62e461710
1230004dff4ee69c4e4d4eaed9590cfd5fe318b39dac3 level 15
19 : username "admin" role "network-admin"
20 : username "guest" role "network-operator"
21 : aaa authentication login "networkList" radius
22 : radius server host auth "172.20.0.107" name "Default-RADIUS-Server"
23 : line console
24 : exec-timeout 0
25 : exit
26 : line vty
27 : exit
28 : line ssh
29 : exit
30 : interface vlan 1
31 : exit
32 : snmp-server sysname "Switch"
33 : !
34 : interface control-plane
35 : exit
36 : application install orig_restful_api
37 : router ospf
38 : exit
39 : ipv6 router ospf
40 : exit
41 : exit
(M4500-32C) #
5.8.5. **script validate**

This command validates an assigned script by parsing each line. The validate option is intended to be used as a tool for script development.

**Format**

```
script validate <scriptname>
```

**Default**

None

**Mode**

Privilege EXEC

**Example:**

```
(M4500-32C) #script validate test.scr
```

```
configure
hostname "Switch"
serviceport protocol dhcp6
vlan database
exit
time-range
kron policy-list pl
cli show version | redirect tftp://172.20.0.28/kr-t6.txt
exit
username "admin" passwd 7
d32036926a456949aldd05f3768212c089add94bccd752314f0c05fedf66f52c407256118c62e4617101230004df4ee69c4e4d4ead9590cfd5fe318b39dac3 level 15
username "admin" role "network-admin"
username "guest" role "network-operator"
aaa authentication login "networkList" radius
radius server host auth "172.20.0.107" name "Default-RADIUS-Server"
line console
exec-timeout 0
exit
line vty
```
exit
line ssh
exit
interface vlan 1
exit
snmp-server sysname "Switch"
interface control-plane
exit
application install orig_restful_api
router ospf
exit
ipv6 router ospf
exit
exit
Configuration script 'new-script.scr' validated.
(M4500-32C) #
5.9. User Account Management Commands

This section describes the commands you use to configure port-based network access control (IEEE 802.1X). Port-based network access control allows you to permit access to network services only and to permit access to devices that are authorized and authenticated.

5.9.1. show users

This command displays the configured user names and their settings.

**Format**
show users

**Default**
None

**Mode**
Privileged Exec

**Display Message**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Name</td>
<td>The name the user will use to login using the serial port, Telnet. A new user may be added to the switch by entering a name in a blank entry. The user name may be up to 64 characters, and is case sensitive. Two users are included as the factory default, admin, and guest.</td>
</tr>
<tr>
<td>User Access Mode</td>
<td>Shows whether the operator is able to change parameters on the switch (Privilege-15) or is only able to view them (Privilege-1). As a factory default, admin has Privilege-15 access and guest has Privilege-1 access. There can only be one Privilege-15 user and up to five Privilege-1 users.</td>
</tr>
</tbody>
</table>

Example: The following shows examples of the CLI display output for the commands.

(M4500-32C) (Config)#show users

User

User Name       Access Mode
-----------------------  ------------
admin                Privilege-15
guest                Privilege-1

5.9.2. show users long

This command displays full names of users.

**Format**
Show users long
Default  None

Example:

(M4500-48XF8C) # show users long

User Name
------------
admin
guest

(M4500-48XF8C) #

5.9.3.  show users accounts

The user can go to the CLI Privilege Exec to get all of user information, use the show users accounts Privilege command.

Format  show users accounts [detail]

Default  None

Mode  Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Name</td>
<td>The local user account’s user name.</td>
</tr>
<tr>
<td>Privilege</td>
<td>The user’s privilege level. The range of privilege level is 1 and 15. Access mode for privilege level 15 is read/write, the others is read-only.</td>
</tr>
<tr>
<td>Password Aging</td>
<td>Indicates number of days, since the password was configured, until the password expires.</td>
</tr>
<tr>
<td>Password Expiration Date</td>
<td>The current password expiration date in date format.</td>
</tr>
<tr>
<td>Lockout</td>
<td>Indicates whether the user account is locked out (true or false).</td>
</tr>
</tbody>
</table>
Example: The following shows examples of the CLI display output for the commands.

(M4500-32C) (Config)#show users accounts

<table>
<thead>
<tr>
<th>UserName</th>
<th>Privilege</th>
<th>Password Aging</th>
<th>Password Expiry</th>
<th>Lockout</th>
</tr>
</thead>
<tbody>
<tr>
<td>admin</td>
<td>15</td>
<td></td>
<td></td>
<td>False</td>
</tr>
<tr>
<td>guest</td>
<td>1</td>
<td></td>
<td></td>
<td>False</td>
</tr>
</tbody>
</table>

(M4500-32C) (Config)#show users accounts detail

<table>
<thead>
<tr>
<th>UserName</th>
<th>Privilege</th>
<th>Password Aging</th>
<th>Password Expiry</th>
<th>Lockout</th>
<th>Password Force Change</th>
<th>Override Complexity Check</th>
<th>Password Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>admin</td>
<td>15</td>
<td></td>
<td></td>
<td>False</td>
<td>False</td>
<td>Disable</td>
<td></td>
</tr>
<tr>
<td>guest</td>
<td>1</td>
<td></td>
<td></td>
<td>False</td>
<td>False</td>
<td>Disable</td>
<td></td>
</tr>
</tbody>
</table>

NETGEAR M4500 Series Switches CLI Command Reference Manual 370
5.9.4. show passwords configuration

Use this command to display the configured password management settings.

Format: show passwords configuration

Default: None

Mode: Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Password Length</td>
<td>Minimum number of characters required when changing passwords.</td>
</tr>
<tr>
<td>Password Aging</td>
<td>Length in days that a password is valid.</td>
</tr>
<tr>
<td>Password History</td>
<td>Number of passwords to store for reuse prevention.</td>
</tr>
<tr>
<td>Lockout Attempts</td>
<td>Number of failed password login attempts before lockout.</td>
</tr>
<tr>
<td>Password Strength Check</td>
<td>The user to configure passwords that comply with the strong password configuration.</td>
</tr>
<tr>
<td>Minimum Password Uppercase Letters</td>
<td>Minimum number of uppercase characters required when changing passwords.</td>
</tr>
<tr>
<td>Minimum Password Lowercase Letters</td>
<td>Minimum number of lowercase characters required when changing passwords.</td>
</tr>
<tr>
<td>Minimum Password Numeric Characters</td>
<td>Minimum number of numeric characters required when changing passwords.</td>
</tr>
<tr>
<td>Minimum Password Special Characters</td>
<td>Minimum number of special characters required when changing passwords.</td>
</tr>
<tr>
<td>Maximum Password Repeated Characters</td>
<td>Maximum number of characters cannot be repeated when changing passwords.</td>
</tr>
<tr>
<td>Maximum Password Consecutive Characters</td>
<td>Maximum number of characters cannot be consecutive when changing passwords.</td>
</tr>
<tr>
<td>Minimum Password Character Classes</td>
<td>Valid range for user passwords.</td>
</tr>
<tr>
<td>Password Exclude Keywords</td>
<td>The password to be configured should not contain the keyword mentioned in this field.</td>
</tr>
</tbody>
</table>

Example: The following shows examples of the CLI display output for the commands.

(M4500-32C) (Config)#show passwords configuration
Passwords Configuration
---------------------------------
Minimum Password Length......................... 8
Password Aging (days)............................ 0
Password History.................................. 0
Lockout Attempts.................................. 0
Password Strength Check......................... Enable
Minimum Password Uppercase Letters.............. 0
Minimum Password Lowercase Letters............... 0
Minimum Password Numeric Characters............. 1
Minimum Password Special Characters............. 1
Maximum Password Repeated Characters............ 0
Maximum Password Consecutive Characters........ 0
Minimum Password Character Classes.............. 3
Password Exclude Keywords....................... <none>

5.9.5. show passwords result

Use this command to display the last password set result information.

Format

show passwords result

Default

None

Mode

Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last User Whose Password Is Set</td>
<td>The local user account’s user name.</td>
</tr>
<tr>
<td>Password Strength Check</td>
<td>The user’s privilege level. The range of privilege level is 1 and 15. Access mode for privilege level 15 is read/write, the others is read-only.</td>
</tr>
<tr>
<td>Last Password Set Result</td>
<td>Indicates number of days, since the password was configured, until the password expires.</td>
</tr>
</tbody>
</table>
Example: The following shows examples of the CLI display output for the commands.

(M4500-32C) (Config)#show passwords result

Last User whose password is set .................... guest
Password strength check .......................... Disable
Last Password Set Result:
=======================================
Password Successfully Configured for User 'guest'.

5.9.6. username

This command adds a new user (account) if space permits. The default privilege level is 1. The account <username> can be up to 64 characters in length. The name may be comprised of alphanumeric characters as well as the dash ('-') and underscore ('_'). The <username> is case-sensitive. Six user names can be defined.

This command changes the password of an existing operator. The user password should not be more than 64 characters in length. If a user is authorized for authentication or encryption is enabled, the password must be 64 alphanumeric characters in length. The username and password are case-sensitive. When a password is changed, a prompt asks for the operator’s former password. If none, press enter.

Note: The admin user account cannot be deleted. The special characters allowed in the password include # $ % & ‘(’) * + , - / < > @ [ \ ] ^ _ ` { | } ~

Format    username <username> { level <level> | passwd [7 <password>]}
5.9.7. no username

This command removes a user name created before.

**Format**  
no username <username>

**Mode**  
Global Config

5.9.8. username <username> unlock

The user can go to the CLI Global Configuration Mode to unlock a locked user account, use the `username <name> unlock` global configuration command.

**Format**  
username <username> unlock

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;username&gt;</td>
<td>A username.</td>
</tr>
</tbody>
</table>

**Default**  
None

**Mode**  
Global Config

5.9.9. passwords aging

If the passwords aging is set, the local user will be prompted to change it before logging in again when the local user’s password expires.

**Format**  
passwords aging <1-365>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;1-365&gt;</td>
<td>Number of days until password expires.</td>
</tr>
</tbody>
</table>

**Default**  
0, no aging

**Mode**  
Global Config

5.9.10. no passwords aging

Use the `no passwords aging` return to default value 0.

**Format**  
no passwords aging
5.9.11. passwords history

Use this command to set the number of previous passwords that shall be stored for each user account. If password history is set, the local user will not be able to reuse any password stored in password history when the local user changes his or her password.

Format  passwords aging history <0-10>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;0-10&gt;</td>
<td>Number of passwords to be used in password history check.</td>
</tr>
</tbody>
</table>

Default  0, no aging

Mode  Global Config

5.9.12. no passwords history

Use the no passwords history return to default value 0.

Format  no passwords history

Mode  Global Config

5.9.13. passwords lock-out

Use this command to strengthen the security of the switch by locking user accounts that have failed login due to wrong passwords. When a lockout count is configured, a user that is logged in must enter the correct password within that count. Otherwise the user will be locked out from further switch access. Only a user with read/write access can re-activate a locked user account. The user can go to the CLI Global Configuration Mode to set the password lock-out count.

Format  passwords lock-out <1-5>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;1-5&gt;</td>
<td>The number of password failures before account lock.</td>
</tr>
</tbody>
</table>

Default  0

Mode  Global Config
Note: If the admin user fails to connect to the switch using SSH port 1234 or telnet port 1223, the admin user is locked out. However, the admin user can still log in to the switch using a console connection or using SSH port 22 (Linux system login).

5.9.14. no passwords lock-out

Use the `no passwords lock-out` to return to default value 0.

**Format**  
no passwords lock-out

**Mode**  
Global Config

5.9.15. passwords min-length

The user can go to the CLI Global Configuration Mode to set the minimum password length.

**Format**  
passwords min-length <8-64>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;8-64&gt;</td>
<td>The length of password.</td>
</tr>
</tbody>
</table>

**Default**  
8

**Mode**  
Global Config

5.9.16. no passwords min-length

Use the `no passwords min-length` return to default value 0.

**Format**  
no passwords min-length

**Mode**  
Global Config

5.9.17. passwords strength-check

The user can go to the CLI Global Configuration Mode to set the password strength policy enforcement, use the `passwords strength-check` Global configuration command.
Format passwords strength-check
Default Disable
Mode Global Config

5.9.18. no passwords strength-check

Use the no passwords strength-check return to default disable.

Format no passwords strength-check
Mode Global Config

5.9.19. passwords strength maximum

The user can go to the CLI Global Configuration Mode to set the password strength.

Format passwords strength maximum {consecutive-characters | repeated-characters} [<0-15>]
Default 0
Mode Global Config

5.9.20. no passwords strength maximum

Use the no passwords strength maximum {consecutive-characters | repeated-characters} return to default value 0.

Format no passwords strength maximum {consecutive-characters | repeated-characters}
Mode Global Config

5.9.21. passwords strength minimum

The user can go to the CLI Global Configuration Mode to set the password strength.

Format passwords strength minimum {character-classes <0-4> | lowercase-letters <0-16> | numeric-characters <0-16> | special-characters <0-16> | uppercase-letters <0-16>}
Default uppercase-letters 2
lowercase-letters 2
5.9.22. no passwords strength minimum

Use the no passwords strength minimum {character-classes | lowercase-letters | numeric-characters | special-characters | uppercase-letters} return to default value 2.

Format: no passwords strength minimum {character-classes | lowercase-letters | numeric-characters | special-characters | uppercase-letters}

Mode: Global Config

5.9.23. passwords strength exclude-keyword

The user can go to the CLI Global Configuration Mode to set the password strength, use the passwords strength exclude-keyword <keyword> Global configuration command.

Format: passwords strength exclude-keyword <keyword>

Default: None

Mode: Global Config

5.9.24. no passwords strength exclude-keyword

Use the no passwords strength exclude-keyword <keyword> return to default none.

Format: no passwords strength exclude-keyword <keyword>

Mode: Global Config

5.9.25. show users login-history

This command displays the history of user login.

Format: show users login-history
Default: None

Example:

(M4500-48XF8C) #show users login-history

<table>
<thead>
<tr>
<th>Login Time</th>
<th>Username</th>
<th>Protocol</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 06 2020 03:33:21</td>
<td>admin</td>
<td>Serial</td>
<td></td>
</tr>
<tr>
<td>May 06 2020 03:24:42</td>
<td>admin</td>
<td>Serial</td>
<td></td>
</tr>
<tr>
<td>May 06 2020 02:46:16</td>
<td>admin</td>
<td>Serial</td>
<td></td>
</tr>
<tr>
<td>May 06 2020 02:35:13</td>
<td>admin</td>
<td>Serial</td>
<td></td>
</tr>
<tr>
<td>May 06 2020 02:14:59</td>
<td>admin</td>
<td>Serial</td>
<td></td>
</tr>
<tr>
<td>May 06 2020 02:04:07</td>
<td>admin</td>
<td>Serial</td>
<td></td>
</tr>
<tr>
<td>May 06 2020 01:56:32</td>
<td>admin</td>
<td>Serial</td>
<td></td>
</tr>
<tr>
<td>May 06 2020 01:08:01</td>
<td>admin</td>
<td>Serial</td>
<td></td>
</tr>
<tr>
<td>May 06 2020 00:46:43</td>
<td>admin</td>
<td>Serial</td>
<td></td>
</tr>
<tr>
<td>May 06 2020 00:34:54</td>
<td>admin</td>
<td>Serial</td>
<td></td>
</tr>
<tr>
<td>May 06 2020 00:10:26</td>
<td>admin</td>
<td>Serial</td>
<td></td>
</tr>
<tr>
<td>May 05 2020 07:23:01</td>
<td>admin</td>
<td>Serial</td>
<td></td>
</tr>
<tr>
<td>May 05 2020 07:04:51</td>
<td>admin</td>
<td>Serial</td>
<td></td>
</tr>
<tr>
<td>May 05 2020 06:21:46</td>
<td>admin</td>
<td>Serial</td>
<td></td>
</tr>
<tr>
<td>May 05 2020 06:21:32</td>
<td>admin</td>
<td>Serial</td>
<td></td>
</tr>
</tbody>
</table>

(M4500-48XF8C) #

5.9.26. user password override-complexity-check

This command is used to enable override-complexity-check of password.

Format: username <username> level<level> override-complexity-check password

Default: Disabled

Mode: Global Config
5.9.27. user role

This command is used to assign an RBAC role to a user.

**Format**  
username <username> role <name>

**Default**  
None

**Mode**  
Global Config
5.10. Port-based Network Access Control Commands

This section describes the commands you use to configure port-based network access control (IEEE 802.1X). Port-based network access control allows you to permit access to network services only to and devices that are authorized and authenticated.

5.10.1. show authentication methods

This command displays the ordered authentication methods for all authentication login lists.

Format  show authentication methods

Mode    Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication Login List</td>
<td>The authentication login listname.</td>
</tr>
<tr>
<td>Method 1</td>
<td>The first method in the specified authentication login list, if any.</td>
</tr>
<tr>
<td>Method 2</td>
<td>The second method in the specified authentication login list, if any.</td>
</tr>
<tr>
<td>Method 3</td>
<td>The third method in the specified authentication login list, if any.</td>
</tr>
</tbody>
</table>

Example: The following example displays the authentication configuration.

(M4500-32C) #show authentication methods

Login Authentication Method Lists

---------------------------------------------
defaultList : local
networkList  : local

Enable Authentication Method Lists

-------------------------------
enableList : enable none
enableNetList : enable deny
Line          Login Method List      Enable Method List
-------------                          -----------------------
Console       defaultList             enableList
Telnet        networkList             enableList
SSH           networkList             enableList

5.10.2. show dot1x

This command is used to show a summary of the global dot1x configuration, summary information of the dot1x configuration for a specified port or all ports, the detailed dot1x configuration for a specified port and the dot1x statistics for a specified port - depending on the tokens used.

Format   show dot1x [summary [<slot/port>] | detail <slot/port> | statistics <slot/port>]
Mode     Privileged EXEC

Display Message

If you do not use the optional parameters slot/port or vlanid, the command displays the global dot1x mode, the VLAN Assignment mode, and the Dynamic VLAN Creation mode.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative Mode</td>
<td>Indicates whether authentication control on the switch is enabled or disabled.</td>
</tr>
<tr>
<td>VLAN Assignment Mode</td>
<td>Indicates whether assignment of an authorized port to a RADIUS-assigned VLAN is allowed (enabled) or not (disabled).</td>
</tr>
<tr>
<td>Dynamic VLAN Creation Mode</td>
<td>Indicates whether the switch can dynamically create a RADIUS-assigned VLAN if it does not currently exist on the switch.</td>
</tr>
<tr>
<td>Monitor Mode</td>
<td>Indicates whether the Dot1x Monitor mode on the switch is enabled or disabled.</td>
</tr>
<tr>
<td>EAPOL Flood Mode</td>
<td>Indicates whether the Dot1x EAPOL Flood mode on the switch is enabled or disabled.</td>
</tr>
</tbody>
</table>

If you use the optional parameter summary [<slot/port>], the dot1x configurations for the specified port or all ports are displayed.
Example: The following shows example CLI display output for the command show dot1x summary 0/1.

(M4500-32C) #show dot1x summary 0/1

<table>
<thead>
<tr>
<th>Interface</th>
<th>Control Mode</th>
<th>Operating Control Mode</th>
<th>Reauthentication Enabled</th>
<th>Port Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1</td>
<td>auto</td>
<td>N/A</td>
<td>False</td>
<td>N/A</td>
</tr>
</tbody>
</table>

If you use the optional parameter 'detail <slot/port>', the detailed dot1x configuration for the specified port is displayed.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The interface whose configuration is displayed.</td>
</tr>
<tr>
<td>Protocol Version</td>
<td>The protocol version associated with this port. The only possible value is 1, corresponding to the first version of the dot1x specification.</td>
</tr>
<tr>
<td>PAE Capabilities</td>
<td>The port access entity (PAE) functionality of this port.</td>
</tr>
<tr>
<td>Control Mode</td>
<td>The configured control mode for this port. Possible values are force-unauthorized</td>
</tr>
<tr>
<td>Authenticator PAE State</td>
<td>Current state of the authenticator PAE state machine. Possible values are Initialize, Disconnected, Connecting, Authenticating, Authenticated, Aborting, Held, ForceAuthorized, and ForceUnauthorized. When MAC-based authentication is enabled on the port, this parameter is deprecated.</td>
</tr>
<tr>
<td>Backend Authentication State</td>
<td>Current state of the backend authentication state machine. Possible values are Request, Response, Success, Fail, Timeout, Idle, and Initialize. When MAC-based authentication is enabled on the port, this parameter is deprecated.</td>
</tr>
</tbody>
</table>
authentication is enabled on the port, this parameter is deprecated.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiet Period</td>
<td>The timer used by the authenticator state machine on this port to define periods of time in which it will not attempt to acquire a supplicant. The value is expressed in seconds and will be in the range 0 and 65535.</td>
</tr>
<tr>
<td>Transmit Period</td>
<td>The timer used by the authenticator state machine on the specified port to determine when to send an EAPOL EAP Request/Identity frame to the supplicant. The value is expressed in seconds and will be in the range of 1 and 65535.</td>
</tr>
<tr>
<td>Guest-VLAN ID</td>
<td>The guest VLAN identifier configured on the interface.</td>
</tr>
<tr>
<td>Guest VLAN Period</td>
<td>The time in seconds for which the authenticator waits before authorizing and placing the port in the Guest VLAN, if no EAPOL packets are detected on that port.</td>
</tr>
<tr>
<td>Supplicant Timeout</td>
<td>The timer used by the authenticator state machine on this port to timeout the supplicant. The value is expressed in seconds and will be in the range of 1 and 65535.</td>
</tr>
<tr>
<td>Server Timeout</td>
<td>The timer used by the authenticator on this port to timeout the authentication server. The value is expressed in seconds and will be in the range of 1 and 65535.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Definition</td>
</tr>
<tr>
<td>Maximum Requests</td>
<td>The maximum number of times the authenticator state machine on this port will retransmit an EAPOL EAP Request/Identity before timing out the supplicant. The value will be in the range of 1 and 10.</td>
</tr>
<tr>
<td>Configured MAB mode</td>
<td>The dot1x MAC Authentication Bypass configuration status.</td>
</tr>
<tr>
<td>Operational MAB mode</td>
<td>The dot1x MAC Authentication Bypass operational status.</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>The VLAN assigned to the port by the radius server. This is only valid when the port control mode is not Mac-based.</td>
</tr>
<tr>
<td>VLAN Assigned Reason</td>
<td>The reason the VLAN identified in the VLAN-assigned field has been assigned to the port. Possible values are RADIUS, Unauthenticated VLAN, Guest VLAN, default, and Not Assigned. When the VLAN Assigned Reason is Not Assigned, it means that the port has not been assigned to any VLAN by dot1x. This only valid when the port control mode is not MAC-based.</td>
</tr>
<tr>
<td>Reauthentication Period</td>
<td>The timer used by the authenticator state machine on this port to determine when reauthentication of the supplicant takes place. The value is expressed in seconds and will be in the range of 1 and 65535.</td>
</tr>
<tr>
<td>Reauthentication Enabled</td>
<td>Indicates if reauthentication is enabled on this port. Possible values are “True” or “False”.</td>
</tr>
<tr>
<td>Key Transmission Enabled</td>
<td>Indicates if the key is transmitted to the supplicant for the specified port.</td>
</tr>
</tbody>
</table>
Possible values are True or False.

<table>
<thead>
<tr>
<th>Control Direction</th>
<th>The control direction for the specified port or ports. Possible values are both or in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Users</td>
<td>The maximum number of clients that can get authenticated on the port in the MAC-based dot1x authentication mode. This value is used only when the port control mode is not MAC-based.</td>
</tr>
<tr>
<td>Unauthenticated VLAN ID</td>
<td>Indicates the unauthenticated VLAN configured for this port. This value is valid for the port only when the port control mode is not MAC-based.</td>
</tr>
<tr>
<td>Session Timeout</td>
<td>Indicates the time for which the given session is valid. The time period in seconds is returned by the RADIUS server on authentication of the port. This value is valid for the port only when the port control mode is not MAC-based.</td>
</tr>
<tr>
<td>Session Termination Action</td>
<td>This value indicates the action to be taken once the session timeout expires. Possible values are Default, Radius-Request. If the value is Default, the session is terminated the port goes into unauthorized state. If the value is Radius-Request, then a reauthentication of the client authenticated on the port is performed. This value is valid for the port only when the port control mode is not MAC-based.</td>
</tr>
</tbody>
</table>

Example: The following shows example CLI display output for the command.

```
(M4500-32C) #show dot1x detail 0/1
Port... 0/1
Protocol Version............................... 1
PAE Capabilities................................. Authenticator
Control Mode.. auto
Authenticator PAE State.......................... Initialize
Backend authentication state................... Initialize
Quiet Period (secs)............................... 60
Transmit Period (secs)........................... 30
Guest VLAN ID...................................... 0
Guest VLAN Period (secs)......................... 90
Supplicant Timeout (secs)......................... 30
Server Timeout (secs)............................. 30
Maximum Requests............................... 2
Configured MAB Mode............................. Disabled
```
Operational MAB Mode........................ Disabled
VLAN Id................................................ 0
VLAN Assigned Reason............................ Not Assigned
Reauthentication Period (secs).................... 3600
Reauthentication Enabled.......................... False
Key Transmission Enabled.......................... False
Control Direction...................................... both
Maximum Users........................................ 48
Unauthenticated VLAN ID.......................... 0
Session Timeout........................................ 0
Session Termination Action....................... Default

For each client authenticated on the port, the `show dot1x detail <slot/port>` command will display the following MAC-based dot1x parameters if the port-control mode for that specific port is MAC-based.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplicant MAC-Address</td>
<td>The MAC-address of the supplicant.</td>
</tr>
<tr>
<td>Authenticator PAE State</td>
<td>Current state of the authenticator PAE state machine. Possible values are Initialize, Disconnected, Connecting, Authenticating, Authenticated, Aborting, Held, ForceAuthorized, and ForceUnauthorized.</td>
</tr>
<tr>
<td>Backend Authentication State</td>
<td>Current state of the backend authentication state machine. Possible values are Request, Response, Success, Fail, Timeout, Idle, and Initialize.</td>
</tr>
<tr>
<td>VLAN-Assigned</td>
<td>The VLAN assigned to the client by the radius server.</td>
</tr>
<tr>
<td>Logical Port</td>
<td>The logical port number associated with the client.</td>
</tr>
</tbody>
</table>

If you use the optional parameter statistics <slot/port>, the following dot1x statistics for the specified port appear.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The interface whose statistics are displayed.</td>
</tr>
<tr>
<td>PAE Capabilities</td>
<td>The port access entity (PAE) functionality of this port.</td>
</tr>
<tr>
<td>EAPOL Frames Received</td>
<td>The number of valid EAPOL frames of any type that have been received by this authenticator.</td>
</tr>
</tbody>
</table>
5.10.3. show dot1x authentication-history

This command is used to display the Dot1x Authentication History Log for the specified port or all ports. Use the optional keywords to display only failure authentication events in summary or in detail.

Format  
show dot1x authentication-history {<slot/port> | all} [{failed-auth-only [detail] | detail}]

Mode    Privileged EXEC

Display Message

If you use the optional parameter detail, the following information for the specified port or all ports appears.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Stamp</td>
<td>The exact time at which the event occurs.</td>
</tr>
<tr>
<td>Interface</td>
<td>Physical Port on which the event occurs.</td>
</tr>
</tbody>
</table>
If you do not use the optional parameter, the following information for the specified port or all ports appears.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Stamp</td>
<td>The exact time at which the event occurs.</td>
</tr>
<tr>
<td>Interface</td>
<td>Physical Port on which the event occurs.</td>
</tr>
<tr>
<td>MAC-Address</td>
<td>The supplicant/client MAC address.</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>The VLAN assigned to the client/port on authentication.</td>
</tr>
<tr>
<td>Auth Status</td>
<td>The authentication status.</td>
</tr>
</tbody>
</table>

**5.10.4. show dot1x clients**

This command is used to display the Dot1x client information. This command also displays information about the number of clients that are authenticated using Monitor mode and using Dot1x.

**Format**  
show dot1x clients [<slot/port>]

**Mode**  
Privileged EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clients Authenticated using Monitor Mode</td>
<td>Indicates the number of the Dot1x clients authenticated using Monitor mode.</td>
</tr>
<tr>
<td>Clients Authenticated using Dot1x</td>
<td>Indicates the number of Dot1x clients authenticated using 802.1x authentication process.</td>
</tr>
<tr>
<td>Logical Interface</td>
<td>The logical port number associated with a client.</td>
</tr>
</tbody>
</table>
5.10.5. show dot1x users

This command is used to display the Dot1x port security user information for logically configured users.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The physical port to which the supplicant is associated.</td>
</tr>
<tr>
<td>User Name</td>
<td>The user name used by the client to authenticate to the server.</td>
</tr>
<tr>
<td>Supp MAC Address</td>
<td>The supplicant device MAC address.</td>
</tr>
<tr>
<td>Session Time</td>
<td>The time since the supplicant is logged on.</td>
</tr>
<tr>
<td>Filter Id</td>
<td>Identifies the Filter ID returned by RADIUS server when the client was authenticated. This is a configured DiffServ policy name on switch.</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>The VLAN assigned to the port.</td>
</tr>
<tr>
<td>VLAN Assigned</td>
<td>The reason the VLAN identified in the VLAN ID field has been assigned to the port. Possible values are RADIUS, Unauthenticated VLAN, Monitor Mode, or Default. When the VLAN Assigned reason is Default, it means that the VLAN was assigned to the port because the P-VID of the port was that VLAN ID.</td>
</tr>
<tr>
<td>Session Timeout</td>
<td>This value indicates the time for which the given session is valid. The time period in seconds is returned by the RADIUS server on authentication of the port. This value is valid for the port only when the port-control mode is not MAC-based.</td>
</tr>
<tr>
<td>Session Termination Action</td>
<td>This value indicates the action to be taken once the session timeout expires. Possible values are Default and Radius-Request. If the value is Default, the session is terminated and client details are cleared. If the value is Radius-Request, then a reauthentication of the client is performed.</td>
</tr>
<tr>
<td>Users</td>
<td>Users configured locally to have access to the specified port.</td>
</tr>
</tbody>
</table>

5.10.6. aaa authentication dot1x default

Use this command to configure the authentication method for port-based access to the switch. The additional methods of authentication are used only if the previous method returns an error, not if there is an authentication failure. The possible methods are as follows:

- local. Uses the local username database for authentication.
● none. Uses no authentication.
● radius. Uses the list of all RADIUS servers for authentication.

**Format**  aaa authentication dot1x default {local | none | radius}
**Mode**  Global Config

### 5.10.7. no aaa authentication dot1x default

This command resets the authentication method for port-based access to the switch.

**Format**  no aaa authentication dot1x default
**Mode**  Global Config

### 5.10.8. clear dot1x statistics

This command resets the 802.1X statistics for the specified port or for all ports.

**Format**  clear dot1x statistics {<slot/port> | all}
**Mode**  Privileged EXEC

### 5.10.9. clear dot1x authentication-history

This command clears the authentication history table captured during successful and unsuccessful authentication on all interface or the specified interface.

**Format**  clear dot1x authentication-history [slot/port]
**Mode**  Privileged EXEC

### 5.10.10. clear RADIUS statistics

This command is used to clear all RADIUS statistics.

**Format**  clear radius statistics
**Mode**  Privileged EXEC
5.10.11. **dot1x eapolflood**

Use this command to enable EAPOL flood support on the switch.

**Format**  
dot1x eapolflood

**Default** Disable

**Mode** Global Config

5.10.12. **no dot1x eapolflood**

This command disables EAPOL flooding on the switch.

**Format**  
no dot1x eapolflood

**Mode** Global Config

5.10.13. **dot1x dynamic-vlan enable**

Use this command to enable the switch to create VLANs dynamically when a RADIUS-assigned VLAN does not exist in the switch.

**Format**  
dot1x dynamic-vlan enable

**Default** Disable

**Mode** Global Config

5.10.14. **no dot1x dynamic-vlan enable**

Use this command to prevent the switch from creating VLANs dynamically when a RADIUS-assigned VLAN does not exist in the switch.

**Format**  
no dot1x dynamic-vlan enable

**Mode** Global Config
5.10.15. **dot1x guest-vlan**

This command configures VLAN as guest vlan on an interface. The command specifies an active VLAN as an IEEE 802.1X guest VLAN. The range is 1 to the maximum VLAN ID supported by the platform.

**Format**

```
dot1x guest-vlan <vlan-id>
```

**Default**

Disable

**Mode**

Interface Config

5.10.16. **no dot1x guest-vlan**

This command disables Guest VLAN on the interface.

**Format**

```
no dot1x guest-vlan
```

**Mode**

Interface Config

5.10.17. **dot1x initialize**

This command begins the initialization sequence on the specified port. This command is only valid if the control mode for the specified port is auto or mac-based. If the control mode is not auto or mac-based, an error will be returned.

**Format**

```
dot1x initialize <slot/port>
```

**Mode**

Privileged EXEC

5.10.18. **dot1x mac-auth-bypass**

This command enables dot1x MAC authentication bypass on an interface.

**Format**

```
dot1x mac-auth-bypass
```

**Default**

Disable

**Mode**

Interface Config
5.10.19. **no dot1x mac-auth-bypass**

This command disables dot1x MAC authentication bypass on an interface.

**Format**  
no dot1x mac-auth-bypass

**Default**  
Disable

**Mode**  
Interface Config

5.10.20. **dot1x max-req**

This command sets the maximum number of times the authenticator state machine on an interface will transmit an EAPOL EAP Request/Identity frame before timing out the supplicant.

**Format**  
dot1x max-req <1-10>

**Default**  
2

**Mode**  
Interface Config

5.10.21. **no dot1x max-req**

This command sets the maximum number of times the authenticator state machine on this port will transmit an EAPOL EAP Request/Identity frame before timing out the supplicant.

**Format**  
no dot1x max-req

**Mode**  
Interface Config

5.10.22. **dot1x max-users**

Use this command to set the maximum number of clients supported on an interface when MAC-based dot1x authentication is enabled on the port. The count value is in the range 1-48.

**Format**  
dot1x max-users <1-48>

**Default**  
48

**Mode**  
Interface Config
5.10.23.   **no dot1x max-users**

This command resets the maximum number of clients allowed per port to its default value.

**Format**   no dot1x max-users

**Mode**   Interface Config

5.10.24.   **dot1x port-control**

This command sets the authentication mode to use on the specified interface. Use the force-unauthorized parameter to specify that the authenticator PAE unconditionally sets the controlled port to unauthorized. Use the force-authorized parameter to specify that the authenticator PAE unconditionally sets the controlled port to authorized. Use the auto parameter to specify that the authenticator PAE sets the controlled port mode to reflect the outcome of the authentication exchanges between the supplicant, authenticator and the authentication server. If the mac-based option is specified, then MAC-based dot1x authentication is enabled on the port.

**Format**   dot1x port-control \{force-unauthorized | force-authorized | auto | mac-based\}

**Default**   Auto

**Mode**   Interface Config

5.10.25.   **no dot1x port-control**

This command sets the 802.1X port control mode on the specified port to the default value.

**Format**   no dot1x port-control

**Mode**   Interface Config

5.10.26.   **dot1x port-control all**

This command sets the authentication mode to use on all ports. Select force-unauthorized to specify that the authenticator PAE unconditionally sets the controlled port to unauthorized. Select force-authorized to specify that the authenticator PAE unconditionally sets the controlled port to authorized. Select auto to specify that the authenticator PAE sets the controlled port mode to reflect the outcome of the authentication exchanges between the supplicant, authenticator and the authentication server. If the mac-based option is specified, then MAC-based dot1x authentication is enabled on the port.

**Format**   dot1x port-control all \{force-unauthorized | force-authorized | auto | mac-based\}
5.10.27.  no dot1x port-control all

This command sets the authentication mode on all ports to the default value.

**Format**  no dot1x port-control all

**Mode**  Global Config

5.10.28.  dot1x re-authenticate

This command begins the re-authentication sequence on the specified port. This command is only valid if the control mode for the specified port is auto or mac-based. If the control mode is not auto or mac-based, an error will be returned.

**Format**  dot1x re-authenticate <slot/port>

**Mode**  Privileged EXEC

5.10.29.  dot1x re-authentication

This command enables re-authentication of the supplicant for the specified interface.

**Format**  dot1x re-authentication

**Default**  Disable

**Mode**  Interface Config

5.10.30.  no dot1x re-authentication

This command disables re-authentication of the supplicant for the specified port.

**Format**  no dot1x re-authentication

**Mode**  Interface Config
**5.10.31. dot1x system-auth-control**

Use this command to enable the dot1x authentication support on the switch. While disabled, the dot1x configuration is retained and can be changed, but is not activated.

**Format**

dot1x system-auth-control

**Default**

Disable

**Mode**

Global Config

**5.10.32. no dot1x system-auth-control**

This command is used to disable the dot1x authentication support on the switch.

**Format**

no dot1x system-auth-control

**Mode**

Global Config

**5.10.33. dot1x timeout**

This command sets the value, in seconds, of the timer used by the authenticator state machine on an interface. Depending on the token used and the value (in seconds) passed, various timeout configurable parameters are set. The following tokens are supported:

**Format**

dot1x timeout {guest-vlan-period <seconds> | reauth-period <seconds> | quiet-period <seconds> | tx-period <seconds> | supp-timeout <seconds> | server-timeout <seconds>}

<table>
<thead>
<tr>
<th>Tokens</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>guest-vlan-period</td>
<td>The time, in seconds, for which the authenticator waits to see if any EAPOL packets are received on a port before authorizing the port and placing the port in the guest vlan (if configured). The guest vlan timer is only relevant when guest vlan has been configured on that specific port. The reauth-period must be a value in the range 1 - 300.</td>
</tr>
<tr>
<td>reauth-period</td>
<td>The value, in seconds, of the timer used by the authenticator state machine on this port to determine when reauthentication of the supplicant takes place. The reauth-period must be a value in the range 1 - 65535.</td>
</tr>
<tr>
<td>quiet-period</td>
<td>The value, in seconds, of the timer used by the authenticator state machine on this port to define periods of time in which it will not attempt to acquire a supplicant. The quiet-period must be a value in the range 0 - 65535.</td>
</tr>
</tbody>
</table>
**tx-period**

The value, in seconds, of the timer used by the authenticator state machine on this port to determine when to send an EAPOL EAP Request/Identity frame to the supplicant. The quiet-period must be a value in the range 1 - 65535.

**supp-timeout**

The value, in seconds, of the timer used by the authenticator state machine on this port to timeout the supplicant. The supp-timeout must be a value in the range 1 - 65535.

**server-timeout**

The value, in seconds, of the timer used by the authenticator state machine on this port to timeout the authentication server. The supp-timeout must be a value in the range 1 - 65535.

**Default**

- guest-vlan-period: 90 seconds
- reauth-period: 3600 seconds
- quiet-period: 60 seconds
- tx-period: 30 seconds
- supp-timeout: 30 seconds
- server-timeout: 30 seconds

**Mode**

Interface Config

---

**5.10.34. **no dot1x timeout

This command sets the value, in seconds, of the timer used by the authenticator state machine on this port to the default values. Depending on the token used, the corresponding default values are set.

**Format**

no dot1x timeout {guest-vlan-period | reauth-period | quiet-period | tx-period | supp-timeout | server-timeout}

**Mode**

Interface Config

---

**5.10.35. **dot1x unauthenticated-vlan

Use this command to configure the unauthenticated VLAN associated with the specified interface. The unauthenticated VLAN ID can be a valid VLAN ID from 0-Maximum supported VLAN ID (4093). The unauthenticated VLAN must be statically configured in the VLAN database to be operational. By default, the unauthenticated VLAN is 0, i.e. invalid and not operational.

**Format**

dot1x unauthenticated-vlan <vlan-id>

**Default**

0

**Mode**

Interface Config
5.10.36. **no dot1x unauthenticated-vlan**

This command resets the unauthenticated-vlan associated with the port to its default value.

**Format**  
no dot1x unauthenticated-vlan

**Mode**  
Interface Config

5.10.37. **dot1x user**

This command adds the specified user to the list of users with access to the specified port or all ports. The user parameter must be a configured user.

**Format**  
dot1x user <user> {<slot/port> | all}

**Mode**  
Global Config

5.10.38. **no dot1x user**

This command removes the user from the list of users with access to the specified port or all ports.

**Format**  
no dot1x user <user> {<slot/port> | all}

**Mode**  
Global Config
5.11. AAA Commands

This section describes the commands you use to add, manage, and delete system users. Software has two
default users: admin and guest. The admin user can view and configure system settings, and the guest user can
view settings.

**Note:** You cannot delete the admin user. There is only one user allowed with read/write privileges. You can
configure up to five read-only users on the system.

5.11.1. show accounting

This command displays ordered methods for accounting lists.

**Format**  
show accounting

**Mode**  
Privileged EXEC

User EXEC

Example: The following shows example CLI display output for this command.

```
(M4500-32C) #show accounting

Number of Accounting Notifications sent at beginning of an EXEC session: 0
Errors when sending Accounting Notifications beginning of an EXEC session: 0
Number of Accounting Notifications sent at end of an EXEC session: 0
Errors when sending Accounting Notifications at end of an EXEC session: 0
Number of Accounting Notifications sent at beginning of a command execution: 0
Errors when sending Accounting Notifications at beginning of a command execution: 0
Number of Accounting Notifications sent at end of a command execution: 0
Errors when sending Accounting Notifications at end of a command execution: 0
```

5.11.2. show accounting methods

This command displays configured accounting method lists.

**Format**  
show accounting methods

**Mode**  
Privileged EXEC

User EXEC

Example: The following shows example CLI display output for this command.
5.11.3. aaa authentication login

This command creates an authentication login list. The <listname> is up to 12 alphanumeric characters and is not case sensitive. Up to 5 authentication login lists can be configured on the switch.

If the authentication login list does not exist, a new authentication login list is first created and then the authentication methods are set in the authentication login list. The possible method values are enable, line, local, none, radius and tacacs.

To authenticate a user, the authentication methods in the user’s login will be attempted in order until an authentication attempt succeeds or fails.

Note: The default login list included with the default configuration cannot be changed

| Format | aaa authentication login {<listname> | default | network} method1 [method2...] |
|--------|--------------------------------------------------------------------------------|
| Parameter | Definition |
| default | Uses the listed authentication methods that follow this argument as the default list of methods when a user logs in. |
| listname | Character string of up to 15 characters used to name the list of authentication methods activated when a user logs in. |
| method1... | At least one from the following: |
Default

- defaultList. Used by the console and only contains the method local.
- networkList. Used by telnet and SSH and only contains the method local.

Mode Global Config

Example: The following shows an example of the command.

(M4500-32C) (Config)#aaa authentication login default radius local enable none

5.11.4. no aaa authentication login

This command returns to the default.

Format no aaa authentication login {<listname> | default | network}

Mode Global Config

5.11.5. aaa accounting

Use this command in Global config mode to create an accounting method list for either user EXEC sessions or for user-executed commands. This list is identified by default or a user-specified listname. Accounting records, when enabled for a line-mode, can be sent at both the beginning and at the end (start-stop) or only at the end (stop-only). If none is specified, then accounting is disabled for the specified list. If tacacs is specified as the accounting method, accounting records are notified to a TACACS+ server. If radius is the specified accounting method, accounting records are notified to a RADIUS server.

Note: Please note the following:

- A maximum of five Accounting Method lists can be created for each exec and command type.
- The same list-name can be used for both exec and commands accounting type.
- AAA Accounting for commands with RADIUS as the accounting method is not supported.
- Only the default Accounting Method list can be created for DOT1X. There is no provision to create mode.
• Start-stop or None are the only supported record types for DOT1X accounting. Start-stop enables accounting and None disables accounting.

• RADIUS is the only accounting method type supported for DOT1X accounting.

Format: `aaa accounting {exec | commands | dot1x} {default | <listname>} {start-stop | stop-only | none} [method1 [method2]]`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>exec</td>
<td>Provides accounting for a user EXEC terminal sessions.</td>
</tr>
<tr>
<td>commands</td>
<td>Provides accounting for all user executed commands.</td>
</tr>
<tr>
<td>dot1x</td>
<td>Provides accounting for DOT1X user commands.</td>
</tr>
<tr>
<td>default</td>
<td>The default list of methods for accounting services.</td>
</tr>
<tr>
<td>listname</td>
<td>Character string used to name the list of accounting methods.</td>
</tr>
<tr>
<td>start-stop</td>
<td>Sends a start accounting notice at the beginning of a process and a stop accounting notice at the end of a process.</td>
</tr>
<tr>
<td>stop-only</td>
<td>Sends a stop accounting notice at the end of the requested user process.</td>
</tr>
<tr>
<td>none</td>
<td>Disables accounting services on this line.</td>
</tr>
<tr>
<td>method</td>
<td>Use either TACACS or the radius server for accounting purposes.</td>
</tr>
</tbody>
</table>

Mode: Global Config

5.11.6. no aaa accounting

This command deletes the accounting method list.

Format: `no aaa accounting {exec | commands | dot1x} {default | <listname>}`

Mode: Global Config

Example: The following shows an example of the command.

(M4500-32C) (Config)#aaa accounting commands userCmdAudit stop-only tacacs

(M4500-32C) (Config)#no aaa accounting commands userCmdAudit
5.11.7. accounting

Use this command in Line Configuration mode to apply the accounting method list to a line config (console/telnet/ssh).

**Format**  
accounting {exec | commands} {default | <listname>}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>exec</td>
<td>Causes accounting for an EXEC session.</td>
</tr>
<tr>
<td>commands</td>
<td>This causes accounting for each command execution attempt. If a user is enabling accounting for exec mode for the current line-configuration type, the user will be logged out.</td>
</tr>
<tr>
<td>default</td>
<td>The default list of methods for accounting services.</td>
</tr>
<tr>
<td>listname</td>
<td>Enter a string of not more than 15 characters.</td>
</tr>
</tbody>
</table>

**Mode**  
Line Config

**Example:** The following shows an example of the command.

(M4500-32C) (Config)#line console
(M4500-32C) (Config-line)#accounting exec default
(M4500-32C) (Config-line)#exit

5.11.8. no aaa accounting

Use this command to remove accounting from a Line Configuration mode.

**Format**  
no accounting {exec | commands}

**Mode**  
Line Config

5.11.9. clear aaa ias-users

This command clears the IAS user database.

**Format**  
clear aaa ias-users

**Mode**  
Privileged Exec
Example:

(M4500-32C) #clear aaa ias-users

Are you sure you want to clear all IAS user entries (y/n) y

All Internal Authentication Server user database entries are cleared.

5.11.10. **clear accounting statistics**

This command clears the accounting statistics.

**Format**  clear accounting statistics

**Mode**  Privileged Exec

Example:

(M4500-32C) #clear accounting statistics
5.12.  RADIUS Commands

This section describes the commands you use to use a Remote Authentication Dial-In User Service (RADIUS) server on your network for authentication and accounting.

5.12.1. show radius

This command displays the various RADIUS configuration items for the switch.

Format  show radius

Mode  Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Configured Authentication Servers</td>
<td>The number of RADIUS Authentication servers that have been configured.</td>
</tr>
<tr>
<td>Number of Configured Accounting Servers</td>
<td>The number of RADIUS Accounting servers that have been configured.</td>
</tr>
<tr>
<td>Number of Named Authentication Server Groups</td>
<td>The number of configured named RADIUS server groups.</td>
</tr>
<tr>
<td>Number of Named Accounting Server Groups</td>
<td>The number of configured named RADIUS server groups.</td>
</tr>
<tr>
<td>Number of Retransmits</td>
<td>The configured value of the maximum number of times a request packet is retransmitted.</td>
</tr>
<tr>
<td>Timeout Duration</td>
<td>The configured timeout value, in seconds, for request retransmissions.</td>
</tr>
<tr>
<td>Dead Time (mins)</td>
<td>The configured timeout value, in minutes, for request re-transmissions.</td>
</tr>
<tr>
<td>RADIUS Accounting Mode</td>
<td>A global parameter to indicate whether the accounting mode for all the servers is enabled or not.</td>
</tr>
<tr>
<td>RADIUS Attribute 4 Mode</td>
<td>A global parameter to indicate whether the NAS-IP-Address attribute has been enabled to use in RADIUS requests.</td>
</tr>
<tr>
<td>RADIUS Attribute 4 Value</td>
<td>A global parameter that specifies the IP address to be used in the NAS-IP-Address attribute to be used in RADIUS requests.</td>
</tr>
<tr>
<td>RADIUS Attribute 95 Mode</td>
<td>A global parameter to indicate whether the NAS-IPv6-Address attribute has been enabled to use in RADIUS requests.</td>
</tr>
<tr>
<td>RADIUS Attribute 95 Value</td>
<td>A global parameter that specifies the IPv6 address to be used in the NAS-IPv6-Address attributes to be used in RADIUS requests.</td>
</tr>
</tbody>
</table>
### RADIUS Attribute MS-CHAPv2 Mode

A global parameter to indicate whether the MS-CHAPv2 attributes have been enabled to use at RADIUS authentication.

---

Example: The following shows an example of the command.

(M4500-32C) #show radius

Number of Configured Authentication Servers.... 1
Number of Configured Accounting Servers........ 1
Number of Named Authentication Server Groups... 1
Number of Named Accounting Server Groups....... 1
Number of Retransmits.......................... 4
Timeout Duration............................... 5
Dead Time (mins)................................. 0
RADIUS Accounting Mode........................ Disable
RADIUS Attribute 4 Mode........................ Disable
RADIUS Attribute 4 Value....................... 0.0.0.0
RADIUS Attribute 95 Mode....................... Disable
RADIUS Attribute 95 Value...................... :
RADIUS Attribute MS-CHAPv2 Mode............. Disable

---

**5.12.2. show radius accounting**

This command is used to display the configured RADIUS accounting mode, accounting server, and the statistics for the configured accounting server.

**Format**

```
show radius accounting [ip-address | ipv6-address | hostname] [name <servername>] [statistics [ip-address | ipv6-address | hostname] [name <servername>]]
```

**Mode**

Privileged EXEC

**Display Message**

If you do not specify any parameters, then only the accounting mode and the RADIUS accounting server details are displayed.
If the optional token `<ip-address | ipv6-address | hostname>` or `name <servername>` is included.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>RADIUS Accounting Mode</strong></td>
<td>A global parameter to indicate whether the accounting mode for all the servers is enabled or not.</td>
</tr>
<tr>
<td><strong>Host Address</strong></td>
<td>The IP address of the host.</td>
</tr>
<tr>
<td><strong>Port</strong></td>
<td>The port used for communication with the accounting server.</td>
</tr>
<tr>
<td><strong>Secret Configured</strong></td>
<td>Yes or No Boolean value indicating whether this server is configured with a secret.</td>
</tr>
</tbody>
</table>

If the optional token 'statistics <ip-address | ipv6-address | hostname>' or 'name <servername>' is included, the statistics for the configured RADIUS accounting server are displayed. The IP address parameter must match that of a previously configured RADIUS accounting server. The following information regarding the statistics of the RADIUS accounting server is displayed.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>RADIUS Accounting Server IP Address</strong></td>
<td>IP Address of the configured RADIUS accounting server.</td>
</tr>
<tr>
<td><strong>RADIUS Accounting Server Name</strong></td>
<td>The name of the configured RADIUS accounting server.</td>
</tr>
<tr>
<td><strong>RADIUS Accounting Mode</strong></td>
<td>A global parameter to indicate whether the accounting mode for all the servers is enabled or not.</td>
</tr>
<tr>
<td><strong>Link local interface</strong></td>
<td>Indicate the outgoing interface for link local address</td>
</tr>
<tr>
<td><strong>Port</strong></td>
<td>The port used for communication with the accounting server.</td>
</tr>
<tr>
<td><strong>Secret Configured</strong></td>
<td>Yes or No Boolean value indicating whether this server is configured with a secret.</td>
</tr>
</tbody>
</table>

If the optional token 'statistics <ip-address | ipv6-address | hostname>' is included, the statistics for the configured RADIUS accounting server are displayed. The IP address parameter must match that of a previously configured RADIUS accounting server. The following information regarding the statistics of the RADIUS accounting server is displayed.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>RADIUS Accounting Server Host Address</strong></td>
<td>IP Address of the configured RADIUS accounting server.</td>
</tr>
<tr>
<td><strong>Round Trip Time</strong></td>
<td>The time interval in centiseconds, between the most recent Accounting-Response and the Accounting-Request that matched it from the RADIUS accounting server.</td>
</tr>
<tr>
<td><strong>Requests</strong></td>
<td>The number of RADIUS Accounting-Request packets sent to this accounting server. This number does not include retransmissions.</td>
</tr>
</tbody>
</table>
Example: The following shows an example of the command.

(M4500-32C) #show radius accounting

RADIUS Accounting Mode......................... Disable
Host Address.................................. 10.0.0.1
Port........................................... 1813
Secret Configured......................... No

(M4500-32C) #show radius accounting 10.0.0.1

RADIUS Accounting Server IP Address........... 10.0.0.1
RADIUS Accounting Server Name................. Default-RADIUS-Server
RADIUS Accounting Mode......................... Disable
Port........................................... 1813
Secret Configured......................... No
(M4500-32C) #show radius accounting name

<table>
<thead>
<tr>
<th>Server Name</th>
<th>Host Address</th>
<th>Port</th>
<th>Secret</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default-RADIUS-Server</td>
<td>10.0.0.1</td>
<td>1813</td>
<td>No</td>
</tr>
</tbody>
</table>

(M4500-32C) #show radius accounting statistics 10.0.0.1

RADIUS Accounting Server Host Address........ 10.0.0.1
Round Trip Time............................... 0.00
Requests....................................... 0
Retransmissions............................... 0
Responses...................................... 0
Malformed Responses........................... 0
Bad Authenticators............................ 0
Pending Requests.............................. 0
Timeouts........................................ 0
Unknown Types.................................. 0
Packets Dropped............................... 0

5.12.3. show radius servers

This command is used to display items of the configured RADIUS servers.

Format  
show radius servers [<ip-address | ipv6-address | hostname> | name [<servername>]]

Mode   
Privileged EXEC

Display Message
If you do not specify any parameters or only the token ‘name’, then only the RADIUS authentication server details are displayed.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>current</td>
<td>The ‘*’ symbol preceding the server host address specifies that the server is currently active.</td>
</tr>
<tr>
<td>ipaddr</td>
<td>Host Address</td>
</tr>
<tr>
<td>Server Name</td>
<td>The Name of the authenticating server.</td>
</tr>
<tr>
<td>Port</td>
<td>The port used for communication with the accounting server.</td>
</tr>
<tr>
<td>Type</td>
<td>Specifies whether this server is a primary or secondary type.</td>
</tr>
<tr>
<td>Usage</td>
<td>Specifies the server usage type is Login, Dot1x or All.</td>
</tr>
<tr>
<td>Secret Configured</td>
<td>Yes or No Boolean value indicating whether this server is configured with a secret.</td>
</tr>
</tbody>
</table>

If the optional token '<ip-address | ipv6-address | hostname>' or ‘name <servername>' is included.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADIUS Server IP Address</td>
<td>The IP address or host name of the authenticating server.</td>
</tr>
<tr>
<td>RADIUS Server Name</td>
<td>The Name of the authenticating server.</td>
</tr>
<tr>
<td>Current Server IP Address</td>
<td>The IP address of the authenticating server.</td>
</tr>
<tr>
<td>Number of Retransmits</td>
<td>The configured value of the maximum number of times a request packet is retransmitted.</td>
</tr>
<tr>
<td>Timeout Duration</td>
<td>The configured timeout value, in seconds, for request re-transmissions.</td>
</tr>
<tr>
<td>Dead Time (mins)</td>
<td>The configured timeout value, in mins, for the time duration after a RADIUS server is found non-responsive or dead.</td>
</tr>
<tr>
<td>RADIUS Accounting Mode</td>
<td>Indicates whether the accounting mode for the server is enabled or not.</td>
</tr>
<tr>
<td>RADIUS Attribute 4 Mode</td>
<td>Indicate whether the NAS-IP-Address attribute has been enabled to use in RADIUS requests.</td>
</tr>
<tr>
<td>RADIUS Attribute 4 Value</td>
<td>Specifies the IP address to be used in the NAS-IP-Address attribute to be used in RADIUS requests.</td>
</tr>
<tr>
<td>RADIUS Attribute 95 Mode</td>
<td>Indicate whether the NAS-IPv6-Address attribute has been enabled to use in RADIUS requests.</td>
</tr>
<tr>
<td>Attribute Name</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>RADIUS Attribute 95 Value</td>
<td>Specifies the IPv6 address to be used in the NAS-IPv6-Address attribute to be used in RADIUS requests.</td>
</tr>
<tr>
<td>RADIUS Attribute MS-CHAPv2 Mode</td>
<td>Indicate whether the MS-CHAPv2 attributes have been enabled to use at RADIUS authentication.</td>
</tr>
<tr>
<td>Link local interface</td>
<td>Indicate the outgoing interface for link local address</td>
</tr>
<tr>
<td>Port</td>
<td>The port used for communication with the accounting server.</td>
</tr>
<tr>
<td>Type</td>
<td>Specifies whether this server is a primary or secondary type.</td>
</tr>
<tr>
<td>Usage Type</td>
<td>Specifies the server usage type is Login, Dot1x or All.</td>
</tr>
<tr>
<td>Secret Configured</td>
<td>Yes or No Boolean value indicating whether this server is configured with a secret.</td>
</tr>
<tr>
<td>Message Authenticator</td>
<td>The message authenticator attribute configured for the radius server.</td>
</tr>
<tr>
<td>Number of CoA Requests Received</td>
<td>Specifies the number of CoA Requests Received</td>
</tr>
<tr>
<td>Number of CoA ACK Responses Sent</td>
<td>Specifies the number of CoA ACK Responses Sent</td>
</tr>
<tr>
<td>Number of CoA NAK Responses Sent</td>
<td>Specifies the number of CoA NACK Responses Sent</td>
</tr>
<tr>
<td>Number of CoA Requests Ignored</td>
<td>Specifies the number of CoA Requests Ignored</td>
</tr>
<tr>
<td>Number of CoA Missing/Unsupported Attribute R</td>
<td>Specifies the number of CoA Missing/Unsupported Attribute Requests</td>
</tr>
<tr>
<td>Number of CoA Session Context Not Found Requests</td>
<td>Specifies the number of CoA Session Context Not Found Requests</td>
</tr>
<tr>
<td>Number of CoA Invalid Attribute Value Requests</td>
<td>Specifies the number of CoA Invalid Attribute Value Requests</td>
</tr>
<tr>
<td>Number of Administratively Prohibited Request</td>
<td>Specifies the number of Administratively Prohibited Requests</td>
</tr>
</tbody>
</table>

Example: The following outputs show examples of the command.
M4500-48XF8C) #show radius servers

Current Host Address          Server Name          Port  Type     Usage
---- -------------------------- ------------------ ----- -------- --------
  10.27.65.114                Default-RADIUS-Server  1812 Secondary Both
*  10.27.65.103                Default-RADIUS-Server  1812 Primary  Both

* currently selected server

(M4500-32C) #show radius servers name

Server Name           Host Address Port  Secret Configured
--------------------- ------------- ------- --------
Default-RADIUS-Server 192.168.100.1 1812     No

M4500-32C) #show radius servers 192.168.100.1

RADIUS Server IP Address........................ 192.168.100.1
RADIUS Server Name.............................. Default-RADIUS-Server
Number of Retransmits........................... 4
Timeout Duration............................... 5
Dead Time (mins)................................. 0
RADIUS Accounting Mode.......................... Disable
RADIUS Attribute 4 Mode.......................... Disable
RADIUS Attribute 4 Value........................ 0.0.0.0
RADIUS Attribute 95 Mode........................ Disable
RADIUS Attribute 95 Value...................... ::
Port............................................. 1812
Type............................................. Secondary
Usage Type...................................... both
Secret Configured............................... No
Message Authenticator.......................... Enable
Number of CoA Requests Received................ 0
5.12.4. show radius statistics

This command is used to display the statistics for RADIUS or configured server. To show the configured RADIUS server statistic, the IP Address specified must match that of a previously configured RADIUS server. On execution, the following fields are displayed.

Format    show radius statistics {<ipaddress | ipv6-address|hostname> | name <servername>}

Mode       Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADIUS Server Name</td>
<td>The Name of the authenticating server.</td>
</tr>
<tr>
<td>Server Host Address</td>
<td>The IP address or host name of the authenticating server.</td>
</tr>
<tr>
<td>Round Trip Time</td>
<td>The time interval, in hundredths of a second, between the most recent Access-Reply, Access-Challenge and the Access-Request that matched it from the RADIUS authentication server.</td>
</tr>
<tr>
<td>Access Requests</td>
<td>The number of RADIUS Access-Request packets sent to this server. This number does not include retransmissions.</td>
</tr>
<tr>
<td>Access Retransmissions</td>
<td>The number of RADIUS Access-Request packets retransmitted to this RADIUS authentication server.</td>
</tr>
<tr>
<td>Access Accepts</td>
<td>The number of RADIUS Access-Accept packets, including both valid and invalid packets, which were received from this server.</td>
</tr>
<tr>
<td>Access Rejects</td>
<td>The number of RADIUS Access-Reject packets, including both valid and invalid packets, which were received from this server.</td>
</tr>
<tr>
<td>Access Challenges</td>
<td>The number of RADIUS Access-Challenge packets, including both valid and invalid packets, which were received from this server.</td>
</tr>
<tr>
<td>Metric</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Malformed Access Responses</td>
<td>The number of malformed RADIUS Access-Response packets received from this server. Malformed packets include packets with an invalid length. Bad authenticators or signature attributes or unknown types are not included as malformed access responses.</td>
</tr>
<tr>
<td>Bad Authenticators</td>
<td>The number of RADIUS Access-Response packets containing invalid authenticators or signature attributes received from this server.</td>
</tr>
<tr>
<td>Pending Requests</td>
<td>The number of RADIUS Access-Request packets destined for this server that have not yet timed out or received a response.</td>
</tr>
<tr>
<td>Timeouts</td>
<td>The number of authentication timeouts to this server.</td>
</tr>
<tr>
<td>Unknown Types</td>
<td>The number of RADIUS packets of unknown types, which were received from this server on the authentication port.</td>
</tr>
<tr>
<td>Packets Dropped</td>
<td>The number of RADIUS packets received from this server on the authentication port and dropped for some other reason.</td>
</tr>
</tbody>
</table>

Example: The following shows an example of the command.

(M4500-32C) #show radius statistics 192.168.100.1

RADIUS Server Name........................ Default-RADIUS-Server
Server Host Address....................... 192.168.100.1
Round Trip Time........................... 0.00
Access Requests............................ 0
Access Retransmissions.................... 0
Access Accepts............................. 0
Access Rejects............................ 0
Access Challenges......................... 0
Malformed Access Responses.............. 0
Bad Authenticators....................... 0
Pending Requests......................... 0
Timeouts.................................... 0
Unknown Types............................ 0
Packets Dropped......................... 0
5.12.5. show radius source-interface

This command is used to display the configured global source interface details used for a RADIUS client. The IP address of the selected interface is used as source IP for all communications with the server.

**Format**    show radius source-interface

**Mode**      Privileged EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADIUS Client Source Interface</td>
<td>The interface to use as the source interface for RADIUS client.</td>
</tr>
<tr>
<td>RADIUS Client Source IPv4 Address</td>
<td>The IP address of the interface configured as the RADIUS client source interface.</td>
</tr>
</tbody>
</table>

5.12.6. authentication network radius

This command enables the switch to accept VLAN assignment by the radius server.

**Format**    authorization network radius

**Default**   Disable

**Mode**      Global Config

5.12.7. no authorization network radius

This command disables the switch to accept VLAN assignment by the radius server.

**Format**    no authorization network radius

**Mode**      Global Config

5.12.8. clear radius dynamic-author statistics

This command clear radius dynamic authorization counters.

**Format**    clear radius dynamic-author statistics

**Mode**      Privileged EXEC
Example:

(M4500-32C) #clear radius dynamic-author statistics

Are you sure you want to clear statistics? (y/n) y

Statistics cleared.

5.12.9. radius accounting mode

This command is used to enable RADIUS accounting function.

Format   radius accounting mode

Default  Disable

Mode     Global Config

5.12.10. no radius accounting mode

This command is used to set the RADIUS accounting function to the default value.

Format   no radius accounting mode

Mode     Global Config

5.12.11. radius server attribute 4

This command specifies the RADIUS client to use the NAS-IP Address attribute in the RADIUS requests. If the specific IP address is configured while enabling this attribute, the RADIUS client uses that IP address while sending NAS-IP-Address attribute in RADIUS communication.

Format   radius server attribute 4 [<ipaddr>]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>NAS-IP-Address attribute to be used in RADIUS requests.</td>
</tr>
<tr>
<td>ipaddr</td>
<td>The IP address of the server.</td>
</tr>
</tbody>
</table>

Default  None

Mode     Global Config
5.12.12. **no radius server attribute 4**

This command disables the NAS-IP-Address attribute global parameter for RADIUS client. When this parameter is disabled, the RADIUS client does not send the NAS-IP-Address attribute in RADIUS requests.

**Format**  
no radius server attribute 4

**Mode**  
Global Config

---

5.12.13. **radius server attribute 95**

This command specifies the RADIUS client to use the NAS-IPv6 Address attribute in the RADIUS requests. If the specific IPv6 address is configured while enabling this attribute, the RADIUS client uses that IPv6 address while sending NAS-IPv6-Address attribute in RADIUS communication.

**Format**  
radius server attribute 95 [<ipv6-address>]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>NAS-IPv6-Address attribute to be used in RADIUS requests.</td>
</tr>
<tr>
<td>ipv6-address</td>
<td>The IPv6 address of the server.</td>
</tr>
</tbody>
</table>

**Default**  
None

**Mode**  
Global Config

---

5.12.14. **no radius server attribute 95**

This command disables the NAS-IPv6-Address attribute global parameter for RADIUS client. When this parameter is disabled, the RADIUS client does not send the NAS-IP-Address attribute in RADIUS requests.

**Format**  
no radius server attribute 95

**Mode**  
Global Config

---

5.12.15. **radius server attribute mschapv2**

This command is used to enable switch to support the version two of Microsoft Challenge-Handshake Authentication Protocol (MS-CHAPv2). When this parameter is enabled, the RADIUS client will use MS-CHAPv2 attributes at user login authentication.
5.12.16. no radius server attribute mschapv2

This command disables the MS-CHAPv2 attributes for RADIUS authentication.

Format:  no radius server attribute mschapv2
Mode:  Global Config

5.12.17. radius server deadtime

This command configures radius server dead time.

Format:  radius server deadtime <minutes>
Default:  0
Mode:  Global Config

5.12.18. no radius server deadtime

This command is used to set dead time to the default value.

Format:  no radius server deadtime
Mode:  Global Config

5.12.19. radius server host

This command configures the IP address or DNS name to use for communicating with the RADIUS server of a selected server type. While configuring the IP address or DNS name for the authenticating or accounting servers, you can also configure the port number and server name. If the authenticating and accounting servers are configured without a name, the command uses the ‘Default-RADIUS-Server’ as the default names, respectively.
The same name can be configured for more than one authenticating servers and the name should be unique for accounting servers.

If the 'auth' token is used, the command configures the IP address to use to connect to a RADIUS authentication server. Up to 3 servers can be configured per RADIUS client. If the maximum number of configured servers is reached, the command will fail until one of the servers is removed by executing the no form of the command. If the optional port parameter is used, the command will configure the UDP port number to use to connect to the configured RADIUS server. In order to configure the UDP port number, the IP address must match that of a previously configured RADIUS authentication server. The port number range is 1 - 65535, with 1812 being the default value.

**Note:** To reconfigure a RADIUS authentication server to use the default UDP port, set the port parameter to 1812.

If the 'acct' token is used, the command configures the IP address to use for the RADIUS accounting server. Only a single accounting server can be configured. If an accounting server is currently configured, it must be removed from the configuration using the no form of the command before this command succeeds. If the optional port parameter is used, the command will configure the UDP port to use to connect to the RADIUS accounting server. The IP address specified must match that of a previously configured accounting server. If a port is already configured for the accounting server then the new port will replace the previously configured value. The port must be a value in the range 1 - 65535, with 1813 being the default value.

**Note:** To reconfigure a RADIUS accounting server to use the default UDP port, set the port parameter to 1813.

**Format**

```plaintext
radius server host auth <ip-addr|ipv6-address | hostname> [name <servername>] [port <port>] [usage-type <8021x|login|both>]

radius server host acct <ip-addr|ipv6-address | hostname> [name <servername>] [port <port>]
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-addr</td>
<td>ipv6-address</td>
</tr>
<tr>
<td>servername</td>
<td>Server name</td>
</tr>
<tr>
<td>port</td>
<td>Port number in the range 1-65535</td>
</tr>
<tr>
<td>usage-type</td>
<td>Configure the Radius server usage type. The type could be – 802.1x, login, or both</td>
</tr>
</tbody>
</table>

**Default** None

**Mode** Global Config

**5.12.20. no radius server host**

The no version of this command deletes the configured server entry from the list of configured RADIUS servers. If the RADIUS authenticating server being removed is the active server in the servers that are identified by the same server name, then the RADIUS client selects another server for making RADIUS transactions. If the 'auth' token is used, the previously configured RADIUS authentication server is removed from the configuration.
Similarly, if the 'acct' token is used, the previously configured RADIUS accounting server is removed from the configuration. The ipaddr|hostname parameter must match the IP address or hostname of the previously configured RADIUS authentication / accounting server.

**Format**

no radius server host {acct | auth} <ip-addr|ipv6-address | hostname>

**Mode**

Global Config

Example: The following shows an example of the command.

```
(M4500-32C) (Config) #radius server host acct 192.168.37.60
(M4500-32C) (Config) #radius server host acct 192.168.37.60 port 1813
(M4500-32C) (Config) #radius server host auth 192.168.37.60 name Network1_RS port 1813
(M4500-32C) (Config) #radius server host acct 192.168.37.60 name Network2_RS
(M4500-32C) (Config) #no radius server host acct 192.168.37.60
```

### 5.12.21. radius server host link-local

This command configures the link-local-address of the RADIUS server and the outgoing interface to be used by the RADIUS client to communicate with the RADIUS server. The outgoing interface can be any physical interface or service port.

**Format**

radius server host auth link-local <link-local-address> interface {<slot/port> | serviceport} [name <servername>] [port <port>] [usage-type <8021x|login|both>]

radius server host acct link-local <link-local-address> interface {<slot/port> | serviceport} [name <servername>] [port <port>]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>link-local</td>
<td>Specify the link local address</td>
</tr>
<tr>
<td>interface</td>
<td>Specify the outgoing interface for link local address</td>
</tr>
<tr>
<td>servername</td>
<td>Server name</td>
</tr>
<tr>
<td>port</td>
<td>Port number in the range 1-65535</td>
</tr>
<tr>
<td>usage-type</td>
<td>Configure the Radius server usage type. The type could be – 802.1x, login, or both</td>
</tr>
</tbody>
</table>

**Default**

None

**Mode**

Global Config
5.12.22. no radius server host link-local

This command removes the configured radius server link-local-address.

Format  no radius server host {acct | auth} link-local <link-local-address>

Mode    Global Config

5.12.23. radius server key

This command is used to configure the shared secret between the RADIUS client and the RADIUS accounting / authentication server. Depending on whether the 'auth' or 'acct' token is used, the shared secret will be configured for the RADIUS authentication or RADIUS accounting server. The IP address provided must match a previously configured server. When this command is executed, the secret will be prompted. The secret must be an alphanumeric value not exceeding 20 characters.

Format  radius server key {acct | auth} <ipaddress| ipv6-address | hostname> [encrypted <password>]

Default None

Mode    Global Config

Example: The following shows an example of the command.

(M4500-32C) (Config) # radius server key auth 192.168.37.60

Enter secret (64 characters max):******

Re-enter secret:******

5.12.24. radius server primary

This command is used to configure the primary RADIUS authentication server for this RADIUS client. The primary server is the one that is used by default for handling RADIUS requests. The remaining configured servers are only used if the primary server cannot be reached. A maximum of three servers can be configured on each client. Only one of these servers can be configured as the primary. If a primary server is already configured prior to this command being executed, the server specified by the IP address specified used in this command will become the new primary server. The IP address must match that of a previously configured RADIUS authentication server.

Format  radius server primary <ipaddress | ipv6-address | hostname>

Default None

Mode    Global Config
5.12.25. radius server retransmit

This command sets the maximum number of times a request packet is re-transmitted when no response is received from the RADIUS server. The retries value is an integer in the range of 1 to 15.

**Format**  radius server retransmit <retries>

**Default**  4

**Mode**  Global Config

5.12.26. no radius server retransmit

This command is used to set the maximum number of retries to the default value.

**Format**  no radius server retransmit

**Mode**  Global Config

5.12.27. radius server timeout

This command configures the global parameter for the RADIUS client that specifies the timeout value (in seconds) after which a request must be retransmitted to the RADIUS server if no response is received. The timeout value is an integer in the range of 1 to 30.

**Format**  radius server timeout <seconds>

**Default**  5

**Mode**  Global Config

5.12.28. no radius server timeout

This command is used to set the timeout value to the default value.

**Format**  no radius server timeout

**Mode**  Global Config
5.12.29. **radius source-interface**

Use this command to specify the physical or logical interface to use as the RADIUS client source interface (Source IP address). If configured, the address of source Interface is used for all RADIUS communications between the RADIUS server and the RADIUS client. The selected source-interface IP address is used for filling the IP header of RADIUS management protocol packets. This allows security devices (firewalls) to identify the source packets coming from the specific switch.

If a source-interface is not specified, the primary IP address of the originating (outbound) interface is used as the source address. If the configured interface is down, the RADIUS client falls back to its default behavior.

**Format**

```
radius source-interface {<slot/port> | loopback <loopback-id> | serviceport | tunnel <tunnel-id> | vlan <vlan-id> }
```

**Parameter**	**Definition**
**slot/port** | Specifies the interface to use as the source interface.

**loopback-id** | Specifies the loopback interface to use as the source interface. The range of the loopback ID is 0 to 63.

**tunnel-id** | Specifies the tunnel interface. The range of the tunnel ID is 0 to 7.

**vlan-id** | Specifies the VLAN interface to use as the source interface. The range of VLAN ID is 1 to 4093.

**Default** | None

**Mode** | Global Config

5.12.30. **no radius source-interface**

Use this command to reset the RADIUS source interface to the default settings.

**Format**

```
no radius source-interface
```

**Mode** | Global Config
5.13. **TACACS+ Commands**

TACACS+ provides access control for networked devices via one or more centralized servers. Similar to RADIUS, this protocol simplifies authentication by making use of a single database that can be shared by many clients on a large network. TACACS+ is based on the TACACS protocol (described in RFC1492) but additionally provides for separate authentication, authorization, and accounting services. The original protocol was UDP based with messages passed in clear text over the network; TACACS+ uses TCP to ensure reliable delivery and a shared key configured on the client and daemon server to encrypt all messages.

5.13.1. **show tacacs**

This command displays configured information and statistics of a TACACS+ server.

**Format**    show tacacs [<ip-address | hostname>]

**Mode**      Privileged EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host address</td>
<td>The IP address or hostname of the configured TACACS+ server.</td>
</tr>
<tr>
<td>Port</td>
<td>Shows the configured TACACS+ server port number.</td>
</tr>
<tr>
<td>Timeout</td>
<td>Shows the timeout in seconds for establishing a TCP connection.</td>
</tr>
<tr>
<td>Priority</td>
<td>Shows the preference order in which TACACS+ servers are contacted. If a server connection fails, the next highest priority server is contacted.</td>
</tr>
<tr>
<td>Link Local Interface</td>
<td>Shows the outgoing interface used by the link-local address</td>
</tr>
</tbody>
</table>

Example: The following shows an example of the command.

(M4500-32C) (Config)#show tacacs

Global Timeout: 10

<table>
<thead>
<tr>
<th>Host address</th>
<th>Port</th>
<th>Timeout</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.1</td>
<td>49</td>
<td>Global</td>
<td>0</td>
</tr>
</tbody>
</table>
5.13.2. show tacacs source-interface

Use the `show tacacs source-interface` command in Global Config mode to display the configured global source interface details used for a TACACS+ client. The IP address of the selected interface is used as source IP for all communications with the server.

**Format**  
`show tacacs source-interface`

**Mode**  
Privileged EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TACACS Client Source Interface</td>
<td>The interface to use as the source interface for TACACS client.</td>
</tr>
<tr>
<td>TACACS Client Source IPv4 Address</td>
<td>The IP address of the interface configured as the TACACS client source interface.</td>
</tr>
<tr>
<td>TACACS Client Source IPv6 Address</td>
<td>The IPv6 address of the interface configured as the TACACS client source interface.</td>
</tr>
</tbody>
</table>

5.13.3. tacacs-server host

Use the `tacacs-server host` command in Global Configuration mode to configure a TACACS+ server. This command enters into the TACACS+ configuration mode. The `ipaddr|hostname` parameter is the IPv4 or IPv6 address or hostname of the TACACS+ server. To specify multiple hosts, multiple `tacacs-server host` commands can be used.

**Format**  
`tacacs-server host <ipaddress | ipv6-address | hostname>`

**Mode**  
Global Config

**no tacacs-server host**

This command deletes the specified hostname or IP address.

**Format**  
`no tacacs-server host <ip-address | ipv6-address | hostname>`

**Mode**  
Global Config
5.13.4. tacacs-server host link-local

Use the `tacacs-server host link-local` command in Global Configuration mode to configure the link-local-address of the TACACS+ server and the outgoing interface to be used by the TACACS+ client to communicate with the TACACS+ server. The outgoing interface can be any physical interface or the service port.

**Format**
```
tacacs-server host link-local <link-local-address> interface {serviceport | <slot/port>}
```

**Mode**
Global Config

5.13.5. no tacacs-server host link-local

This command removes the configured TACACS+ server link-local address.

**Format**
```
no tacacs-server host link-local <link-local-address>
```

**Mode**
Global Config

5.13.6. tacacs-server key

This command is used to configure the TACACS+ authentication and encryption key. You can configure the format of the key in two ways:

- Type the `key` keyword to configure the key in plain text. The key is displayed with * for each character that you type. The key must be in alphanumeric characters with a maximum length of 128 characters.

- Type the `key encrypted` keyword to configure the key in encrypted form. The `<key-string>` argument must be in hexadecimal digits with a length of 256 characters.

**Format**
```
tacacs-server key [encrypted <key-string>]
```

**Mode**
Global Config

5.13.7. no tacacs-server key

This command removes the TACACS+ server secret key.

**Format**
```
no tacacs-server key
```

**Mode**
Global Config
5.13.8. **tacacs-server keystring**

This command is used to set the global authentication encryption key used for all TACACS+ communications between the TACACS+ server and the client.

Note: The length of the secret key is up to 128 characters.

**Format**
```
tacacs-server keystring
```

**Mode**
Global Config

**Example:** The following shows an example of the command.

```
(M4500-32C) # tacacs-server keystring
```

Enter key:**********

Re-enter key:**********

5.13.9. **tacacs-server timeout**

This command is used to configure the timeout value for communication with the TACACS+ servers. The `timeout` parameter has a range of 1 to 30 seconds. If you do not specify a timeout value, the command sets the global timeout to the default value. TACACS+ servers that do not use the global timeout will retain their configured timeout values.

**Format**
```
tacacs-server timeout [<timeout>]
```

**Default**
10

**Mode**
Global Config

5.13.10. **no tacacs-server timeout**

This command restores the default timeout value for all TACACS+ servers.

**Format**
```
no tacacs-server timeout
```

**Mode**
Global Config
5.13.11. **key**

This command is used to configure the TACACS+ authentication and encryption key. You can configure the format of the key in two ways:

- Type the `key` keyword to configure the key in plain text. The key is displayed with * for each character that you type. The key must be in alphanumeric characters with a maximum length of 128 characters.

- Type the `key encrypted` keyword to configure the key in encrypted form. The `<key-string>` argument must be in hexadecimal digits with a length of 256 characters.

**Format**  
key [encrypted <key-string>]

**Mode**  
TACACS server Config

5.13.12. **no key**

This command removes the TACACS+ server secret key.

**Format**  
no key

**Mode**  
TACACS server Config

5.13.13. **keystring**

This command is used to set the TACACS+ server-specific authentication encryption key used for all TACACS+ communications between the TACACS+ server and the client.

*Note:* The length of the secret key is up to 128 characters.

**Format**  
keystring

**Mode**  
TACACS server Config

5.13.14. **port**

This command is used to set the TACACS+ server-specific port number. The server `port-number` range is 0 to 65535.

**Format**  
port [<port-number>]

**Default**  
49

**Mode**  
TACACS server Config
5.13.15. no port

This command set the TACACS+ server-specific port to default.

Format  no port
Mode    TACACS server Config

5.13.16. priority

This command is used to set the TACACS+ server-specific authentication host priority. The server priority range is 0 to 65535.

Format  priority [<priority>]
Default  0
Mode    TACACS server Config

5.13.17. no priority

This command set the TACACS+ server-specific authentication host priority to default.

Format  no priority
Mode    TACACS server Config

5.13.18. timeout

This command is used to configure the timeout value for communication with the TACACS+ servers. The timeout parameter has a range of 1 to 30 seconds.

Format  timeout [<timeout>]
Default  10
Mode    TACACS server Config
5.13.19. no timeout

This command sets the timeout value for communication with the TACACS+ servers to default.

**Format**

no timeout

**Mode**

TACACS server Config

5.13.20. tacacs-server source-interface

Use this command in Global config mode to configure the source interface (Source IP address) for TACACS+ server configuration. The selected source-interface IP address is used for filling the IP header of management protocol packets. This allows security devices (firewalls) to identify the source packets coming from the specific switch.

If a source-interface is not specified, the primary IP address of the originating (outbound) interface is used as the source address.

**Format**

tacacs-server source-interface {<slot/port> | loopback <loopback-id> | serviceport | tunnel <tunnel-id> | vlan <vlan-id>}

**Parameter**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>slot/port</td>
<td>Specifies the interface to use as the source interface.</td>
</tr>
<tr>
<td>loopback-id</td>
<td>Specifies the loopback interface to use as the source interface. The range of the loopback ID is 0 to 63.</td>
</tr>
<tr>
<td>tunnel-id</td>
<td>Specifies the tunnel interface to use as the source interface. The range of the tunnel ID is 0 to 7.</td>
</tr>
<tr>
<td>vlan-id</td>
<td>Specifies the VLAN interface to use as the source interface. The range of VLAN ID is 1 to 4093.</td>
</tr>
</tbody>
</table>

**Default**

None

**Mode**

Global Config

5.13.21. no tacacs-server source-interface

Use this command in Global Configuration mode to remove the global source interface (Source IP selection) for all TACACS+ communications between the TACACS+ client and the server.

**Format**

no tacacs-server source-interface

**Mode**

Global Config
5.13.22. clear tacacs

This command clears the TACACS configuration.

**Format**  clear tacacs

**Mode**  Privileged Exec

**Example:**

(M4500-32C) # clear tacacs

Are you sure you want to clear TACACS information? (y/n)y

No TACACS servers configured.
5.14. Security Commands

This section describes the commands you use to configure Port Security, which is also known as port MAC locking, allows you to secure the network by locking allowable MAC addresses on a given port. Packets with a matching source MAC address are forwarded normally, and all other packets are discards.

Note: To enable the SNMP trap specific to port security, see “snmp-server enable traps violation”.

5.14.1. show port-security

This command displays the port-security settings for the port(s). If you do not use a parameter, the command displays the Port Security Administrative mode. Use the optional parameters to display the settings on a specific interface, port-channel, or on all interfaces.

Format show port-security [{<slot/port> | all | port-channel <portchannel-id>}] 

Mode Privileged EXEC
User EXEC

Display Message

If you do not use the optional parameters slot/port, all, or port-channel <id>, then the command displays following information.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative Mode</td>
<td>Port Locking mode for the entire system. The field displays if you do not support any parameters.</td>
</tr>
</tbody>
</table>

For each interface, or for the interface you specify, the following information appears:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin Mode</td>
<td>Port Locking mode for the interface.</td>
</tr>
<tr>
<td>Dynamic Limit</td>
<td>Maximum dynamically allocated MAC addresses.</td>
</tr>
<tr>
<td>Static Limit</td>
<td>Maximum statically allocated MAC addresses.</td>
</tr>
<tr>
<td>Violation Trap Mode</td>
<td>Whether violation traps are enabled.</td>
</tr>
<tr>
<td>Violation Shutdown</td>
<td>Whether violation shutdown mode are enabled.</td>
</tr>
<tr>
<td>Sticky Mode</td>
<td>Whether sticky mode are enabled.</td>
</tr>
</tbody>
</table>
Example: The following shows example CLI display output for the command.

(M4500-32C) #show port-security

Port Security Administration Mode: Disabled

(M4500-32C) #show port-security 0/1

<table>
<thead>
<tr>
<th>Admin Mode</th>
<th>Dynamic Limit</th>
<th>Static Limit</th>
<th>Violation Trap Mode</th>
<th>Violation Shutdown Mode</th>
<th>Sticky Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1</td>
<td>Disabled</td>
<td>600</td>
<td>20</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

5.14.2. show port-security dynamic

This command displays the dynamically locked MAC address for the port.

**Format**

show port-security dynamic {<slot/port> | port-channel <portchannel-id>}

**Mode**

Privileged EXEC

User EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC Address</td>
<td>MAC Address of dynamically locked MAC</td>
</tr>
<tr>
<td>Dynamically learned MAC Address</td>
<td>VLAN ID on which the MAC address was learnt.</td>
</tr>
<tr>
<td>Number of Dynamic MAC addresses learned</td>
<td>The number of dynamic MAC addresses learned</td>
</tr>
</tbody>
</table>

5.14.3. show port-security static

This command displays the statically locked MAC address for port.

**Format**

show port-security static {<slot/port> | port-channel <portchannel-id>}

**Mode**

Privileged EXEC

User EXEC
Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of static MAC addresses configured</td>
<td>The number of static MAC addresses configured</td>
</tr>
<tr>
<td>Statically Configured MAC Address</td>
<td>The statically configured MAC address.</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>The ID of the VLAN that includes the host with the specified MAC address.</td>
</tr>
<tr>
<td>Sticky</td>
<td>Indicates whether the static MAC address entry is added in sticky mode.</td>
</tr>
</tbody>
</table>

Example: The following shows example CLI display output for the command.

(M4500-32C) #show port-security static 0/1

Number of static MAC addresses configured: 1

<table>
<thead>
<tr>
<th>Statically configured MAC Address</th>
<th>VLAN ID</th>
<th>Sticky</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00:01:01:00:00</td>
<td>2</td>
<td>No</td>
</tr>
</tbody>
</table>

5.14.4. show port-security violation

This command displays the source MAC address of the last packet discarded on a locked port.

Format  show port-security violation {<slot/port> | port-channel <portchannel-id>}

Mode    Privileged EXEC
        User EXEC

Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Violation MAC Address</td>
<td>The source MAC Address of the last frame that was discarded at a locked port.</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>The VLAN ID, if applicable, associated with the MAC address of the last frame that was discarded at a locked port.</td>
</tr>
</tbody>
</table>
5.14.5. port-security

This command enables port locking at the system level (Global Config) or port level (Interface Config) on an interface, a range of interfaces.

Format: `port-security`
Default: Disabled
Mode: Global Config
        Interface Config

5.14.6. no port-security

This command disables port locking for one or a range of ports (Interface Config) or all (Global Config) ports.

Format: `no port-security`
Mode: Global Config
        Interface Config

5.14.7. port-security max-dynamic

This command sets the maximum number of dynamically locked MAC addresses allowed on a specific port.

Format: `port-security max-dynamic <0-600>`
Default: 600
Mode: Interface Config

5.14.8. no port-security max-dynamic

This command resets the maximum number of dynamically locked MAC addresses allowed on a specific port to its default value.

Format: `no port-security max-dynamic`
Mode: Interface Config
5.14.9. **port-security max-static**

This command sets the maximum of statically locked MAC addresses allowed on a specific port.

**Format**  
`port-security max-static <0-20>`

**Default**  
20

**Mode**  
Interface Config

5.14.10. **no port-security max-static**

This command resets the maximum number of statically locked MAC addresses allowed on a specific port to its default value.

**Format**  
`no port-security max-static`

**Mode**  
Interface Config

5.14.11. **port-security mac-address**

This command adds a MAC address to the list of statically locked MAC addresses.

**Format**  
`port-security mac-address <mac-address> <vlan-id>`

**Default**  
None

**Mode**  
Interface Config

5.14.12. **no port-security mac-address**

This command removes a MAC address from the list of statically locked MAC addresses.

**Format**  
`no port-security mac-address <mac-address> <vlan-id>`

**Mode**  
Interface Config
5.14.13. **port-security mac-address move**

This command converts dynamically locked MAC addresses to statically locked MAC addresses for an interface or a range of interfaces.

**Format**  
port-security mac-address move

**Default**  
None

**Mode**  
Interface Config

5.14.14. **port-security mac-address sticky**

This command enables sticky mode Port MAC Locking on a port. If accompanied by a MAC address and a VLAN id (for interface config mode only), it adds a sticky MAC address to the list of statically locked MAC addresses. These sticky addresses are converted back to dynamically locked addresses if sticky mode is disabled on the port. The Global command applies the “sticky” mode to all valid interfaces (physical and port-channel). There is no global sticky mode as such.

Sticky addresses that are dynamically learned will appear in show running-config as “**port-security mac-address sticky <mac-address> <vid>**” entries. This distinguishes them from the static entries.

**Format**  
port-security mac-address sticky [<mac-address> <vlan-id>]

**Default**  
None

**Mode**  
Global Config
  
  Interface Config

5.14.15. **no port-security mac-address sticky**

This command removes the sticky mode. The sticky MAC address can be deleted by using the command “**no port-security mac-address <mac-address> <vlan-id>**”.

**Format**  
no port-security mac-address sticky

**Mode**  
Global Config
  
  Interface Config

Example: The following shows an example of the command.

(M4500-32C) (Config)#port-security mac-address sticky

(M4500-32C) (Interface 0/1)#port-security mac-address sticky

(M4500-32C) (Interface 0/1)#port-security mac-address sticky 00:00:00:00:00:01 2
5.14.16. **port-security violation shutdown**

This command configures the port violation shutdown mode. Once the violation happens, the interface will be shutdown.

**Format**  port-security violation shutdown

**Default**  Disabled

**Mode**  Interface Config

5.14.17. **no port-security violation**

This command restores violation mode to the default value.

**Format**  no port-security violation

**Mode**  Interface Config
5.15. LLDP (Link Layer Discovery Protocol) Commands

5.15.1. show lldp

This command is used to display a summary of the current LLDP configuration.

Format  show lldp
Default  None
Mode    Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit Interval</td>
<td>Shows how frequently the system transmits local data LLDPDUs, in seconds.</td>
</tr>
<tr>
<td>Transmit Hold Multiplier</td>
<td>Shows the multiplier on the transmit interval that sets the TTL in local data LLDPDUs.</td>
</tr>
<tr>
<td>Reinit Delay</td>
<td>Shows the delay before re-initialization, in seconds.</td>
</tr>
<tr>
<td>Notification Interval</td>
<td>Shows how frequently the system sends remote data change notifications, in seconds.</td>
</tr>
<tr>
<td>Transmit Delay</td>
<td>Shows how frequently the system transmits local data LLDPDUs after a change is made in a TLV (type, length, or value) element in LLDP, in seconds.</td>
</tr>
<tr>
<td>Management-address Source Interface</td>
<td>Shows the source of the management interface</td>
</tr>
</tbody>
</table>

5.15.2. show lldp interface

This command is used to display a summary of the current LLDP configuration for a specific interface or for all interfaces.

Format  show lldp interface [<slot/port>]
Default  None
Mode    Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Shows the interface in a slot/port format.</td>
</tr>
</tbody>
</table>
5.15.3. show lldp statistics

This command is used to display the current LLDP traffic and remote table statistics for a specific interface or for all interfaces.

**Format**  
show lldp statistics [<slot/port>]

**Default**  
None

**Mode**  
Privileged Exec

**Display Message**

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Update</td>
<td>Shows the amount of time since the last update to the remote table in days, hours, minutes, and seconds.</td>
</tr>
<tr>
<td>Total Inserts</td>
<td>Total number of inserts to the remote data table.</td>
</tr>
<tr>
<td>Total Deletes</td>
<td>Total number of deletes from the remote data table.</td>
</tr>
<tr>
<td>Total Drops</td>
<td>Total number of times the complete remote data received was not inserted due to insufficient resources.</td>
</tr>
<tr>
<td>Total Ageouts</td>
<td>Total number of times a complete remote data entry was deleted because the Time to Live interval expired.</td>
</tr>
<tr>
<td>Interface</td>
<td>Shows the interface in slot/port format.</td>
</tr>
<tr>
<td>Tx Total</td>
<td>Total number of LLDP packets transmitted on the port.</td>
</tr>
<tr>
<td>Rx Total</td>
<td>Total number of LLDP packets received on the port.</td>
</tr>
</tbody>
</table>
This command is used to display summary information about remote devices that transmit current LLDP data to the system. You can show information about LLDP remote data received on all ports or on a specific port.

**Format**
```
show lldp remote-device [<slot/port>]
```

**Default**
None

**Mode**
Privileged Exec

**Display Message**

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Interface</td>
<td>Identifies the interface that received the LLDPDU from the remote device.</td>
</tr>
<tr>
<td>Rem ID</td>
<td>Shows the ID of the remote device.</td>
</tr>
<tr>
<td>Chassis ID</td>
<td>The ID that is sent by a remote device as part of the LLDP message, it is usually a MAC address of the device.</td>
</tr>
<tr>
<td>Port ID</td>
<td>Shows the port number that transmitted the LLDPDU.</td>
</tr>
<tr>
<td>System Name</td>
<td>Shows the system name of the remote device</td>
</tr>
</tbody>
</table>
5.15.5. show lldp remote-device detail

This command is used to display detailed information about remote devices that transmit current LLDP data to an interface on the system.

Format  
show lldp remote-device detail <slot/port>

Default  
None

Mode  
Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Interface</td>
<td>Identifies the interface that received the LLDPDU from the remote device.</td>
</tr>
<tr>
<td>Remote Identifier</td>
<td>An internal identifier to the switch to mark each remote device to the system.</td>
</tr>
<tr>
<td>Chassis ID Subtype</td>
<td>Shows the type of identification used in the Chassis ID field.</td>
</tr>
<tr>
<td>Chassis ID</td>
<td>Identifies the chassis of the remote device.</td>
</tr>
<tr>
<td>Port ID Subtype</td>
<td>Identifies the type of port on the remote device.</td>
</tr>
<tr>
<td>Port ID</td>
<td>Shows the port number that transmitted the LLDPDU.</td>
</tr>
<tr>
<td>System Name</td>
<td>Shows the system name of the remote device.</td>
</tr>
<tr>
<td>System Description</td>
<td>Describes the remote system by identifying the system name and versions of hardware, operating system, and networking software supported in the device.</td>
</tr>
<tr>
<td>Port Description</td>
<td>Describes the port in an alpha-numeric format. The port description is configurable.</td>
</tr>
<tr>
<td>System Capabilities Supported</td>
<td>Indicates the primary function(s) of the device.</td>
</tr>
<tr>
<td>System Capabilities Enabled</td>
<td>Shows which of the supported system capabilities are enabled.</td>
</tr>
<tr>
<td>Management Address</td>
<td>For each interface on the remote device with an LLDP agent, lists the type of address the remote LLDP agent uses and specifies the address used to obtain information related to the device.</td>
</tr>
<tr>
<td>Time To Live</td>
<td>Shows the amount of time (in seconds) the remote device's information received in the LLDPDU should be treated as valid information.</td>
</tr>
<tr>
<td>MAC/PHY Configuration/Status</td>
<td><strong>Auto-Negotitation:</strong> Identifies the auto-negotiation support and current status of the remote device.</td>
</tr>
</tbody>
</table>
**5.15.6. show lldp local-device**

This command is used to display summary information about the advertised LLDP local data. This command can display summary information or detail for each interface.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Identifies the interface in a slot/port format.</td>
</tr>
</tbody>
</table>

---

**PMD Auto-Negotitation Advertised Capabilities**: The duplex and bit-rate capability of the port of the remote device.

**Operational MAU Type**: Displays the MAU type. The MAU performs physical layer functions, including digital data conversion from the Ethernet interfaces' collision detection and bit injection into the network.

<table>
<thead>
<tr>
<th>Power Via MDI</th>
<th><strong>MDI Power Support</strong>: The MDI power capabilities and status.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>PSE Power Pair</strong>: Indicates the way of feeding the voltage to the data cable.</td>
</tr>
<tr>
<td></td>
<td><strong>Power Class</strong>: PoE power class.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Link Aggregation</th>
<th><strong>Aggregation Status</strong>: Indicates the link aggregation capabilities and the current aggregation status.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>Aggregation Port Id</strong>: Aggregated port identifier.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum Frame Size</th>
<th>Shows the maximum frame size capability of the implemented MAC and PHY of the remote device.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Port VLAN Identity</th>
<th>Shows the PVID of the connected port of the remote device.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Protocol VLAN</th>
<th><strong>Status</strong>: Indicates the port and protocol VLAN capability and status.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>ID</strong>: The PPVID number for the port of the remote device.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VLAN Name</th>
<th>Shows the name of the VLAN which the connected port is in.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Protocol Identity</th>
<th>Shows the particular protocols that are accessible through the port of the remote device.</th>
</tr>
</thead>
</table>
This command is used to display detailed information about the LLDP data a specific interface transmits.

**Format**  
show lldp local-device detail <slot/port>

**Default**  
None

**Mode**  
Privileged Exec

**Display Message**

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Identifies the interface that sends the LLDPDU.</td>
</tr>
<tr>
<td>Chassis ID Subtype</td>
<td>Shows the type of identification used in the Chassis ID field.</td>
</tr>
<tr>
<td>Chassis ID</td>
<td>Identifies the chassis of the local device</td>
</tr>
<tr>
<td>Port ID Subtype</td>
<td>Identifies the type of port on the local device.</td>
</tr>
<tr>
<td>Port ID</td>
<td>Shows the port number that transmitted the LLDPDU.</td>
</tr>
<tr>
<td>System Name</td>
<td>Shows the system name of the local device.</td>
</tr>
<tr>
<td>System Description</td>
<td>Describes the local system by identifying the system name and versions of hardware, operating system, and networking software supported in the device.</td>
</tr>
<tr>
<td>Port Description</td>
<td>Describes the port in an alpha-numeric format. The port description is configurable.</td>
</tr>
<tr>
<td>System Capabilities Supported</td>
<td>Indicates the primary function(s) of the device.</td>
</tr>
<tr>
<td>System Capabilities Enabled</td>
<td>Shows which of the supported system capabilities are enabled.</td>
</tr>
<tr>
<td>Management Address</td>
<td>The type of address and the specific address the local LLDP agent uses to send and receive information.</td>
</tr>
<tr>
<td>MAC/PHY Configuration/Status</td>
<td><strong>Auto-Negotitation:</strong> Identifies the auto-negotiation support and current status of the local device.</td>
</tr>
</tbody>
</table>
5.15.8. show lldp dcbx interface

This command is used to display the local Data Center Bridging Capability Exchange (DCBX) control status of an interface on the system.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMD Auto-Negotitation Advertised Capabilities</td>
<td>The duplex and bit-rate capability of the port of the local device.</td>
</tr>
<tr>
<td>Operational MAU Type</td>
<td>Displays the MAU type. The MAU performs physical layer functions, including digital data conversion from the Ethernet interfaces’ collision detection and bit injection into the network.</td>
</tr>
<tr>
<td>Is configuration source selected</td>
<td>Is any interface configured configuration source or not.</td>
</tr>
<tr>
<td>Configuration source port</td>
<td>The interface that is configured as the configuration source.</td>
</tr>
<tr>
<td>Interface</td>
<td>Specifies all the ports on which DCBX can be configured.</td>
</tr>
<tr>
<td>Status</td>
<td>Specifies the DCBX status of the interfaces.</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------------------------</td>
</tr>
<tr>
<td>Role</td>
<td>Specifies the DCBX role on the interfaces.</td>
</tr>
<tr>
<td>Version</td>
<td>Specifies the DCBX version on the interfaces.</td>
</tr>
<tr>
<td>DCBX Tx</td>
<td>Total number of transmitted DCBX TLV(s) on the interfaces.</td>
</tr>
<tr>
<td>DCBX Rx</td>
<td>Total number of received DCBX TLV(s) on the interfaces.</td>
</tr>
<tr>
<td>DCBX Error</td>
<td>Total number of error DCBX TLV(s) on the interfaces.</td>
</tr>
<tr>
<td>unknown TLV</td>
<td>Total number of unknown DCBX TLV(s) on the interfaces.</td>
</tr>
<tr>
<td>DCBX operational status</td>
<td>Specifies the DCBX status of the interface.</td>
</tr>
<tr>
<td>Configured DCBX version</td>
<td>Specifies the DCBX version on this interface.</td>
</tr>
<tr>
<td>Peer DCBX version</td>
<td>Specifies the DCBX version of the peer device.</td>
</tr>
<tr>
<td>Peer MAC</td>
<td>Specifies the MAC address of the peer device.</td>
</tr>
<tr>
<td>Peer Description</td>
<td>Specifies the description of the peer device.</td>
</tr>
<tr>
<td>Auto-configuration Port Role</td>
<td>Specifies the DCBX role on this interface.</td>
</tr>
<tr>
<td>Peer Is configuration Source</td>
<td>Is peer device configured configuration source or not.</td>
</tr>
<tr>
<td>Error counters</td>
<td>Total number of error DCBX TLV(s) on this interface.</td>
</tr>
<tr>
<td>PFC incompatible configuration</td>
<td>Total number of PFC incompatible configuration on this interface.</td>
</tr>
<tr>
<td>Disappearing neighbor</td>
<td>Total number of Disappearing neighbor on this interface.</td>
</tr>
<tr>
<td>Multiple neighbors detected</td>
<td>Total number of Multiple neighbors detected on this interface.</td>
</tr>
<tr>
<td>Local configuration</td>
<td>Specifies the configuration of the local device.</td>
</tr>
<tr>
<td>PFC configuration</td>
<td>Specifies the PFC configuration of the local device.</td>
</tr>
<tr>
<td>Application priority (Tx enabled/disabled)</td>
<td>Specifies the mapping of the specific application to the priority of the local device.</td>
</tr>
<tr>
<td>Peer configuration</td>
<td>Specifies the configuration of the peer device.</td>
</tr>
</tbody>
</table>
### PFC configuration

Specifies the PFC configuration of the peer device.

### Application priority (Tx enabled/disabled)

Specifies the mapping of the specific application to the priority of the peer device.

**Note:** Local DCBX configuration shown is configured according to:

1. Configuration set by user via PFC commands (priority-flow-control) for manual ports. (Note: We currently do not provide command to manually configure local application priority)
2. Configuration propagated internally by the configuration source for auto-down ports and auto-up ports not selected as configuration source.
3. Configuration received from peer for manually selected or auto-detected configuration source.

#### 5.15.9. show lldp tlv-select interface

This command is used to display the DCBX TLV configuration of an interface on the system.

**Format**

```
show lldp tlv-select interface [<slot/port>]
```

**Default**

None

**Mode**

Privileged Exec

**Display Message**

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Specifies all the ports on which DCBX TLV can be configured.</td>
</tr>
<tr>
<td>PFC</td>
<td>Specifies the DCBX priority flow control TLV on the interfaces.</td>
</tr>
<tr>
<td>App priority</td>
<td>Specifies the DCBX application-priority TLV on the interfaces.</td>
</tr>
</tbody>
</table>

#### 5.15.10. show lldp remote-comparison

This command is used to display LLDP comparison between remote & local interface on the system.

**Format**

```
show lldp remote-comparison [<slot/port>]
```

**Default**

None

**Mode**

Privileged Exec
### 5.15.11. `lldp notification`

This command is used to enable remote data change notifications.

**Format**

```
lldp notification
```

**Default**

Disabled

**Mode**

Interface Config

### 5.15.12. `no lldp notification`

This command is used to disable notifications.

**Format**

```
no lldp notification
```

**Mode**

Interface Config

### 5.15.13. `lldp notification-interval`

This command is used to configure how frequently the system sends remote data change notifications. The `<interval-seconds>` parameter is the number of seconds to wait between sending notifications. The valid interval range is 5-3600 seconds.

**Format**

```
lldp notification-interval <interval-seconds>
```

**Default**

5

**Mode**

Global Config

### 5.15.14. `no lldp notification-interval`

This command is used to return the notification interval to the default value.

**Format**

```
no lldp notification-interval
```
5.15.15. **lldp receive**

This command is used to enable the LLDP receive capability.

**Format**  
```
lldp receive
```

**Default**  
Enable

**Mode**  
Interface Config

5.15.16. **no lldp receive**

This command is used to return the reception of LLDPDUs to the default value.

**Format**  
```
no lldp receive
```

**Mode**  
Interface Config

5.15.17. **lldp transmit**

This command is used to enable the LLDP advertise capability.

**Format**  
```
lldp transmit
```

**Default**  
Enable

**Mode**  
Interface Config

5.15.18. **no lldp transmit**

This command is used to return the local data transmission capability to the default.

**Format**  
```
no lldp transmit
```

**Mode**  
Interface Config
5.15.19.  **lldp transmit-mgmt**

This command is used to include transmission of the local system management address information in the LLDPDUs.

**Format**  
lldp transmit-mgmt

**Default**  
None

**Mode**  
Interface Config

5.15.20.  **no lldp transmit-mgmt**

This command is used to cancel inclusion of the management information in LLDPDUs.

**Format**  
no lldp transmit-mgmt

**Mode**  
Interface Config

5.15.21.  **lldp transmit-tlv**

This command is used to specify which optional type length values (TLVs) in the 802.1AB basic management set are transmitted in the LLDPDUs. Use sys-name to transmit the system name TLV. To configure the system name, please refer to “snmp-server” command. Use sys-desc to transmit the system description TLV. Use sys-cap to transmit the system capabilities TLV. Use port-desc to transmit the port description TLV. To configure the port description, please refer to “description” command. Use org-spec to transmit the organization specific TLV.

**Format**  
lldp transmit-tlv [sys-desc] [sys-name] [sys-cap] [port-desc] [org-spec]

**Default**  
None

**Mode**  
Interface Config

5.15.22.  **no lldp transmit-tlv**

This command is used to remove an optional TLV from the LLDPDUs. Use the command without parameters to remove all optional TLVs from the LLDPDU.

**Format**  
no lldp transmit-tlv [sys-desc] [sys-name] [sys-cap] [port-desc] [org-spec]

**Mode**  
Interface Config
5.15.23. lldp timers

This command is used to set the timing parameters for local data transmission on ports enabled for LLDP. The <interval-seconds> determines the number of seconds to wait between transmitting local data LLDPDUs. The range is 5-32768 seconds. The <hold-value> is the multiplier on the transmit interval that sets the TTL in local data LLDPDUs. The multiplier range is 2-10. The <reinit-seconds> is the delay before re-initialization, and the range is 1-10 seconds.

Format lldp timers [interval <interval-seconds>] [hold <hold-value>] [reinit <reinit-seconds>]

Default
Interval-seconds 30
Hold-value 4
Reinit-seconds 2

Mode Global Config

5.15.24. no lldp timers

This command is used to return any or all timing parameters for local data transmission on ports enabled for LLDP to the default values.

Format no lldp timers [interval] [hold] [reinit]

Mode Global Config

5.15.25. lldp tx-delay

This command is used to set the timing parameters for data transmission delay on ports enabled for LLDP. The <delay-seconds> determines the number of seconds to wait between transmitting local data LLDPDUs. The range is 1-8192 seconds.

Format lldp tx-delay <delay-seconds>

Default 2

Mode Global Config

5.15.26. no lldp tx-delay

This command is used to return the transmit delay to the default value.

Format no lldp tx-delay

Mode Global Config
5.15.27. lldp dcbx version

This command is used to support a specific version of the DCBX protocol or to detect the peer version and match it. DCBX can be configured to operate in IEEE mode or CEE mode or CIN. In auto mode, version detection is based on the peer device DCBX version. The switch operates in either IEEE or one of the legacy modes on each interface.

In auto mode, the switch will attempt to jump start the exchange by sending an IEEE frame, followed by a CEE frame followed by a CIN frame. The switch will parse the received response and immediately switch to the peer version.

Format  lldp dcbx version <auto | cee | cin | ieee>

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto</td>
<td>Configure the switch to auto detect the peer DCBX version.</td>
</tr>
<tr>
<td>cee</td>
<td>Configure the switch to operate according to standard cee 1.06.</td>
</tr>
<tr>
<td>cin</td>
<td>Configure the switch to operate according to DCBX standard CIN 1.0.</td>
</tr>
<tr>
<td>ieee</td>
<td>Configure the switch to operate according to standard IEEE 802.1Qaz.</td>
</tr>
</tbody>
</table>

Default  Auto

Mode  Global Config

Note: Application priority is only supported in IEEE mode with application selector 2 (TCP) and 3 (UDP). ACL rules corresponding to the application-to-priority mapping(s) will only be added with application selector 2 and 3; mapping(s) with application selector other than 2 and 3 will be propagated internally and transmitted to peer(s) in application priority TLVs without actual effect in local device.

Current supported TLVs for each version are listed in the table below.

<table>
<thead>
<tr>
<th>version</th>
<th>PFC Configuration</th>
<th>ETS Recommend</th>
<th>Application Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>CIN</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>IEEE</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

5.15.28. no lldp dcbx version

Use the no lldp dcbx version to reset the value to default.

Format  no lldp dcbx version

Mode  Global Config
5.15.29. lldp dcbx port-role

This command is used to configure the port role to manual, auto-upstream, auto-downstream and configuration source. In order to reduce configuration flapping, ports that obtain configuration information from a configuration source port will maintain that configuration for 2x the LLDP timeout, even if the configuration source port becomes operationally disabled.

**Format**  
lldp dcbx port-role <auto-down | auto-up | configuration-source | manual>

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto-down</td>
<td>Configure interface as auto-down stream. Advertises a configuration but is not willing to accept one from the link partner. However, the port will accept a configuration propagated internally by the configuration source. An auto-downstream port that receives an internally propagated configuration overwrites its local configuration with the new parameter values. These ports have the willing bit set to disabled. Selection of a port based upon compatibility of the received configuration is suppressed. These ports should be connected to a trusted FCF.</td>
</tr>
<tr>
<td>auto-up</td>
<td>Configure interface as auto-up stream. Advertises a configuration, but is also willing to accept a configuration from the link-partner and propagate it internally to the auto-downstream ports as well as receive configuration propagated internally by other auto-upstream ports. A port that receives an internally propagated configuration overwrites its local configuration with the new parameter values. The first auto-upstream that is capable of receiving a peer configuration is elected as the configuration source. These ports have the willing bit enabled. These ports should be connected to FCFs.</td>
</tr>
<tr>
<td>configuration-source</td>
<td>Configure interface as configuration source. In this role, the port has been manually selected to be the configuration source. Configuration received over this port is propagated to the other auto-configuration ports. Selection of a port based upon compatibility of the received configuration is suppressed. These ports should be connected to a trusted FCF. These ports have the willing bit enabled. Note that coexistence of configuration sources is not allowed.</td>
</tr>
<tr>
<td>manual</td>
<td>Configure interface as manual port. Ports operating in the Manual role do not have their configuration affected by peer devices or by internal propagation of configuration. These ports will advertise their configuration to their peer if DCBX is enabled on that port. The willing bit is set to disabled on manual role ports.</td>
</tr>
</tbody>
</table>

**Default**  
Manual

**Mode**  
Interface Config

5.15.30. no lldp dcbx port-role

Use the no lldp dcbx port-role to reset this function to default.

**Format**  
no lldp dcbx port-role
5.15.31.  **lldp tlv-select dcbxp**

This command is used to send specific DCBX TLVs if LLDP is enabled to transmit on the given interface.

**Format**  
lldp tlv-select dcbxp [pfc | application-priority]

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>pfc</td>
<td>Transmit DCBX priority flow control TLV.</td>
</tr>
<tr>
<td>application-priority</td>
<td>Transmit DCBX application-priority TLV.</td>
</tr>
</tbody>
</table>

**Default**  
PFC and application priority

**Mode**  
Global Config
Interface Config

**Note:** Application priority is only supported in IEEE mode with application selector 2 (TCP) and 3 (UDP). An IP access list named “AppPriACL” will be created with all auto-ports as inbound interfaces when the configuration source receives such information. ACL rule(s) corresponding to the application-to-priority mapping(s) will only be added with application selector 2 and 3; mapping(s) with other application selectors will be propagated internally and transmitted to peer in application priority TLVs without actual effect in local device. A maximum of 4 application-to-priority mappings are allowed.

5.15.32.  **no lldp tlv-select**

Use the **no lldp tlv-select** to disable LLDP from sending all or individual DCBX TLVs, even if LLDP is enabled for transmission on the given interface.

**Format**  
nolo lldp tlv-select dcbxp [pfc | application-priority]

**Mode**  
Global Config
Interface Config

5.15.33.  **lldp mgmt-address**

This command is used to specify which management address is transmitted in the LLDPDUs.

**Format**  
lldp mgmt-address {vlan | serviceport | sys-mac}
5.15.34. **no lldp mgmt-address**

Use the `no lldp mgmt-address` to reset this function to default value.

**Format**

```
no lldp mgmt-address
```

**Mode**

Global Config

5.15.35. **lldp portid-subtype**

This command is used to configure the port ID subtype field which is used to indicate how the port is being referenced in the Port ID field in LLDPDU.

**Format**

```
lldp portid-subtype {interface-alias | interface-name | mac-address}
```

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface-alias</td>
<td>Interface alias name (configured by “description” CLI command)</td>
</tr>
<tr>
<td>interface-name</td>
<td>Interface system name</td>
</tr>
<tr>
<td>mac-address</td>
<td>MAC address of the physical port</td>
</tr>
</tbody>
</table>

**Default**

Interface-name

**Mode**

Interface Config
5.15.36.  **no lldp portid-subtype**

Use the **no lldp portid-subtype** to reset this function to default value.

**Format**  
no lldp portid-subtype

**Mode**  
Interface Config

5.15.37.  **data-center-bridging**

This command enables the data-center bridging mode. In order to use the Data Center Bridging Capability Exchange (DCBX) command, you must first enable this mode.

**Format**  
data-center-bridging

**Default**  
Disabled

**Mode**  
Interface Config
5.16. System Utilities

This section describes the commands you use to help troubleshoot connectivity issues and to restore various configurations to their factory defaults.

5.16.1. Clear

5.16.1.1. clear arp

This command is used to remove all dynamic ARP entries from the ARP cache.

**Format**

clear arp

**Default**

None

**Mode**

Privileged Exec

5.16.1.2. clear traplog

This command clears the trap log.

**Format**

clear traplog

**Default**

None

**Mode**

Privileged Exec

5.16.1.3. clear eventlog

This command is used to clear the event log, which contains error messages from the system.

**Format**

clear eventlog

**Default**

None

**Mode**

Privileged Exec

5.16.1.4. clear logging buffered

This command is used to clear the message log maintained by the switch. The message log contains system trace information.

**Format**

clear logging buffered
5.16.1.5. clear config

This command resets the configuration to the factory defaults without powering off the switch. You are prompted to confirm if the IP settings of service port would be kept and if the reset should proceed.

Format clear config

Default None
Mode Privileged Exec

5.16.1.6. clear pass

This command resets all user passwords to the factory defaults without powering off the switch. You are prompted to confirm that the password reset should proceed.

Format clear pass

Default None
Mode Privileged Exec

5.16.1.7. clear counters

This command clears the statistics for a specified slot/port, for all the ports, for BHD counter, for loop-detection information, or for an interface on an assigned VLAN based or port channel ID.

Format clear counters [<slot/port> | bhd | port-channel <portchannel-id> | loop-detection | vlan <vlan-id> | all [vrf <vrf-name>]]

Default None
Mode Privileged Exec

5.16.1.8. clear vlan

This command resets VLAN configuration parameters to the factory defaults.

Format clear vlan
5.16.1.9. clear igmp snooping

This command clears IGMP snooping entries from the MFDB table.

Format: clear igmp snooping
Default: None
Mode: Privileged Exec

5.16.1.10. clear ip filter

This command is used to clear all IP filter entries.

Format: clear ip filter
Default: None
Mode: Privileged Exec

5.16.1.11. clear dot1x authentication-history

This command is used to clear 802.1x authentication history table.

Format: clear dot1x authentication-history [slot/port]
Default: None
Mode: Privileged Exec

5.16.1.12. clear radius statistics

This command is used to clear all RADIUS statistics.

Format: clear radius statistics
Default: None
Mode: Privileged Exec
5.16.1.13. clear host

This command is used to delete entries from the host name-to-address cache, and it clears the entries from the DNS cache maintained by the software.

The parameter “hostname” means to deletes the cached entry which matches assigned hostname.

Format clear host <all | hostname >
Default None
Mode Privileged Exec

5.16.1.14. clear port-security dynamic

This command is used to clear an entry of dynamic MAC address in the port security table.

Format clear port-security dynamic [interface {<slot/port> | port-channel <1-64>} | mac-address <mac-address>] [vlan <1-4093>]
Default None
Mode Privileged Exec

5.16.1.15. clear ip arp-cache

This command is used to remove dynamic ARP entries which belong to assigned parameter type from ARP cache.

The parameter “gateway” means to clear the dynamic and gateway entries from the ARP cache.

Format clear ip arp-cache [gateway | interface {<slot/port> | vlan <vlan-id>} | vrf <vrf-name> [gateway]]
Default None
Mode Privileged Exec

5.16.1.16. clear lldp statistics

This command is used to reset LLDP (Link Layer Discovery Protocol) statistics.

Format clear lldp statistics
5.16.1.17. clear lldp remote-data

This command is used to delete all information from the LLDP (Link Layer Discovery Protocol) remote data table, including MED-related information.

**Format**

```
clear lldp remote-data
```

**Default** None

**Mode** Privileged Exec

5.16.1.18. clear ipv6 neighbors

This command is used to clear all entries in IPv6 neighbor table or an entry on a specific interface. Use the <slot/port> parameter to specify the interface.

**Format**

```
clear ipv6 neighbors [<slot/port> | address <ipv6-address> | vlan <1-4093>]
```

**Default** None

**Mode** Privileged Exec

5.16.1.19. clear ipv6 statistics

This command is used to clear IPv6 statistics for all interfaces or for a specific interface, including loopback and tunnel interfaces. IPv6 statistics display in the output of the show ipv6 traffic command. If you do not specify an interface, the counters for all IPv6 traffic statistics are reset to zero.

**Format**

```
clear ipv6 statistics [<slot/port> | loopback <0-63> | tunnel <0-7> | vlan <1-4093>]
```

**Default** None

**Mode** Privileged Exec

5.16.1.20. clear ipv6 dhcp statistics

This command is used to clear DHCPv6 statistics for all interfaces.

**Format**

```
clear ipv6 dhcp statistics
```

**Default** None

**Mode** Privileged Exec
**5.16.1.21. clear ipv6 dhcp statistics per interface**

This command is used to clear DHCPv6 statistics for a specific interface.

**Format**  
clear ipv6 dhcp interface {<slot/port> | vlan <1-4093>} statistics

**Default**  None

**Mode**  Privileged Exec

**5.16.1.22. enable password**

This command changes the password that is used to confirm that the user mode can be upgraded to Privileged EXEC mode. You can configure the format of the password in two ways:

- Type the `passwd` keyword to configure the key in plain text. The text that you type is displayed in asterisk characters. The `<password>` argument must be in alphanumeric characters with a maximum length of 64 characters.

- Type the `passwd 7` keywords to configure the key in encrypted form. The `<password>` argument must be in hexadecimal digits with a length of 128 characters.

**Format**  
[no] enable passwd [7 <password>]

**Default**  None

**Mode**  Global Config

In the following examples, the first example sets the password to “testPassword” in plain text. The second example sets the password to an encrypted string that is fixed at 128 hexadecimal digits.

(M4500-32C) (Config)# enable passwd

Enter new password: ************

Confirm new password: ************

Password Changed!

(M4500-32C) (Config)#
5.16.1.23. clear cpu-traffic counters

This command clears the CPU traffic counters on all interfaces.

**Format**  clear cpu-traffic counters

**Default**  None

**Mode**  Privileged Exec

**Example:**

(M4500-32C) #clear cpu-traffic counters

5.16.1.24. clear cpu-traffic traces

This command clears the CPU traffic traces on all interfaces.

**Format**  clear cpu-traffic traces

**Default**  None

**Mode**  Privileged Exec

**Example:**

(M4500-32C) #clear cpu-traffic traces

5.16.1.25. clear default interface

This command sets interface configurations to default.

**Format**  clear default interface {<slot/port> | loopback <0-63> | port-channel <1-64> | vlan <1-4093>}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;slot/port&gt;</td>
<td>Enter an interface in slot/port format.</td>
</tr>
<tr>
<td>loopback</td>
<td>Configuration of Loopback Interface.</td>
</tr>
</tbody>
</table>
**5.16.1.26. clear network ipv6 dhcp statistics**

This command clears IPv6 DHCP statistics.

**Format**
`clear network ipv6 dhcp statistics`

**Default**
None

**Mode**
Privileged Exec

---

**5.16.2. copy**

This command uploads and downloads files to and from the switch. You can also use the copy command to manage the dual images (active and backup) on the file system. Local URLs can be specified using FTP, TFTP. SFTP and SCP are available as additional transfer methods if the software package supports secure management. If FTP is used, a password is required.

**5.16.2.1. copy source <url>**

This command uploads files from the switch. The parameter *url* can be specified using FTP, TFTP, SCP, or SFTP. If FTP is used, a password is required.

**Format**
`copy source <url>`

**Parameter**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>url</td>
<td>Uploads file using `{tftp://&lt;ipaddress</td>
</tr>
</tbody>
</table>

**Mode**
Privileged EXEC
5.16.2.2. **copy <url>** destination

This command downloads files to the switch. The parameter *url* can be specified using FTP, TFTP, SCP, or SFTP. If FTP, SCP, or SFTP are used, a password is required.

**Format**  
`copy <url> destination`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
</table>
| *url*           | Downloads file using
| {ftp://<ipaddr|ipv6address|%scopeid|hostname>/<filepath>/<filename>| |
| {ftp://<user|@<ipaddr|ipv6address|%scopeid|hostname>/<path>/<filename>|
| {scp://<user|@<ipaddr|ipv6address|%scopeid|hostname>/<path>/<filename>|
| {sftp://<user|@<ipaddr|ipv6address|%scopeid|hostname>/<path>/<filename>|

**Mode**  
Privileged EXEC

**Destination Parameter**  
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>application &lt;destfilename&gt;</td>
<td>Downloads the application file as <em>destfilename</em> file name.</td>
</tr>
<tr>
<td>backup-config</td>
<td>Downloads the Backup Config file.</td>
</tr>
<tr>
<td>clibanner</td>
<td>Downloads the Pre-login Banner file.</td>
</tr>
<tr>
<td>openflow-ssl-ca-cert</td>
<td>Downloads the OpenFlow CA certificate file.</td>
</tr>
<tr>
<td>openflow-ssl-cert</td>
<td>Downloads the OpenFlow switch certificate file.</td>
</tr>
<tr>
<td>openflow-ssl-priv-key</td>
<td>Downloads the OpenFlow private key file.</td>
</tr>
<tr>
<td>publickey-config</td>
<td>Downloads the Public Key for Config Script validation.</td>
</tr>
<tr>
<td>publickey-image</td>
<td>Downloads the Public Key for image.</td>
</tr>
<tr>
<td>script &lt;destfilename&gt;</td>
<td>Downloads the Configuration Script file as <em>destfilename</em> file name.</td>
</tr>
<tr>
<td>sshkey-dsa</td>
<td>Downloads the SSH DSA Key file.</td>
</tr>
<tr>
<td>sshkey-rsa2</td>
<td>Downloads the SSH RSA2 Key file.</td>
</tr>
<tr>
<td>sshkey-user-public-key</td>
<td>Downloads the SSH user Public Key file for the current user. It supports the DSA or RSA Key file of the OpenSSH key format.</td>
</tr>
<tr>
<td>{dsa</td>
<td>rsa}</td>
</tr>
<tr>
<td>sslpem-root</td>
<td>Downloads the SSL root certificate file for the SSL feature of the RESTful API. If both the root certificate and the server key exist, two keys are merged as an ssl.pem file.</td>
</tr>
<tr>
<td>sslpem-server</td>
<td>Download the SSL server key file for the SSL feature of the RESTful API. If both the root certificate and the server key exist, the two keys are merged as an ssl.pem file.</td>
</tr>
<tr>
<td>startup-config</td>
<td>Downloads the Config file as the startup configuration file.</td>
</tr>
</tbody>
</table>

Example: The following shows an example of downloading and applying as users file.

```
(M4500-32C) #
copy tftp://172.20.0.1/id_dsa.pub sshkey-user-public-key dsa
Mode.. TFTP
Set Server IP............................... 172.20.0.1
Path../
```
Filename............................................. id_dsa.pub
Data Type.......................................... SSH User Public DSA key

Management access will be blocked for the duration of the transfer
Are you sure you want to start? (y/n) y

File transfer in progress. Management access will be blocked for the
duration of the transfer. please wait...

User Public Key transfer completely and update key successfully.

5.16.2.3. copy running-config

This command saves the running configuration to NVRAM.

Format  copy running-config {startup-config | url}
Mode    Privileged EXEC

5.16.2.4. copy {startup-config backup-config | backup-config startup-config}

This command manages the dual configurations (startup and backup) on the file system. You can copy startup configuration file to backup or copy backup configuration file to startup.

Format  copy {startup-config {backup-config | <url>} | backup-config {startup-config | <url>}}
Mode    Privileged EXEC

5.16.3. delete

This command deletes the backup image file from the permanent storage or the core dump file from the local file system.

Format  delete {backup | core-dump-file {<filename> | all}}
Mode    Privileged EXEC

5.16.4. erase application

This command erases the application file from the permanent storage.

Format  erase application <filename>
5.16.5. erase startup-config

This command erases the startup-config from the permanent storage.

Format  erase startup-config

5.16.6. erase user public key

This command erases an assigned SSH user public key from the permanent storage, and it only allows user “admin” or public key owner to execute this command.

Format  erase user-public-key <username>

5.16.7. dir

Use this command to list the files in the directory /mnt/fastpath in flash from the CLI.

Format  dir

Mode    Privileged EXEC

Example: The following shows an example of dir.

(M4500-32C) #dir

  12 drwx  0 Mar 11 2000 06:26:20 ..
  11 drwx 16384 Feb 13 2000 11:38:49 lost+found
  12 -rw-  62284359 Feb 13 2000 11:39:26 image1
  14 -rw-  668 Feb 19 2000 05:07:47 ssh_host_dsa_key
  15 -rw-  891 Feb 19 2000 05:07:39 ssh_host_rsa_key
  16 -rw-  222 Feb 19 2000 05:07:39 ssh_host_rsa_key.pub
  17 -rw-  525 Feb 19 2000 05:07:39 ssh_host_key
  18 -rw-  330 Feb 19 2000 05:07:39 ssh_host_key.pub
  19 -rw-  598 Feb 19 2000 05:07:47 ssh_host_dsa_key.pub
  20 -rw-  5 Feb 13 2000 11:41:15 sshkey
 26241 drwx  4096 Feb 13 2000 11:41:21 ruby
 371681 drwx  4096 Feb 13 2000 11:41:23 bootstrap
 379761 drwx  4096 Feb 13 2000 11:41:53 usr
 121201 drwx  4096 Feb 13 2000 11:42:06 python

NETGEAR M4500 Series Switches CLI Command Reference Manual  467
show bootvar

This command is used to display which image was booted when the system powered up.

Format show bootvar

Mode Privileged EXEC

Example: The following shows an example of this command.

(M4500-32C) #show bootvar

Images currently available on Flash

<table>
<thead>
<tr>
<th>unit</th>
<th>active</th>
<th>backup</th>
<th>current-active</th>
<th>next-active</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.0.0.11</td>
<td>&lt;none&gt;</td>
<td>7.0.0.11</td>
<td>7.0.0.11</td>
</tr>
</tbody>
</table>
5.16.9. Ping Commands

Use these commands to determine whether another computer is on the network. A ping provides a synchronous response when initiated from the CLI interface.

5.16.9.1. ping

Use this command to determine whether another computer is on the network. To use this command, configure the switch for network (in-band) connection. The source and target devices must have the ping utility enabled and running on top of TCP/IP. The switch can be pinged from any IP workstation with which the switch is connected through the default VLAN (VLAN 1), as long as there is a physical path between the switch and the workstation. The terminal interface sends, three pings to the target station.

Format

```plaintext
ping [vrf <vrf-name>] [<ip-address> | <ip6addr> | <hostname>] [count <1-15>] [interval <1-60>] [size <0-13000>] [source {<ip-address> | <slot/port> | loopback <loopback-id> | serviceport | vlan <vlan-id>}]
```

Default

The default count is 3.
The default interval is 3 seconds.
The default size is 0 bytes.

Mode

Privileged EXEC
User EXEC

Using the options described below, you can specify the number and size of Echo Requests and the interval between Echo Requests.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf-name</td>
<td>The name of the virtual router in which to initiate the ping. If no virtual router is specified, the ping is initiated in the default router instance.</td>
</tr>
<tr>
<td>count</td>
<td>Use the <strong>count</strong> parameter to specify the number of ping packets (ICMP Echo requests) that are sent to the destination address specified by the ip-address field. The range for count is 1 to 15 requests.</td>
</tr>
<tr>
<td>interval</td>
<td>Use the <strong>interval</strong> parameter to specify the time between Echo Requests, in seconds. Range is 1 to 60 seconds.</td>
</tr>
<tr>
<td>size</td>
<td>Use the <strong>size</strong> parameter to specify the size, in bytes, of the payload of the Echo Requests sent. Range is 0 to 13000 bytes.</td>
</tr>
<tr>
<td>source</td>
<td>Use the <strong>source</strong> parameter to specify the source IP/IPv6 address or interface to use when sending the Echo requests packets.</td>
</tr>
</tbody>
</table>

5.16.9.2. ping ipv6

Use this command to determine whether another computer is on the network. Ping provides a synchronous response when initiated from the CLI interface. To use the command, configure the switch for network (in-band) connection. The source and target devices must have the ping utility enabled and running on top of TCP/IP. The switch can be pinged from any IP workstation with which the switch is connected through the default VLAN (VLAN 1), as long as there is a physical path between the switch and the workstation. The terminal interface
sends three pings to the target station. Use the `ipv6-address/hostname` parameter to ping an interface by using the global IPv6 address of the interface. Use the optional `size` keyword to specify the size of the ping packet.

You can utilize the ping or traceroute facilities over the service/network ports when using an IPv6 global address `ipv6-address/hostname`. Any IPv6 global address or gateway assignments to these interfaces will cause IPv6 routes to be installed within the IP stack such that the ping or traceroute request is routed out the service/network port properly. When referencing an IPv6 link-local address, you must also specify the service or network port interface by using the `serviceport` or `network` parameter.

**Format**
```
ping ipv6 <ipv6-address | hostname> [count <1-15>] [interval <1-60>] [size <0-13000>] [source {< ip-address> | <slot/port> | loopback <loopback-id> | serviceport | tunnel <tunnel-id> | vlan <vlan-id>}]
```

**Default**
The default count is 3.
The default interval is 3 seconds.
The default size is 0 bytes.

**Mode**
Privileged EXEC
User EXEC

### 5.16.9.3. ping ipv6 interface

This command use to determine whether another computer is on the network. To use the command, configure the switch for network (in-band) connection. The source and target devices must have the ping utility enabled and running on top of TCP/IP. The switch can be pinged from any IP workstation with which the switch is connected through the default VLAN (VLAN 1), as long as there is a physical path between the switch and the workstation. The terminal interface sends three pings to the target station. Use the `interface` keyword to ping an interface by using the link-local address or the global IPv6 address of the interface. You can use a loopback, network port, serviceport, tunnel, or physical interface as the source. Use the optional `size` keyword to specify the size of the ping packet. The `ipv6-address` is the link local IPv6 address of the device you want to query.

**Format**
```
ping ipv6 interface {<slot/port> | loopback <loopback-id> | serviceport | tunnel <tunnel-id> | vlan <vlan-id>} <link-local-address> [count <1-15>] [interval <1-60>] [size <0-13000>] [source {< ip-address> | <slot/port> | loopback <loopback-id> | serviceport | tunnel <tunnel-id> | vlan <vlan-id>}]
```

**Default**
The default count is 3.
The default interval is 3 seconds.
The default size is 0 bytes.

**Mode**
Privileged EXEC
User EXEC
5.16.10.  Traceroute

5.16.10.1.  traceroute

Use the traceroute command to discover the routes that packets actually take when traveling to their destination through the network on a hop-by-hop basis. Traceroute continues to provide a synchronous response when initiated from the CLI.

Format  traceroute [vrf <vrf-name>] <ip-address | hostname> [initTtl <initTtl>] [maxTtl <maxTtl>] [maxFail <maxFail>] [interval <interval>] [count <count>] [port <port>] [size <size>] [source {< ip-address> | <slot/port> | loopback <loopback-id> | serviceport | tunnel <tunnel-id> | vlan <vlan-id>)]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf-name</td>
<td>The name of the virtual router in which to initiate traceroute. Only hosts reachable from within the VRF instance can be tracerouted. If a source parameter is specified in conjunction with a vrf parameter, it must be a member of the VRF. The ipv6 parameter cannot be used in conjunction with the vrf parameter.</td>
</tr>
<tr>
<td>initTtl</td>
<td>Use initTtl to specify the initial time-to-live (TTL), the maximum number of router hops between the local and remote system. Range is 0 to 255.</td>
</tr>
<tr>
<td>maxTtl</td>
<td>Use maxTtl to specify the maximum TTL. Range is 1 to 255.</td>
</tr>
<tr>
<td>maxFail</td>
<td>Use maxFail to terminate the traceroute after failing to receive a response for this number of consecutive probes. Range is 0 to 255.</td>
</tr>
<tr>
<td>port</td>
<td>Use the optional port parameter to specify destination UDP port of the probe. This should be an unused port on the remote destination system. Range is 1 to 65535.</td>
</tr>
<tr>
<td>count</td>
<td>Use the count parameter to specify the number of probes per hop. The range for count is 1 to 10.</td>
</tr>
<tr>
<td>interval</td>
<td>Use the interval parameter to specify the time between probes, in seconds. If traceroute does receive a response to a probe within this interval, then it sends the next probe immediately. Range is 1 to 60 seconds.</td>
</tr>
<tr>
<td>size</td>
<td>Use the size parameter to specify the size of probe packets, in bytes. Range is 0 to 39936 bytes.</td>
</tr>
<tr>
<td>source</td>
<td>Use the source parameter to specify the source IP/IPv6 address or interface to use for the traceroute.</td>
</tr>
</tbody>
</table>

Default  The default initTtl is 1.
          The default maxTtl is 30.
          The default maxFail is 5.
          The default interval is 3 seconds.
          The default count is 3.
          The default port is 33434.
          The default size is 0 bytes.

Mode     Privileged EXEC
5.16.10.2. traceroute ipv6

Use the traceroute command to discover the routes that packets actually take when traveling to their destination through the network on a hop-by-hop basis. The <ipv6-address|hostname> parameter must be a valid IPv6 address|hostname.

**Format**

```
traceroute ipv6 <ipv6-address | hostname> [initTtl <initTtl>] [maxTtl <maxTtl>] [maxFail <maxFail>] [interval <interval>] [count <count>] [port <port>] [size <size>] [source {< ipv6-address> | <slot/port> | loopback <loopback-id> | serviceport | tunnel <tunnel-id> | vlan <vlan-id>}]```

Default

The default initTtl is 1.
The default maxTtl is 30.
The default maxFail is 5.
The default interval is 3 seconds.
The default count is 3.
The default port is 33434.
The default size is 0 bytes.

Mode

Privileged EXEC

5.16.11. reload

This command resets the switch without powering it off. Reset means that all network connections are terminated and the boot code executes. The switch uses the stored configuration to initialize the switch. You are prompted to confirm that the reset should proceed. The LEDs on the switch indicate a successful reset.

If ONIE is installed, the os parameter is added to the reload command. This parameter enables the user to boot back into ONIE.

Format

```
reload [warm | configuration [scriptname] | os]```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
</table>
| warm      | When the Warm Reload feature is present, the reload command adds the warm option. This option reduces the time it takes to reboot a Linux switch, thereby reducing the traffic disruption in the network during a switch reboot. For a typical Linux Enterprise switch, the traffic disruption is reduced from about two minutes for a cold reboot to about 20 seconds for a warm reboot.  
  
  Note: The Warm Reload starts only the application process. The Warm Reload does not restart the boot code, the Linux kernel and the root file system. Since the Warm Reload does not restart all components, some code upgrades require that customers perform a cold reboot.  
  
  Note: Warm resets can only be initiated by the administrator and do not occur automatically. |
|           |            |
### configure

This command is used to activate global configuration mode.

**Format**  
Configure

**Default**  
None

**Mode**  
Privileged Exec

### disconnect

This command is used to close a remote console session.

**Format**  
disconnect {<0-30> | all}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;0-30&gt;</td>
<td>Remote session ID.</td>
</tr>
<tr>
<td>all</td>
<td>All remote sessions.</td>
</tr>
</tbody>
</table>

**Default**  
None

**Mode**  
Privileged Exec

### hostname

This command is used to set the system hostname. It also changes the prompt string. The length of name is up to 64 alphanumeric, case-sensitive characters.

**Format**  
hostname <hostname>

**Default**  
M4500-32C or M4500-48XF8C
Mode: Global Config

### 5.16.15. quit

This command is used to exit a CLI session.

**Format:** quit

**Default:** None

**Mode:** Privileged Exec

### 5.16.16. AutoInstall commands

#### 5.16.16.1. show autoinstall

This command displays the current status of the AutoInstall process.

**Format:** show autoinstall

**Default:** None

**Mode:** Privileged Exec

**Display Message**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoInstall Operation</td>
<td>Displays the autoinstall operation is started or stopped.</td>
</tr>
<tr>
<td>AutoInstall Persistent Mode</td>
<td>Displays the autoinstall persistently for next reboot cycle.</td>
</tr>
<tr>
<td>AutoSave Mode</td>
<td>Displays the auto-save of downloaded configuration.</td>
</tr>
<tr>
<td>AutoReboot Mode</td>
<td>Displays the auto-reboot, which is used to allow the switch to automatically reboot after successfully downloading an image.</td>
</tr>
<tr>
<td>AutoUpgrade Mode</td>
<td>Displays the upgrade mode, which is used to allow to download the newer image.</td>
</tr>
<tr>
<td>AutoInstall Retry Count</td>
<td>Retry Count The number of times the switch has attempted to contact the TFTP server during the current AutoInstall session.</td>
</tr>
<tr>
<td>AutoInstall State</td>
<td>Displays the status of autoinstall.</td>
</tr>
</tbody>
</table>
5.16.16.2. **boot-system autoinstall**

Use this command to operationally start or stop the AutoInstall process on the switch. The command is non-persistent and is not saved in the startup or running configuration file.

**Format**  
`boot-system autoinstall { start | stop }`

**Default**  
None

**Mode**  
Privileged Exec

5.16.16.3. **boot-system host autoinstall**

Use this command to enable AutoInstall on the switch for the next reboot cycle. The command does not change the current behavior of AutoInstall and saves the command to NVRAM.

**Format**  
`boot-system host autoinstall`

**Default**  
None

**Mode**  
Privileged Exec

5.16.16.4. **no boot-system host autoinstall**

Use this command to disable AutoInstall for the next reboot cycle.

**Format**  
`no boot-system host autoinstall`

**Mode**  
Privileged Exec

5.16.16.5. **boot-system host autosave**

Use this command to automatically save the downloaded configuration file to the startup-config file on the switch. When autosave is disabled, you must explicitly save the downloaded configuration to non-volatile memory. If the switch reboots and the downloaded configuration has not been saved, the AutoInstall process begins, if the feature is enabled.

**Format**  
`boot-system host autosave`

**Default**  
None

**Mode**  
Privileged Exec
5.16.16.6.  **no boot-system host autosave**

Use this command to disable automatically saving the downloaded configuration on the switch.

**Format**  no boot-system host autosave

**Mode**  Privileged Exec

5.16.16.7.  **boot-system host autoreboot**

Use this command to allow the switch to automatically reboot after successfully downloading an image. When auto reboot is enabled, no administrative action is required to activate the image and reload the switch.

This command only work on the autoupgrade is enabled.

**Format**  boot-system host autoreboot

**Default**  None

**Mode**  Privileged Exec

5.16.16.8.  **no boot-system host autoreboot**

Use this command to prevent the switch from automatically rebooting after the image is downloaded by using the AutoInstall feature.

**Format**  no boot-system host autoreboot

**Mode**  Privileged Exec

5.16.16.9.  **boot-system host upgrade**

Use this command to allow the switch only to upgrade the newer image version.

**Format**  boot-system host upgrade

**Default**  None

**Mode**  Privileged Exec
5.16.10.  *no boot-system host upgrade*

Use this command to disable this function.

**Format**  no boot-system host upgrade

**Mode**  Privileged Exec

5.16.11.  *boot-system host retrycount*

Use this command to set the number of attempts to download a configuration file from the TFTP server.

**Format**  boot-system host retrycount <1-3>

**Default**  3

**Mode**  Privileged Exec

5.16.17.  **Capture CPU packet commands**

5.16.17.1.  *show capture*

Use this command to display packets captured and save to RAM. It is possible to capture and save into RAM, packets that are received or transmitted through the CPU. A maximum 128 packets can be saved into RAM per capturing session. A maximum 128 bytes per packet can be saved into the RAM. If a packet holds more than 128 bytes, only the first 128 bytes are saved; data more than 128 bytes is skipped and cannot be displayed in the CLI.

Capturing packets is stopped automatically when 128 packets are captured and have not yet been displayed during a capture session. Captured packets are not retained after a reload cycle.

**Format**  show capture [packets]

**Default**  None

**Mode**  Privileged Exec

**Display Message**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;packets&gt;</td>
<td>Specifies this parameter to display the captured packets on the CLI.</td>
</tr>
<tr>
<td>Operational Status</td>
<td>Displays capture status.</td>
</tr>
<tr>
<td>Current Capturing Type</td>
<td>Displays the current capturing type. Possible types are Line, File, and Remote.</td>
</tr>
<tr>
<td>Capturing Traffic Mode</td>
<td>Displays the capturing traffic mode. Possible modes are Rx, Tx, or Tx/Rx.</td>
</tr>
</tbody>
</table>
Use this command to manually start capturing CPU packets for packet trace. The packet capture operates in three modes:

- capture file
- remote capture
- capture line

This command is not persistent across a reboot cycle.

**Format**
capture start [[all | received | transmit]]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Specifies all to capture packets for both transmitted and received packets.</td>
</tr>
<tr>
<td>received</td>
<td>Specifies received to capture only received packets.</td>
</tr>
<tr>
<td>transmit</td>
<td>Specifies transmit to capture only transmitted packets.</td>
</tr>
</tbody>
</table>

**Default** None

**Mode** Privileged Exec

### 5.16.17.3. capture stop

Use this command to manually stop capturing CPU packets for packet trace.

**Format**
capture stop

**Default** None

**Mode** Privileged Exec
5.16.17.4. capture {file | remote | line}

Use this command to configure packet capture options. This command is persistent across a reboot cycle.

Format  capture {file | remote | line}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>file</td>
<td>In the capture file mode, the captured packets are stored in a file. The maximum file size defaults to 512KB. The switch can transfer the file to a TFTP server via TFTP, FTP via CLI. The file is formatted in pcap format, is name cpu-pkt-capture.pcap, and can be examined using network analyzer tools such as Wireshark or Ethereal. Starting a file capture automatically terminates any remote capture session and line capturing. After the packet capture is activated, the capture proceeds until the capture file reaches its maximum size, or until the capture is stopped manually using CLI command <strong>capture stop</strong>.</td>
</tr>
<tr>
<td>Remote</td>
<td>In the remote capture mode, the captured packets are redirected in real time to an external PC running the wireshark tool for Microsoft Windows. A packet capture server runs on the switch side and sends the captured packets via a TCP connection to the Wireshark tool. The remote capture can be enabled or disable using the CLI. There should be a Windows PC with the Wireshark tool to display the captured file. When using the remote capture mode, the switch does not store any captured data locally on its file system.</td>
</tr>
<tr>
<td>line</td>
<td>In the capture line mode, the captured packets are saved into the RAM and can be displayed on the CLI. Starting a line capture automatically terminates any remote capture session and capturing into a file. There is a maximum 128 packets of maximum 128 bytes that can be captured and displayed in Line mode.</td>
</tr>
</tbody>
</table>

Default  Remote

Mode  Global Config

5.16.17.5. capture remote port

Use this command to configure file capture options. This command is persistent across a reboot cycle.

Format  capture remote [port <port-id>]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;port-id&gt;</td>
<td>Configure the listening TCP port. The range of port ID is 1024 to 49151.</td>
</tr>
</tbody>
</table>

Default  2002

Mode  Global Config
5.16.17.6. capture file size

Use this command to configure file capture options. This command is persistent across a reboot cycle.

Format capture file [size <file-size>]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;file-size&gt;</td>
<td>Configure the file size in KB. The range of file size is 2 to 512KB.</td>
</tr>
</tbody>
</table>

Default 512

Mode Global Config

5.16.17.7. capture line wrap

This command enables wrapping of captured packets in line mode when the captured packets reaches full capacity. This command is persistent across a reboot cycle.

Format capture line [wrap]

Default Disable

Mode Global Config

5.16.17.8. no capture line wrap

This command disables wrapping of captured packets and configures capture packet to stop when the captured packet capacity is full.

Format no capture line wrap

Mode Global Config

5.16.18. set clibanner

This command is used to set the pre-login CLI banner before displaying the login prompt.

Format set clibanner <line>

Default None

Mode Global Config
5.16.19. **no set clibanner**

This command unconfigures the pre-login CLI banner.

**Format**  
no set clibanner

**Mode**  
Global Config

5.16.20. **show clibanner**

Use this command to display the configured pre-login CLI banner. The pre-login banner is the text that displays before displaying the CLI prompt.

**Format**  
show clibanner

**Default**  
No contents to display before displaying the login prompt.

**Mode**  
Privileged Exec

5.16.21. **Link-Flap commands**

5.16.21.1. **show link-flap**

Use this command to check the admin status and configured parameters of link-flap.

**Format**  
show link-flap

**Mode**  
Privileged Exec

**Display Message**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin status</td>
<td>Displays the admin state of link-flap.</td>
</tr>
<tr>
<td>Maximum flap count</td>
<td>Displays maximal allowed number of link-flap in the detection duration</td>
</tr>
<tr>
<td>Detection duration</td>
<td>Displays the time (in seconds) of duration for detecting link-flap</td>
</tr>
</tbody>
</table>
5.16.21.2. link-flap

Use this command to enable Link-Flap functionality and configure the maximum allowed link-flap times and the detection duration.

Use no form of this command to reset to default.

**Format**  

```markdown
[no] link-flap [<3-10> [<5-30>]]
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;3-10&gt;</td>
<td>Configure the maximum allowed link-flap times before the interface is put into err-disabled state. (Default is 3)</td>
</tr>
<tr>
<td>&lt;5-30&gt;</td>
<td>Configure the error detection duration in seconds. (Default is 10)</td>
</tr>
</tbody>
</table>

**Default**  

Disabled

**Mode**  

Global Config

5.16.22. Loop Detection commands

5.16.22.1. show loop-detection

Use this command to display the admin status and configured parameters of loop detection.

**Format**  

```markdown
show loop-detection
```

**Mode**  

Privileged Exec

**Display Message**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin status</td>
<td>Displays the admin state of loop detection</td>
</tr>
<tr>
<td>Transmit interval</td>
<td>Displays the interval between transmission of PDUs (in second)</td>
</tr>
<tr>
<td>Max PDU Receive</td>
<td>Displays the maximal number of PDU to be received by switch before an action is taken on the interface</td>
</tr>
</tbody>
</table>

5.16.22.2. show loop-detection statistics

Use this command to display the statistics of loop detection for all ports or specific interfaces.

**Format**  

```markdown
show loop-detection statistics {<intf-range> | all}
```

**Mode**  

Privileged Exec
### Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>The slot and port associated with the interface.</td>
</tr>
<tr>
<td>Admin Status</td>
<td>Shows whether the specified port is enabled or disabled.</td>
</tr>
<tr>
<td>Loop Detected</td>
<td>The loop presence on the specified port.</td>
</tr>
<tr>
<td>Loop Count</td>
<td>The loop count for the specified port.</td>
</tr>
<tr>
<td>Time Since Last Loop</td>
<td>The time since the last loop occurred for the specified port.</td>
</tr>
<tr>
<td>Rx Action</td>
<td>The action mode for the specified port.</td>
</tr>
<tr>
<td>Port Status</td>
<td>The admin state of the specified interface.</td>
</tr>
</tbody>
</table>

### 5.16.22.3. loop-detection (Global Config)

Use this command to enable loop-detection functionality and configure the transmission interval and the maximal packets to be received before an action is taken.

Use no form of this command to reset to default.

**Format**  

```
[no] loop-detection [<1-10> [1-10]]
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;1-10&gt;</td>
<td>Configure the interval between transmission of PDUs in second (Default is 5)</td>
</tr>
<tr>
<td>&lt;1-10&gt;</td>
<td>Configure the maximal number of PDU to be received by switch before an action is taken on the interface (Default is 1)</td>
</tr>
</tbody>
</table>

**Default**  

Disabled

**Mode**  

Global Config
5.16.22.4.  **loop-detection (Interface Config)**

Use this command to enable loop-detection on the interface.

Use no form of this command to reset to default.

**Format**  
[no] loop-detection

**Default**  
Disabled

**Mode**  
Interface Config

5.16.22.5.  **loop-detection action**

Use this command to configure the action to be taken on an interface when a loop is detected.

Use no form of this command to reset to default.

**Format**  
[no] loop-detection action {both | disable | log}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>both</td>
<td>Logs and disables the port</td>
</tr>
<tr>
<td>disable</td>
<td>Shuts down the port. This is the default</td>
</tr>
<tr>
<td>log</td>
<td>Only logs the message. The log mode only logs the message to buffer logs without bringing the port down</td>
</tr>
</tbody>
</table>

**Default**  
both

**Mode**  
Interface Config

5.16.23.  **In-Service Software Upgrade**

The in-service software upgrade (ISSU) feature allows users to upgrade the switch software without interrupting data forwarding through the switch.

The goal of ISSU is to maintain Ethernet data connectivity with the servers attached to TOR switches while the TOR switch software is being upgraded. A software upgrade that requires a reboot or a kernel upgrade is not supported via ISSU.

During the ISSU process, management to the switch is disrupted. After the upgrade, users must log on to the switch again and re-authenticate to resume any switch management session.

The ISSU feature is available only on x86 platforms. As of the current QNOS release, the following features support ISSU:

L2 FDB, RSTP, MSTP, 802.1Q, 802.3AD, ARP, Routing Interfaces, NDP Cache, BGP with GR, and VRF
Any feature not listed above is ISSU unaware. This means that the feature does not distinguish between an ISSU restart and a normal restart. A feature that is not ISSU-aware tends to initialize afresh without the knowledge of previous active instance of the same and can cause traffic disruption during initialization.

### 5.16.23.1. show issu status

Use this command to display the current ISSU status summary.

**Format**  
show issu status

**Mode**  
Privileged Exec

**Example:**

(Switch) #show issu status

Last reset reason: Normal

Current state: In Service Software Upgrade not started

Time elapsed since ISSU initiation: 0 minutes 0 seconds

(Switch) #

### 5.16.23.2. show issu status details

Use this command to display the ISSU event logs in chronological order.

**Format**  
show issu status detail

**Mode**  
Privileged Exec

**Example:**

(Switch) #show issu status detail

<table>
<thead>
<tr>
<th>Timestamp</th>
<th>State</th>
<th>Time elapsed</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 22 06:44:13 2019</td>
<td>ISSU initiated, storing application data</td>
<td>0m 0s</td>
</tr>
<tr>
<td>May 22 06:44:20 2019</td>
<td>Application data stored</td>
<td>0m 7s</td>
</tr>
</tbody>
</table>

(Switch) #

### 5.16.24. file verify

This command enables digital signature verification while a configuration script file is downloaded to the switch.

**Format**  
file verify {script | none}
**no file verify**

**Default**  None

**Mode**  Global Config

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>script</td>
<td>Verify the digital signature of configuration script files.</td>
</tr>
<tr>
<td>none</td>
<td>Disable digital signature verification for configuration script files.</td>
</tr>
</tbody>
</table>
5.17. DHCP Snooping Commands

DHCP snooping is a security feature that monitors DHCP messages between a DHCP client and DHCP servers to filter harmful DHCP messages and to build a bindings database of (MAC address, IP address, VLAN ID, port) tuples that are considered authorized. You can enable DHCP snooping globally and on specific VLANs, and configure ports within the VLAN to be trusted or untrusted. DHCP servers must be reached through trusted ports.

The DHCP snooping binding table contains the MAC address, IP address, lease time, binding type, VLAN number, and interface information that corresponds to the local untrusted interfaces of a switch; it does not contain information regarding hosts interconnected with a trusted interface. An untrusted interface is an interface that is configured to receive messages from outside the network or firewall. A trusted interface is an interface that is configured to receive only messages from within the network.

DHCP snooping acts like a firewall between untrusted hosts and DHCP servers. It also gives you a way to differentiate between untrusted interfaces connected to the end-user and trusted interfaces connected to the DHCP server or another switch.

DHCP snooping enforces the following security rules:

DHCP packets from a DHCP server (DHCPoffer, DHCPACK, DHCPNAK, DHCPRELEASEQUERY) are dropped if received on an untrusted port.

DHCPRELEASE and DHCPDECLINE messages are dropped if for a MAC address in the snooping database, but the binding’s interface is other than the interface where the message was received.

On untrusted interfaces, the switch drops DHCP packets whose source MAC address does not match the client hardware address. This feature is a configurable option.

The hardware identifies all incoming DHCP packets on ports where DHCP snooping is enabled. DHCP snooping is enabled on a port if (a) DHCP snooping is enabled globally, and (b) the port is a member of a VLAN where DHCP snooping is enabled. On untrusted ports, the hardware traps all incoming DHCP packets to the CPU. On trusted ports, the hardware forwards client messages and copies server messages to the CPU so that DHCP snooping can learn the binding.

You can enable the switch to operate as a DHCP Layer 2 relay agent to relay DHCP requests from clients to a Layer 3 relay agent or server. The Circuit ID and Remote ID can be added to DHCP requests relayed from clients to a DHCP server. This information is included in DHCP Option 82, as specified in sections 3.1 and 3.2 of RFC3046.

5.17.1. show ip dhcp snooping

This command displays the DHCP snooping global configurations and summaries of port configurations.

**Format**  
show ip dhcp snooping

**Default**  
None

**Mode**  
Privileged Exec
Example:

(M4500-32C) #show ip dhcp snooping

DHCP snooping is Enabled
DHCP snooping source MAC verification is enabled
DHCP snooping is enabled on the following VLANs:
  1

<table>
<thead>
<tr>
<th>Interface</th>
<th>Trusted</th>
<th>Log Invalid Pkts</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>0/2</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>0/3</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>0/4</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>0/5</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>0/6</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>0/7</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>0/8</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>0/9</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>0/10</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>0/11</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>0/12</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>0/13</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>0/14</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>0/15</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

(M4500-32C) #

5.17.2. show ip dhcp snooping per interface

This command displays the DHCP snooping detail configurations for all interfaces or for a specific interface.

**Format**  show ip dhcp snooping interfaces [slot/port | port-channel <portchannel-id>]

**Default**  None

**Mode**  Privileged Exec

Example:

(M4500-32C) #show ip dhcp snooping interfaces

<table>
<thead>
<tr>
<th>Interface</th>
<th>Trust State</th>
<th>Rate Limit (pps)</th>
<th>Burst Interval (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1</td>
<td>Yes</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>0/2</td>
<td>No</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>0/3</td>
<td>No</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>0/4</td>
<td>No</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>0/5</td>
<td>No</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>0/6</td>
<td>No</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>0/7</td>
<td>No</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>0/8</td>
<td>No</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>0/9</td>
<td>No</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>0/10</td>
<td>No</td>
<td>None</td>
<td>N/A</td>
</tr>
</tbody>
</table>
5.17.3. show ip dhcp snooping binding

This command displays the DHCP Snooping binding entries.

The parameter “static” means to restrict the output based on static entries which are added by user manually.

The parameter “dynamic” means to restrict the output based on dynamic entries which are added by DHCP Snooping automatically.

**Format**  
```
show ip dhcp snooping binding [{static | dynamic}] [interface {<slot/port> | port-channel <portchannel-id>}] [vlan <vlan-id>]
```

**Default**  
None

**Mode**  
Privileged Exec

**Example:**

```
(M4500-32C) #show ip dhcp snooping binding

Total number of bindings: 363
Total number of Tentative bindings: 61
```

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>IP Address</th>
<th>VLAN</th>
<th>Interface</th>
<th>Type</th>
<th>Lease (Secs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>44:0A:A7:8A:00:00</td>
<td>10.10.1.6</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
<tr>
<td>44:0A:A7:8A:00:01</td>
<td>10.10.1.8</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
<tr>
<td>44:0A:A7:8A:00:02</td>
<td>10.10.1.10</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
<tr>
<td>44:0A:A7:8A:00:03</td>
<td>10.10.1.11</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
<tr>
<td>44:0A:A7:8A:00:04</td>
<td>10.10.1.12</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
<tr>
<td>44:0A:A7:8A:00:05</td>
<td>10.10.1.13</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
<tr>
<td>44:0A:A7:8A:01:00</td>
<td>10.10.1.2</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
<tr>
<td>44:0A:A7:8A:01:01</td>
<td>10.10.1.3</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
<tr>
<td>44:0A:A7:8A:01:02</td>
<td>10.10.1.4</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
<tr>
<td>44:0A:A7:8A:01:03</td>
<td>10.10.1.5</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
<tr>
<td>44:0A:A7:8A:01:04</td>
<td>10.10.1.7</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
<tr>
<td>44:0A:A7:8A:01:05</td>
<td>10.10.1.9</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
<tr>
<td>44:0A:A7:8A:02:00</td>
<td>10.10.1.20</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
<tr>
<td>44:0A:A7:8A:02:01</td>
<td>10.10.1.21</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
<tr>
<td>44:0A:A7:8A:02:02</td>
<td>10.10.1.22</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
<tr>
<td>44:0A:A7:8A:02:03</td>
<td>10.10.1.23</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
</tbody>
</table>
5.17.4. show ip dhcp snooping database

This command displays the DHCP Snooping configuration related to the database persistency.

Format    show ip dhcp snooping database
Default   None
Mode      Privileged Exec

Example:

(M4500-32C) #show ip dhcp snooping database
agent url: local
write-delay: 300

(M4500-32C) #

5.17.5. show ip dhcp snooping information all

This command displays the summaries of DHCP Option-82 configurations.

Format    show ip dhcp snooping information all
Default   None
Mode      Privileged Exec

Example:

(M4500-32C) #show ip dhcp snooping information all

DHCP Information Option82 is Enabled.

<table>
<thead>
<tr>
<th>Interface</th>
<th>OPT82 Mode</th>
<th>TrustMode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1</td>
<td>Enabled</td>
<td>trusted</td>
</tr>
<tr>
<td>0/2</td>
<td>Disabled</td>
<td>untrusted</td>
</tr>
<tr>
<td>0/3</td>
<td>Disabled</td>
<td>untrusted</td>
</tr>
<tr>
<td>0/4</td>
<td>Disabled</td>
<td>untrusted</td>
</tr>
<tr>
<td>0/5</td>
<td>Disabled</td>
<td>untrusted</td>
</tr>
<tr>
<td>0/6</td>
<td>Disabled</td>
<td>untrusted</td>
</tr>
<tr>
<td>0/7</td>
<td>Disabled</td>
<td>untrusted</td>
</tr>
<tr>
<td>0/8</td>
<td>Disabled</td>
<td>untrusted</td>
</tr>
<tr>
<td>0/9</td>
<td>Disabled</td>
<td>untrusted</td>
</tr>
<tr>
<td>0/10</td>
<td>Disabled</td>
<td>untrusted</td>
</tr>
<tr>
<td>0/11</td>
<td>Disabled</td>
<td>untrusted</td>
</tr>
</tbody>
</table>
5.17.6. show ip dhcp snooping information statistics

This command displays DHCP Option-82 statistics per interface.

Format  show ip dhcp snooping information stats interface {<slot/port> | all}

Default  None

Mode  Privileged Exec

Example:

(M4500-32C) #show ip dhcp snooping information stats interface all

<table>
<thead>
<tr>
<th>Interface</th>
<th>UntrustedServer MsgsWithOpt82</th>
<th>UntrustedClient MsgsWithOpt82</th>
<th>TrustedServer MsgsWithoutOpt82</th>
<th>TrustedClient MsgsWithoutOpt82</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0/19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(M4500-32C) #
5.17.7. show ip dhcp snooping information agent-option

This command displays the Option-82 configurations of DHCP Relay agent on specific VLAN.

Format  show ip dhcp snooping information agent-option vlan <vlan-list>

Default  None

Mode  Privileged Exec

Example:

(M4500-32C) # show ip dhcp snooping information agent-option vlan 1

DHCP Information Option82 is Enabled.

<table>
<thead>
<tr>
<th>VLAN Id</th>
<th>DHCP OPT82</th>
<th>CircuitId</th>
<th>RemoteId</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enabled</td>
<td>Enabled</td>
<td>testRemoteIdString</td>
</tr>
</tbody>
</table>

(M4500-32C) #

5.17.8. show ip dhcp snooping information per vlan

This command displays the DHCP Option-82 configurations per specific VLAN.

Format  show ip dhcp snooping information vlan <vlan-list>

Default  None

Mode  Privileged Exec

Example:

(M4500-32C) # show ip dhcp snooping information vlan 1

DHCP Information Option82 is Enabled.

DHCP L2 Relay is enabled on the following VLANs:

1

(M4500-32C) #

5.17.9. show ip dhcp snooping information circuit-id

This command displays the circuit-id configuration of DHCP Option-82 per specific VLAN.

Format  show ip dhcp snooping information circuit-id vlan <vlan-list>
Default  None
Mode       Privileged Exec

Example:
(M4500-32C) # show ip dhcp snooping information circuit-id vlan 1
DHCP Information Option82 is Enabled.
DHCP Circuit-Id option is enabled on the following VLANs:
1
(M4500-32C) #

5.17.10.  **show ip dhcp snooping information remote-id**

This command displays the remote-id configuration of DHCP Option-82 per specific VLAN.

**Format**  show ip dhcp snooping information remote-id vlan <vlan-list>

**Default**  None

**Mode**       Privileged Exec

Example:
(M4500-32C) # show ip dhcp snooping information remote-id vlan 1
DHCP Information Option82 is Enabled.

VLAN ID    Remote Id
---------    ----------------------
1          testRemoteIdString

(M4500-32C) #

5.17.11. **show ip dhcp snooping information interface**

This command displays the remote-id configuration of DHCP Option-82 per interface.

**Format**  show ip dhcp snooping information interface {<slot/port> | all}

**Default**  None

**Mode**       Privileged Exec

Example:
(M4500-32C) #show ip dhcp snooping information interface 0/1
DHCP Information Option82 is Enabled.

<table>
<thead>
<tr>
<th>Interface</th>
<th>OPT82 Mode</th>
<th>TrustMode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1</td>
<td>Enabled</td>
<td>trusted</td>
</tr>
</tbody>
</table>

(M4500-32C) #

5.17.12.  ip dhcp snooping

This command enables or disables the DHCP Snooping globally.

Format  [no] ip dhcp snooping
Default  Disable
Mode  Global Config

5.17.13.  ip dhcp snooping vlan

This command enables or disables the DHCP Snooping to the specific VLAN.

Format  [no] ip dhcp snooping vlan <vlan-list>
Default  Disable
Mode  Global Config

5.17.14.  ip dhcp snooping verify mac-address

This command enables or disables the verification of the source MAC address with the client hardware address in the received DHCP message.

Format  [no] ip dhcp snooping verify mac-address
Default  Enable
Mode  Global Config

5.17.15.  ip dhcp snooping database

This command configures the persistent location of the DHCP Snooping database. This can be local or a remote file on a given IP machine.
The parameter “local” means to set database access inside device.

The parameter “tftp://hostIP/filename” means to set database access on remote TFTP Server.

**Format**  
`ip dhcp snooping database {local | <url>}

**Default**  
Local

**Mode**  
Global Config

### 5.17.16. ip dhcp snooping database write-delay

This command configures the interval in seconds at which the DHCP Snooping database will be persisted, and this database stores the results of DHCP snooping bindings. Use keyword “no” to restore the default value of this command.

The parameter “<interval>” value ranges is from 15 to 86400 seconds.

**Format**  
`ip dhcp snooping database write-delay <interval>

no ip dhcp snooping database write-delay

**Default**  
300

**Mode**  
Global Config

### 5.17.17. ip dhcp snooping binding

This command configures the static DHCP Snooping binding which binds a MAC address to assigned IP address on a specific VLAN ID and interface. Use keyword “no” to remove an existing entry of DHCP Snooping binding.

**Format**  
`ip dhcp snooping binding <mac-address> vlan <vlan id> <ip address> interface {<slot/port> | port-channel <portchannel-id>}

no ip dhcp snooping binding <mac-address>

**Default**  
None

**Mode**  
Global Config

Example: To add a static entry of DHCP snooping binding which binds MAC address 00:11:22:33:44:55 to IP address 10.0.0.1 on vlan 1 and port interface 0/1.

```
(M4500-32C) #configure
(M4500-32C) (Config)#ip dhcp snooping binding 00:11:22:33:44:55 vlan 1 10.0.0.1 interface 0/1
(M4500-32C) (Config)#
```
5.17.18. **ip dhcp snooping information option**

This command enables or disables the DHCP Snooping application to support information Option 82 in global configuration or a specific interface.

**Format**  
[no] ip dhcp snooping information option

**Default**  
Disable

**Mode**  
Global Config

Interface Config

5.17.19. **ip dhcp snooping information option circuit-id**

This command enables or disables the DHCP Snooping Option 82 with sub-option circuit-id in a range of VLANs.

The format of circuit-id is LLLLVVVXXXYYZZ, and LLLL is the length from V to Z, VVVV is VLAN ID, XX is the Unit ID, YY is the function/module ID and ZZ is the Port number.

**Format**  
[no] ip dhcp snooping information option circuit-id vlan <vlan-list>

**Default**  
Disable

**Mode**  
Global Config

5.17.20. **ip dhcp snooping information option remote-id**

This command enables or disables the DHCP Snooping Option 82 with sub-option remote-id in a range of VLANs. When it’s enabled, all DHCP client’s requests received to this device will be added remote-id sud-option with remote-id string.

The format of remote-id is LLLLXXXXX, and LLLL is the total length of all X, XXXXX is remote-id string which is set by user.

The parameter “<remoteld string>“ defines remote-id string which of maximum length is 32 characters

**Format**  
ip dhcp snooping information option remote-id <remoteld string> vlan <vlan-list>

no ip dhcp snooping information option remote-id vlan <vlan-list>

**Default**  
Disable

**Mode**  
Global Config
5.17.21.  ip dhcp snooping information option vlan

This command enables or disables the DHCP Snooping option 82 in a range of VLANs.

Format  [no] ip dhcp snooping information option vlan <vlan-list>

Default  Disable

Mode  Global Config

5.17.22.  ip dhcp snooping information option trust

This command configures an interface to be trusted for Option-82 reception.

Format  [no] ip dhcp snooping information option trust

Default  Disable

Mode  Interface Config

5.17.23.  ip dhcp snooping limit

This command controls the rate at which the DHCP Snooping messages come. If packet rate exceeds limitation over burst interval, the assigned port will shut down automatically. User could use interface command “shutdown” and then “no shutdown” to recover it. Use keyword “no” to restore the default value of this command.

The parameter “rate” means to the limitation of packet rate. Its range is from 0 to 300 packets per second.

The parameter “burst interval” means the time interval of packet burst could be over rate limitation. Its range is from 1 to 15 seconds.

Format  ip dhcp snooping limit {rate <pps> [burst interval <seconds>] | none}

no ip dhcp snooping limit

Default  “rate” is None

“burst interval” is 1 second.

Mode  Interface Config

Example: While the packet rate of DHCP message received from port 0/1 exceeds 100 pps and consecutive time interval is over 10 seconds, the port 0/1 will be shutdown automatically.

(M4500-32C) #configure
(M4500-32C) (Config)#interface 0/1
(M4500-32C) (Interface 0/1)# ip dhcp snooping limit rate 100 burst interval 10
(M4500-32C) (Interface 0/1)#

5.17.24.  ip dhcp snooping log-invalid

This command controls logging the illegal DHCP messages to logging buffer.

Format  [no] ip dhcp snooping log-invalid
Default  Disabled
Mode  Interface Config

5.17.25.  ip dhcp snooping trust

This command enables or disables a port as DHCP Snooping trust port.

Format  [no] ip dhcp snooping trust
Default  Disabled
Mode  Interface Config

5.17.26.  ip dhcp snooping trust

This command enables or disables a port as DHCP Snooping trust port.

Format  [no] ip dhcp snooping trust
Default  Disabled
Mode  Interface Config

5.17.27.  clear ip dhcp snooping binding

This command is used to clear all DHCP Snooping bindings on all interfaces or on a specific interface.

Format  clear ip dhcp snooping binding [interface <slot/port>]
Default  None
Mode  Privileged EXEC
5.17.28.  clear ip dhcp snooping statistics

This command is used to clear all DHCP Snooping statistics.

**Format**  clear ip dhcp snooping statistics

**Default**  None

**Mode**  Privileged EXEC

5.17.29.  clear ip dhcp snooping information statistics

This command is used to clear statistics of DHCP Snooping Option 82.

**Format**  clear ip dhcp snooping information statistics interface {<slot/port> | all}

**Default**  None

**Mode**  Privileged EXEC
5.18. IP Source Guard (ISG) Commands

IP Source Guard (IPSG) is a security feature that filters IP packets based on source ID. The source ID may be either the source IP address or a \{source IP address, source MAC address\} pair. The DHCP snooping binding database and static IPSG entries identify authorized source IDs. You can configure:

- Whether enforcement includes the source MAC address.
- Static authorized source IDs.

Similar to DHCP snooping, this feature is enabled on a DHCP snooping untrusted Layer 2 port. Initially, all IP traffic on the port is blocked except for DHCP packets that are captured by the DHCP snooping process. When a client receives a valid IP address from the DHCP server, or when a static IP source binding is configured by the user, a per-port and VLAN Access Control List is installed on the port. This process restricts the client IP traffic to those source IP addresses configured in the binding; any IP traffic with a source IP address other than that in the IP source binding is filtered out. This filtering limits a host’s ability to attack the network by claiming a neighbor host’s IP address.

IPSG can be enabled on physical or LAG ports. IPSG is disabled by default. If you enable IPSG on a port where DHCP snooping is disabled or where DHCP snooping is enabled but the port is trusted, all IP traffic received on that port is dropped depending on the admin-configured IPSG entries. IPSG cannot be enabled on a port-based routing interface.

5.18.1. Show commands

5.18.1.1. show ip verify

This command displays the IPSG interface configurations on all ports.

**Format**

```
show ip verify [interface <slot/port> | port-channel <portchannel-id>]
```

**Term**	**Definition**
<slot/port> | Specifies the interface number.
<portchannel-id> | Specifies the port-channel interfaces. The range of the port-channel ID is 1 to 64.

**Default** | None

**Mode** | Privileged Exec

**Display Message**

**Term**	**Definition**
Interface | Interface address in slot/port or port-channel format.
Filter Type | Is one of two values:
- **ip-mac**: User has configured MAC address filtering on this interface.
- **ip**: Only IP address filtering on this interface.
5.18.1.2.  show ip verify source

This command displays the IPSG interface and binding configurations on all ports.

Format  show ip verify source [interface <slot/port> | port-channel <portchannel-id>]

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;slot/port&gt;</td>
<td>Specifies the interface number.</td>
</tr>
<tr>
<td>&lt;portchannel-id&gt;</td>
<td>Specifies the port-channel interfaces. The range of the port-channel ID is 1 to 64.</td>
</tr>
</tbody>
</table>

Default  None

Mode  Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Interface address in slot/port or port-channel format.</td>
</tr>
<tr>
<td></td>
<td>Is one of two values:</td>
</tr>
<tr>
<td>Filter Type</td>
<td>• ip-mac: User has configured MAC address filtering on this interface.</td>
</tr>
<tr>
<td></td>
<td>• ip: Only IP address filtering on this interface.</td>
</tr>
<tr>
<td>IP Address</td>
<td>IP address of the interface.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>If MAC address filtering is not configured on the interface, the MAC Address field is empty. If port security is disabled on the interface, then the MAC Address field displays &quot;permit-all&quot;.</td>
</tr>
<tr>
<td>VLAN</td>
<td>The VLAN for the binding rule.</td>
</tr>
</tbody>
</table>

5.18.1.3.  show ip source binding

This command displays the IPSG bindings.

Format  show ip source binding [(static | dhcp-snooping)] [interface <slot/port>] [vlan <vlan-id>]

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>static</td>
<td>Statically configured from CLI.</td>
</tr>
<tr>
<td>dhcp-snooping</td>
<td>Dynamically learned from DHCP Snooping.</td>
</tr>
<tr>
<td>&lt;slot/port&gt;</td>
<td>Specifies the interface number.</td>
</tr>
<tr>
<td>&lt;vlan-id&gt;</td>
<td>VLAN ID. The range of VLAN ID is 1 to 4093.</td>
</tr>
</tbody>
</table>
Default  None

Mode  Privileged Exec

### Display Message

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>IP address of the interface in the slot/port or port-channel format.</td>
</tr>
<tr>
<td>Type</td>
<td>Entry type; statically configured from CLI or dynamically learned from DHCP Snooping.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address of the entry that is added.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>The MAC address for the entry that is added.</td>
</tr>
<tr>
<td>VLAN</td>
<td>VLAN for the entry.</td>
</tr>
</tbody>
</table>

### 5.18.2. Configuration commands

#### 5.18.2.1.  ip verify source

This command configures the IPSG source ID attribute to filter the data traffic in the hardware. Source ID is the combination of IP address and MAC address. Normal command allows data traffic filtration based on the IP address. With the "port-security" option, the data traffic will be filtered based on the IP and MAC addresses.

To disable the IPSG configuration in the hardware, use the no form of this command.

**Format**

```
ip verify source [port-security]
no ip verify source
```

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;port-security&gt;</td>
<td>Filter data traffic based on the IP and MAC addresses.</td>
</tr>
</tbody>
</table>

**Default**  Disabled

**Mode**  Interface Config

#### 5.18.2.2.  ip verify binding

This command configures static IP source guard (IPSG) entries.

To remove the IPSG static entry from the IPSG database, use the no form of this command.

**Format**

```
ip verify binding <mac-address> vlan <vlan-id> <ip address> interface {<slot/port> | port-channel <portchannel-id> }
no ip verify binding <mac-address> vlan <vlan-id> <ip address> interface {<slot/port> | port-channel <portchannel-id> }
```
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;mac-address&gt;</td>
<td>Specifies an MAC address.</td>
</tr>
<tr>
<td>&lt;vlan-id&gt;</td>
<td>VLAN ID. The range of VLAN ID is 1 to 4093.</td>
</tr>
<tr>
<td>&lt;ip address&gt;</td>
<td>Specifies an IP address.</td>
</tr>
<tr>
<td>&lt;slot/port&gt;</td>
<td>Specifies the interface number.</td>
</tr>
<tr>
<td>&lt;portchannel-id&gt;</td>
<td>Specifies the port-channel interfaces. The range of the port-channel ID is 1 to 64.</td>
</tr>
</tbody>
</table>

**Default**  None

**Mode**  Global Config
5.19. Dynamic ARP Inspection (DAI) Command

Dynamic ARP Inspection (DAI) is a security feature that rejects invalid and malicious ARP packets. DAI prevents a class of man-in-the-middle attacks, where an unfriendly station intercepts traffic for other stations by poisoning the ARP caches of its unsuspecting neighbors. The miscreant sends ARP requests or responses mapping another station's IP address to its own MAC address.

To prevent ARP poisoning attacks, a switch must ensure that only valid ARP requests and responses are relayed. DAI prevents these attacks by intercepting all ARP requests and responses. Each of these intercepted packets is verified for valid MAC address to IP address bindings before the local ARP cache is updated or the packet is forwarded to the appropriate destination. Invalid ARP packets are dropped.

DAI determines the validity of an ARP packet based on valid MAC address to IP address bindings stored in a trusted database. This database is built at runtime by DHCP snooping, provided this feature is enabled on VLANs and on the switch. DAI relies on DHCP snooping. DHCP snooping listens to DHCP message exchanges and builds a binding database of valid {MAC address, IP address, VLAN, and interface} tuples. In addition, in order to handle hosts that use statically configured IP addresses, DAI can also validate ARP packets against user-configured ARP ACLs.

When DAI is enabled, the switch drops ARP packets whose sender MAC address and sender IP address do not match an entry in the DHCP snooping bindings database. You can optionally configure additional ARP packet validation.

5.19.1. Show commands

5.19.1.1. show ip arp inspection statistics

This command displays the statistics of the ARP packets processed by Dynamic ARP Inspection. Give the vlan-list argument and the command displays the statistics on all DAI-enabled VLANs in that list. Give the single vlan argument and the command displays the statistics on that VLAN. If no argument is included, the command lists a summary of the forwarded and dropped ARP packets.

Format  

```
show ip arp inspection statistics [vlan <vlan-list>]
```

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;vlan-list&gt;</td>
<td>Specifies VLAN ID in a list. The range of VLAN ID is 1 to 4093.</td>
</tr>
</tbody>
</table>

Default  

None

Mode  

Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN</td>
<td>The VLAN ID for each displayed row.</td>
</tr>
<tr>
<td>DHCP Drops</td>
<td>The number of packets dropped due to DHCP snooping binding database match failure.</td>
</tr>
<tr>
<td>ACL Drops</td>
<td>The number of packets dropped due to ARP ACL rule match failure.</td>
</tr>
<tr>
<td>DHCP Permits</td>
<td>The number of packets permitted due to DHCP snooping binding database match.</td>
</tr>
<tr>
<td>ACL Permits</td>
<td>The number of packets permitted due to ARP ACL rule match.</td>
</tr>
<tr>
<td>Bad Src MAC</td>
<td>The number of packets dropped due to Source MAC validation failure.</td>
</tr>
</tbody>
</table>
5.19.1.2. show ip arp inspection

This command displays the Dynamic ARP Inspection global configuration and configuration on all the VLANs. With the vlan-list argument (i.e. comma separated VLAN ranges), the command displays the global configuration and configuration on all the VLANs in the given VLAN list. The global configuration includes the source mac validation, destination mac validation and invalid IP validation information.

Format  show ip arp inspection [vlan <vlan-list>]

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;vlan-list&gt;</td>
<td>Specifies VLAN ID in a list. The range of VLAN ID is 1 to 4093.</td>
</tr>
</tbody>
</table>

Default  None

Mode  Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source MAC Validation</td>
<td>Displays whether Source MAC Validation of ARP frame is enabled or disabled.</td>
</tr>
<tr>
<td>Destination MAC Validation</td>
<td>Displays whether Destination MAC Validation is enabled or disabled.</td>
</tr>
<tr>
<td>IP Address Validation</td>
<td>Displays whether IP Address Validation is enabled or disabled.</td>
</tr>
<tr>
<td>VLAN</td>
<td>The VLAN ID for each displayed row.</td>
</tr>
<tr>
<td>Configuration</td>
<td>Displays whether DAI is enabled or disabled on the VLAN.</td>
</tr>
<tr>
<td>Log Invalid</td>
<td>Displays whether logging of invalid ARP packets is enabled on the VLAN.</td>
</tr>
<tr>
<td>ACL Name</td>
<td>The ARP ACL Name, if configured on the VLAN.</td>
</tr>
<tr>
<td>Static Flag</td>
<td>If the ARP ACL is configured static on the VLAN.</td>
</tr>
</tbody>
</table>

5.19.1.3. show ip arp inspection interfaces

This command displays the Dynamic ARP Inspection configuration on all the DAI-enabled interfaces. An interface is said to be enabled for DAI if at least one VLAN, that the interface is a member of, is enabled for DAI. Given a interface argument, the command displays the values for that interface whether the interface is enabled for DAI or not.

Format  show ip arp inspection interfaces [<slot/port> | loopback <loopback-id> | port-channel <portchannel-id> | tunnel <tunnel-id> | vlan <vlan-list>]

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;slot/port&gt;</td>
<td>Interface Number.</td>
</tr>
<tr>
<td>&lt;loopback-id&gt;</td>
<td>Specifies the loopback interfaces. The range of the loopback ID is 0 to 63.</td>
</tr>
<tr>
<td>&lt;portchannel-id&gt;</td>
<td>The range of the port-channel ID is 1 to 64.</td>
</tr>
<tr>
<td>&lt;tunnel-id&gt;</td>
<td>Specifies the tunnel interfaces. The range of the tunnel ID is 0 to 7.</td>
</tr>
<tr>
<td>&lt;vlan-id&gt;</td>
<td>VLAN ID. The range of VLAN ID is 1 to 4093.</td>
</tr>
</tbody>
</table>

Default  None
5.19.1.4. show arp access-list

This command displays the configured ARP ACLs with the rules. Giving an ARP ACL name as the argument will display only the rules in that ARP ACL.

Format  show arp access-list [acl-name]

Term  Definition
Interface  The interface ID for each displayed row.
Trust State  Whether the interface is trusted or untrusted for DAI.
Rate Limit  The configured rate limit value in packets per second.
Burst Interval  The configured burst interval value in seconds

5.19.2. Configuration commands

5.19.2.1. ip arp inspection validate

This command enables additional validation checks like source-mac validation, destination-mac validation, and ip address validation on the received ARP packets.

To disable the additional validation checks on the received ARP packets, use the no form of this command.

Format  ip arp inspection validate {[src-mac] [dst-mac] [ip]}
         no ip arp inspection validate {[src-mac] [dst-mac] [ip]}

Default  Disable
Mode  Global Config

5.19.2.2. ip arp inspection vlan

This command enables Dynamic ARP Inspection on a list of comma-separated VLAN ranges.

To disable Dynamic ARP Inspection on a list of comma-separated VLAN ranges, use the no form of this command.
**Format**

`ip arp inspection vlan <vlan-list>`

`no ip arp inspection vlan <vlan-list>`

---

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;vlan-list&gt;</td>
<td>Specifies VLAN ID in a list. The range of VLAN ID is 1 to 4093.</td>
</tr>
</tbody>
</table>

**Default**  
Disable

**Mode**  
Global Config

---

### 5.19.2.3. `ip arp inspection vlan logging`

This command enables logging of invalid ARP packets on a list of comma-separated VLAN ranges.

To disable logging of invalid ARP packets on a list of comma-separated VLAN ranges, use the no form of this command.

**Format**

`ip arp inspection vlan <vlan-list> logging`

`no ip arp inspection vlan <vlan-list> logging`

---

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;vlan-list&gt;</td>
<td>Specifies VLAN ID in a list. The range of VLAN ID is 1 to 4093.</td>
</tr>
</tbody>
</table>

**Default**  
Enable

**Mode**  
Global Config

---

### 5.19.2.4. `ip arp inspection filter`

This command configures the ARP ACL used to filter invalid ARP packets on a list of comma-separated VLAN ranges. If the static keyword is given, packets that do not match a permit statement are dropped without consulting the DHCP snooping bindings.

To unconfigure the ARP ACL used to filter invalid ARP packets on a list of comma-separated VLAN ranges, use the no form of this command.

**Format**

`ip arp inspection filter <acl-name> vlan <vlan-list> [static]`

`no ip arp inspection filter <acl-name> vlan <vlan-list> [static]`

---

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;acl-name&gt;</td>
<td>Specifies the ARP access-list name up to 31 characters in length.</td>
</tr>
<tr>
<td>&lt;vlan-list&gt;</td>
<td>Specifies VLAN ID in a list. The range of VLAN ID is 1 to 4093.</td>
</tr>
<tr>
<td>&lt;static&gt;</td>
<td>Specifies ARP ACL is configured static.</td>
</tr>
</tbody>
</table>

**Default**  
No ARP ACL is configured on a VLAN

**Mode**  
Global Config
5.19.2.5. ip arp inspection trust

This command configures an interface as trusted for Dynamic ARP Inspection. To configure an interface as untrusted for Dynamic ARP Inspection, use the no form of this command.

Format  ip arp inspection trust
         no ip arp inspection trust

Default  Disable
Mode     Interface Config

5.19.2.6. ip arp inspection limit

This command configures the rate limit and burst interval values for an interface. Configuring none for the limit means the interface is not rate limited for Dynamic ARP Inspections. To set the rate limit and burst interval values for an interface to the default values, use the no form of this command.

Format  ip arp inspection limit {rate <pps> [burst interval <seconds>] | none}
         no ip arp inspection limit

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;pps&gt;</td>
<td>Specifies rate limit in pps. The range of rate is 0 to 300.</td>
</tr>
<tr>
<td>&lt;seconds&gt;</td>
<td>Specifies burst interval in seconds. The range of rate is 1 to 15.</td>
</tr>
</tbody>
</table>

Default  15 pps for rate and 1 second for burst-interval
Mode     Interface Config

5.19.2.7. arp access-list

This command creates an ARP ACL. To delete a configured ARP ACL, use the no form of this command.

Format  arp access-list <acl-name>
         no arp access-list <acl-name>

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;acl-name&gt;</td>
<td>Specifies the ARP access-list name up to 31 characters in length.</td>
</tr>
</tbody>
</table>

Default  None
Mode     Global Config
5.19.2.8.  

**permit ip host mac host**

This command configures a rule for a valid IP address and MAC address combination used in ARP packet validation.

To delete a rule for a valid IP and MAC combination, use the no form of this command.

**Format**

permit ip host <sender-ip> mac host <sender-mac>

no permit ip host <sender-ip> mac host <sender-mac>

**Term**	**Definition**
<sender-ip> | Specifies IP address in the ARP ACL rule.
<sender-mac> | Specifies MAC address in the ARP ACL rule.

**Default**  None

**Mode**  
ARP Access-list Config

5.19.2.9.  

**clear ip arp inspection statistics**

This command resets the statistics for Dynamic ARP Inspection on all VLANs.

**Format**

clear ip arp inspection statistics

**Default**  None

**Mode**  
Privileged Exec
5.20. Differenciated Service Commands

⚠️ This Switching Command function can only be used on the QoS software version.

This chapter contains the CLI commands used for the QoS Differentiated Services (DiffServ) package.

The user configures DiffServ in several stages by specifying:

1. Class
   - creating and deleting classes
   - defining match criteria for a class

⚠️ The only way to remove an individual match criterion from an existing class definition is to delete the class and re-create it.

2. Policy
   - creating and deleting policies
   - associating classes with a policy
   - defining policy statements for a policy/class combination

3. Service
   - adding and removing a policy to/from a directional (that is, inbound, outbound) interface

Packets are filtered and processed based on defined criteria. The filtering criteria are defined by a class. The processing is defined by a policy's attributes. Policy attributes may be defined on a per class instance basis, and it is these attributes that are applied when a match occurs.

Packet processing begins by testing the match criteria for a packet. A policy is applied to a packet when a class match within that policy is found.

Note that the type of class - all, any, or acl - has a bearing on the validity of match criteria specified when defining the class. A class type of 'any' processes its match rules in an ordered sequence; additional rules specified for such a class simply extend this list. A class type of 'acl' obtains its rule list by interpreting each ACL rule definition at the time the DiffServ class is created. Differences arise when specifying match criteria for a class type 'all', since only one value for each non-excluded match field is allowed within a class definition. If a field is already specified for a class, all subsequent attempts to specify the same field fail, including the cases where a field can be specified multiple ways through alternative formats. The exception to this is when the 'exclude' option is specified, in which case this restriction does not apply to the excluded fields.

The following class restrictions are imposed by the LB8 Series L3 Switch DiffServ design:

- nested class support limited to:
  - 'all' within 'all'
  - no nested 'not' conditions
  - no nested 'acl' class types
  - each class contains at most one referenced class
- hierarchical service policies not supported in a class definition
- access list matched by reference only, and must be sole criterion in a class
  - that is, ACL rules copied as class match criteria at time of class creation, with class type 'any'
  - implicit ACL 'deny all' rule also copied
  - no nesting of class type 'acl'

Regarding nested classes, referred to here as class references, a given class definition can contain at most one reference to another class, which can be combined with other match criteria. The referenced class is truly a reference and not a copy, since additions to a referenced class affect all classes that reference it. Changes to any class definition currently referenced by any other class must result in valid class definitions for all derived classes otherwise the change is rejected. A class reference may be removed from a class definition.

The user can display summary and detailed information for classes, policies, and services. All configuration information is accessible via the CLI, and SNMP user interfaces.

### 5.20.1. General commands

The following characteristics are configurable for the platform as a whole.

#### 5.20.1.1. diffserv

This command sets the DiffServ operational mode to active. While disabled, the DiffServ configuration is retained and can be changed, but it is not activated. When enabled, Diffserv services are activated.

**Format**

diffserv

**Default**

None

**Mode**

Global Config

#### 5.20.1.2. no diffserv

This command sets the DiffServ operational mode to inactive. While disabled, the DiffServ configuration is retained and can be changed, but it is not activated. When enabled, Diffserv services are activated.

**Format**

no diffserv

**Default**

None

**Mode**

Global Config
5.20.2. Class commands

The 'class' command set is used in DiffServ to define:

- **Traffic Classification** specifies Behavior Aggregate (BA) based on DSCP, and Multi-Field (MF) classes of traffic (name, match criteria)
- **Service Levels** specifies the BA forwarding classes / service levels. Conceptually, DiffServ is a two-level hierarchy of classes: 1. Service/PHB, 2. Traffic Class

This set of commands consists of class creation/deletion and matching, with the class match commands specifying layer 3, layer 2, and general match criteria. The class match criteria are also known as class rules, with a class definition consisting of one or more rules to identify the traffic belonging to the class. Note that once a class match criterion is created for a class, it cannot be changed or deleted - the entire class must be deleted and re-created.

The CLI command root is **class-map**.

5.20.2.1. class-map

This command defines a new DiffServ class of type match-all, match-any or match-access-group.

**Format**  
class-map [match-all] <class-map-name> [(ipv4 | ipv6)]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;class-map-name&gt;</td>
<td>Case sensitive alphanumeric string from 1 to 31 characters uniquely identifying the class.</td>
</tr>
</tbody>
</table>

When used without any match condition, this command enters the class-map mode. The `<class-map-name>` is the name of an existing DiffServ class.

⚠️ The class name 'default' is reserved and is not allowed here. The class type of **match-all** indicates all of the individual match conditions must be true for a packet to be considered a member of the class.

The optional keywords [(ipv4 | ipv6)] specify the Layer 3 protocol for this class. If not specified, this parameter defaults to ‘ipv4’. This maintains backward compatibility for configurations defined on systems before IPv6 match items were supported.

The CLI mode is changed to Class-Map Config or Ipv6-Class-Map Config when this command is successfully executed depending on the [(ipv4 | ipv6)] keyword specified.

**Default**  
None

**Mode**  
Global Config
5.20.2.2.  no class-map

This command eliminates an existing DiffServ class.

**Format**  
no class-map <class-map-name>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;class-map-name&gt;</td>
<td>The name of an existing DiffServ class.</td>
</tr>
</tbody>
</table>

⚠️ The class name 'default' is reserved and is not allowed here. This command may be issued at any time; if the class is currently referenced by one or more policies or by any other class, this deletion attempt shall fail.

**Default**  
None

**Mode**  
Global Config

5.20.2.3.  rename

This command changes the name of a DiffServ class.

**Format**  
rename <new-class-map-name>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;new-class-map-name&gt;</td>
<td>Case-sensitive alphanumeric string from 1 to 31 characters uniquely identifying the class.</td>
</tr>
</tbody>
</table>

⚠️ The class name ‘default’ is reserved and must not be used here.

**Default**  
None

**Mode**  
Class-Map Config / Ipv6-Class-Map Config

5.20.2.4.  match any

This command adds to the specified class definition a match condition whereby all packets are considered to belong to the class.

**Format**  
match any

**Default**  
None
Mode     Class-Map Config / Ipv6-Class-Map Config

5.20.2.5.  **match class-map**

This command adds to the specified class definition the set of match conditions defined for another class.

**Format**     match class-map <refclassname>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;refclassname&gt;</td>
<td>The name of an existing DiffServ class whose match conditions are being referenced by the specified class definition.</td>
</tr>
</tbody>
</table>

There is no [not] option for this match command.

**Default**     None

**Mode**     Class-Map Config / Ipv6-Class-Map Config

**Restrictions**

The class types of both <classname> and <refclassname> must be identical (that is, any vs. any, or all vs. all). A class type of acl is not supported by this command.

Cannot specify <refclassname> the same as <classname> (that is, self-referencing of class name not allowed). At most one other class may be referenced by a class. Any attempt to delete the <refclassname> class while still referenced by any <classname> shall fail.

The combined match criteria of <classname> and <refclassname> must be an allowed combination based on the class type. Any subsequent changes to the <refclassname> class match criteria must maintain this validity, or the change attempt shall fail. The total number of class rules formed by the complete reference class chain (includes both predecessor and successor classes) must not exceed a platform-specific maximum. In some cases, each removal of a refclass rule reduces the maximum number of available rules in the class definition by one.

5.20.2.6.  **no match class-map**

This command removes from the specified class definition the set of match conditions defined for another class.

**Format**     no match class-map <refclassname>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;refclassname&gt;</td>
<td>The name of an existing DiffServ class whose match conditions are being referenced by the specified class definition.</td>
</tr>
</tbody>
</table>
There is no **not** option for this match command.

**Default**  
None

**Mode**  
Class-Map Config / Ipv6-Class-Map Config

### 5.20.2.7. match cos

This command adds to the specified class definition a match condition for the Class of Service value (the only tag in a single tagged packet or the first or outer 802.1Q tag of a double VLAN tagged packet). The value may be from 0 to 7.

**Format**  
match cos <0-7>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;0-7&gt;</td>
<td>Integer in the range of 0 to 7 specifying the COS value.</td>
</tr>
</tbody>
</table>

**Default**  
None

**Mode**  
Class-Map Config

### 5.20.2.8. match secondary-cos

This command adds to the specified class definition a match condition for the secondary Class of Service value (the inner 802.1Q tag of a double VLAN tagged packet). The value may be from 0 to 7.

**Format**  
match secondary-cos <0-7>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;0-7&gt;</td>
<td>Integer in the range of 0 to 7 specifying the COS value.</td>
</tr>
</tbody>
</table>

**Default**  
None

**Mode**  
Class-Map Config

### 5.20.2.9. match destination-address mac

This command adds to the specified class definition a match condition based on the destination MAC address of a packet. The `<address>` parameter is any layer 2 MAC address formatted as six, two-digit hexadecimal numbers separated by colons (e.g., `00:11:22:dd:ee:ff`). The `<mac-mask>` parameter is a layer 2 MAC address bit mask, which need not be contiguous, and is formatted as six, two-digit hexadecimal numbers separated by colons (e.g., `ff:07:23:ff:fe:dc`).
### 5.20.2.10. match dstip

This command adds to the specified class definition a match condition based on the destination IP address of a packet.

**Format**

```
match dstip <ipaddr> <ipmask>
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;ipaddr&gt;</td>
<td>Specifies an IP address.</td>
</tr>
<tr>
<td>&lt;ipmask&gt;</td>
<td>Specifies an IP address bit mask; note that although similar to a standard subnet mask, this bit mask need not be contiguous.</td>
</tr>
</tbody>
</table>

**Default** None

**Mode** Class-Map Config

### 5.20.2.11. match dstl4port

This command adds to the specified class definition a match condition based on the destination layer 4 port of a packet using a single keyword or numeric notation or a numeric range notation.

**Format**

```
match dstl4port {<port-key> | <0-65535>}
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;port-key&gt;</td>
<td>To specify the match condition as a single keyword, the value for <code>&lt;portkey&gt;</code> is one of the supported port name keywords. The currently supported <code>&lt;portkey&gt;</code> values are: <code>domain</code>, <code>echo</code>, <code>ftp</code>, <code>ftpdata</code>, <code>http</code>, <code>smtp</code>, <code>snmp</code>, <code>telnet</code>, <code>tftp</code>, <code>www</code>. Each of these translates into its equivalent port number, which is used as both the start and end of a port range.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>domain</code>, <code>echo</code>, <code>ftp</code>, <code>ftpdata</code>, <code>http</code>, <code>smtp</code>, <code>snmp</code>, <code>telnet</code>, <code>tftp</code>, <code>www</code>. Each of these translates into its equivalent port number, which is used as both the start and end of a port range.</td>
</tr>
</tbody>
</table>
To specify the match condition using a numeric notation, one layer 4 port number is required.

The port number is an integer from 0 to 65535.

To specify the match condition using a numeric range notation, two layer 4 port numbers are required and together they specify a contiguous port range. Each port number is an integer from 0 to 65535, but with the added requirement that the second number be equal to or greater than the first.

---

**Default**  None

**Mode**  Class-Map Config / Ipv6-Class-Map Config

### 5.20.2.12. match ethertype

This command adds to the specified class definition a match condition based on the value of the ethertype. The `<ethertype>` value is specified as one of the following keywords: `appletalk`, `arp`, `ibmsna`, `ipv4`, `ipv6`, `ipx`, `mplsmcast`, `mplsucast`, `netbios`, `novell`, `pppoe`, `rarp` or as a custom ethertype value in the range of `0x0600-0xFFFF`.

**Format**  match ethertype {<keyword> | <0x0600-0xFFFF>}

**Parameter**  Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;keyword&gt;</code></td>
<td>Specifies appletalk, arp, ibmsna, ipv4, ipv6, ipx, mplsmcast etc.</td>
</tr>
<tr>
<td><code>&lt;0x0600-0xFFFF&gt;</code></td>
<td>Specifies ethertype value.</td>
</tr>
</tbody>
</table>

**Default**  None

**Mode**  Class-Map Config

### 5.20.2.13. match ip dscp

This command adds to the specified class definition a match condition based on the value of the IP DiffServ Code Point (DSCP) field in a packet, which is defined as the high-order six bits of the Service Type octet in the IP header (the low-order two bits are not checked).

**Format**  match {ip | ipv6} dscp <value>

**Parameter**  Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;value&gt;</code></td>
<td>Specified as either an integer from 0 to 63, or symbolically through one of the following keywords: <code>af11</code>, <code>af12</code>, <code>af13</code>, <code>af21</code>, <code>af22</code>, <code>af23</code>, <code>af31</code>, <code>af32</code>, <code>af33</code>, <code>af41</code>, <code>af42</code>, <code>af43</code>, <code>be</code>, <code>cs0</code>, <code>cs1</code>, <code>cs2</code>, <code>cs3</code>, <code>cs4</code>, <code>cs5</code>, <code>cs6</code>, <code>cs7</code>, <code>ef</code>.</td>
</tr>
</tbody>
</table>
The `ip dscp`, `ip precedence`, and `ip tos` match conditions are alternative ways to specify a match criterion for the same Service Type field in the IP header, but with a slightly different user notation. To specify a match on all DSCP values, use the `match [not] ip tos <tosbits> <tosmask>` command with `<tosbits>` set to 0 and `<tosmask>` set to 03 (hex).

**Default** None

**Mode** Class-Map Config / Ipv6-Class-Map Config

### 5.20.2.14. match ip precedence

This command adds to the specified class definition a match condition based on the value of the IP Precedence field in a packet, which is defined as the high-order three bits of the Service Type octet in the IP header (the low-order five bits are not checked). The precedence value is an integer from 0 to 7.

**Format** `match ip precedence <0-7>`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;0-7&gt;</td>
<td>Integer from 0 to 7.</td>
</tr>
</tbody>
</table>

The `ip dscp`, `ip precedence`, and `ip tos` match conditions are alternative ways to specify a match criterion for the same Service Type field in the IP header, but with a slightly different user notation.

To specify a match on all Precedence values, use the `match [not] ip tos <tosbits> <tosmask>` command with `<tosbits>` set to 0 and `<tosmask>` set to 1F (hex).

**Default** None

**Mode** Class-Map Config

### 5.20.2.15. match ip tos

This command adds to the specified class definition a match condition based on the value of the IP TOS field in a packet, which is defined as all eight bits of the Service Type octet in the IP header.

**Format** `match ip tos <tosbits> <tosmask>`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;tosbits&gt;</td>
<td>Two-digit hexadecimal number from 00 to ff.</td>
</tr>
<tr>
<td>&lt;tosmask&gt;</td>
<td>Two-digit hexadecimal number from 00 to ff.</td>
</tr>
</tbody>
</table>

The `<tosmask>` denotes the bit positions in `<tosbits>` that are used for comparison against the IP TOS field in a packet. For example, to check for an
The ip dscp, ip precedence, and ip tos match conditions are alternative ways to specify a match criterion for the same Service Type field in the IP header, but with a slightly different user notation.

In essence, this the “free form” version of the IP DSCP/Precedence/TOS match specification in that the user has complete control of specifying which bits of the IP Service Type field are checked. **Default** None

**Mode**  Class-Map Config

### 5.20.2.16. match protocol

This command adds to the specified class definition a match condition based on the value of the IP Protocol field in a packet using a single keyword notation or a numeric value notation.

**Format**  match protocol {<protocol-name> | <0-255>}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;protocol-name&gt;</td>
<td>One of the supported protocol name keywords. The currently supported values are: <em>icmp</em>, <em>igmp</em>, <em>ip</em>, <em>tcp</em>, <em>udp</em>. Note that a value of <em>ip</em> is interpreted to match all protocol number values.</td>
</tr>
<tr>
<td>&lt;0-255&gt;</td>
<td>To specify the match condition using a numeric value notation, the protocol number is a standard value assigned by IANA and is interpreted as an integer from 0 to 255.</td>
</tr>
</tbody>
</table>

**Default**  None

**Mode**  Class-Map Config / Ipv6-Class-Map Config

### 5.20.2.17. match source-address mac

This command adds to the specified class definition a match condition based on the source MAC address of a packet. The <address> parameter is any layer 2 MAC address formatted as six, two-digit hexadecimal numbers separated by colons (e.g., 00:11:22:dd:ee:ff). The <macmask> parameter is a layer 2 MAC address bit mask, which may not be contiguous, and is formatted as six, two-digit hexadecimal numbers separated by colons (e.g., ff:07:23:ff:fe:dc).

**Format**  match source-address mac <address> <macmask>
### 5.20.2.18. match srcip

This command adds to the specified class definition a match condition based on the source IP address of a packet.

**Format**  
match srcip <ipaddr> <ipmask>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;ipaddr&gt;</td>
<td>Specifies an IP address.</td>
</tr>
<tr>
<td>&lt;ipmask&gt;</td>
<td>Specifies an IP address bit mask; note that although it resembles a standard subnet mask, this bit mask need not be contiguous.</td>
</tr>
</tbody>
</table>

**Default**  None  
**Mode**  Class-Map Config

### 5.20.2.19. match srcl4port

This command adds to the specified class definition a match condition based on the source layer 4 port of a packet using a single keyword or numeric notation or a numeric range notation.

**Format**  
match srcl4port {<port-key> | <0-65535>}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;port-key&gt;</td>
<td>One of the supported port name keywords (listed below).</td>
</tr>
<tr>
<td></td>
<td>The currently supported &lt;portkey&gt; values are: domain, echo, ftp, ftpdata, http, smtp, snmp, telnet, tftp, <a href="http://www">www</a>. Each of these translates into its equivalent port number, which is used as both the start and end of a port range.</td>
</tr>
<tr>
<td>&lt;0-65535&gt;</td>
<td>To specify the match condition as a numeric value, one layer 4 port number is required. The port number is an integer from 0 to 65535.</td>
</tr>
</tbody>
</table>
To specify the match condition as a range, two layer 4 port numbers are required and together they specify a contiguous port range. Each port number is an integer from 0 to 65535, but with the added requirement that the second number be equal to or greater than the first.

### Default
None

### Mode
Class-Map Config / IPv6-Class-Map Config

#### 5.20.2.20. match vlan

This command adds to the specified class definition a match condition based on the value of the layer 2 VLAN Identifier field (the only tag in a single tagged packet or the first or outer tag of a double VLAN tagged packet). The VLAN ID is an integer from 1 to 4093.

**Format**

```
match vlan <1-4093>
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;1-4093&gt;</td>
<td>The VLAN ID is an integer from 1 to 4093.</td>
</tr>
</tbody>
</table>

### Default
None

### Mode
Class-Map Config

#### 5.20.2.21. match secondary-vlan

This command adds to the specified class definition a match condition based on the value of the layer 2 secondary VLAN Identifier field (the inner 802.1Q tag of a double VLAN tagged packet). The VLAN ID is an integer from 1 to 4093.

**Format**

```
match secondary-vlan <1-4093>
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;1-4093&gt;</td>
<td>The VLAN ID is an integer from 1 to 4093.</td>
</tr>
</tbody>
</table>

### Default
None

### Mode
Class-Map Config
5.20.2.22.  match dstipv6

This command adds to the specified class definition a match condition based on the destination IPv6 address of a packet.

Format  match dstip6 <destination-ipv6-prefix/prefix-length>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;destination-ipv6-</td>
<td>IPv6 address and prefix length.</td>
</tr>
<tr>
<td>prefix/prefix-length&gt;</td>
<td></td>
</tr>
</tbody>
</table>

Default  None
Mode  IPv6-Class-Map Config

5.20.2.23.  match srcipv6

This command adds to the specified class definition a match condition based on the source IP address of a packet.

Format  match srcip6 <source-ipv6-prefix/prefix-length>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;source-ipv6-prefix/prefix-</td>
<td>IPv6 address and prefix length.</td>
</tr>
<tr>
<td>length&gt;</td>
<td></td>
</tr>
</tbody>
</table>

Default  None
Mode  IPv6-Class-Map Config

5.20.2.24.  match ip6flowlbl

This command adds to the specified class definition a match condition based on the IPv6 flow label value.

Format  match ip6flowlbl <label>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;label&gt;</td>
<td>IPv6 flow label value in the range of 0 to 1048575.</td>
</tr>
</tbody>
</table>

Default  None
Mode  IPv6-Class-Map Config
5.20.3. Policy commands

The 'policy' command set is used in DiffServ to define:

- **Traffic Classification** Specify traffic conditioning actions (policing, marking, shaping) to apply to traffic classes.

- **Service Provisioning** Specify bandwidth and queue depth management requirements of service levels (EF, AF, etc.).

The policy commands are used to associate a traffic class, which was defined by the class command set, with one or more QoS policy attributes. This association is then assigned to an interface in a particular direction to form a service. The user specifies the policy name when the policy is created.

The DiffServ CLI does not necessarily require that users associate only one traffic class to one policy. In fact, multiple traffic classes can be associated with a single policy, each defining a particular treatment for packets that match the class definition. When a packet satisfies the conditions of more than one class, preference is based on the order in which the classes were added to the policy, with the foremost class taking highest precedence.

This set of commands consists of policy creation/deletion, class addition/removal, and individual policy attributes. Note that the only way to remove an individual policy attribute from a class instance within a policy is to remove the class instance and re-add it to the policy. The values associated with an existing policy attribute can be changed without removing the class instance.

The CLI command root is `policy-map`.

### 5.20.3.1. **assign-queue**

This command modifies the queue id to which the associated traffic stream is assigned. The queueid is an integer from 0 to n-1, where n is the number of egress queues supported by the device.

**Format**

assign-queue <0-7>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;0-7&gt;</td>
<td>Queue ID</td>
</tr>
</tbody>
</table>

Default	None
Mode	Policy-Class-Map Config
Incompatibilities	Drop
5.20.3.2.  drop

This command specifies that all packets for the associated traffic stream are to be dropped at ingress.

Format  
drop

Default  
None

Mode  
Policy-Class-Map Config

Incompatibilities  
Assign Queue, Mark (all forms), Mirror, Police, Redirect

5.20.3.3.  mirror

This command specifies that all incoming packets for the associated traffic stream are copied to a specific egress interface (physical port or LAG).

Format  
mirror \{<slot/port> | port-channel <port-channel-intf-num>\}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;slot/port&gt;</td>
<td>Specifies the physical interface where the mirrored packet send to.</td>
</tr>
<tr>
<td>&lt;port-channel-intf-num&gt;</td>
<td>Specifies the port-channel interface where the mirrored packet send to. The range of the port-channel ID is 1 to 64.</td>
</tr>
</tbody>
</table>

Default  
None

Mode  
Policy-Class-Map Config

Incompatibilities  
Drop, Redirect

5.20.3.4.  redirect

This command specifies that all incoming packets for the associated traffic stream are redirected to a specific egress interface (physical port or port-channel).

Format  
redirect \{<slot/port> | port-channel <port-channel-intf-num>\}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;slot/port&gt;</td>
<td>Specifies which physical Interface that traffic stream are redirected to.</td>
</tr>
<tr>
<td>&lt;port-channel-intf-num&gt;</td>
<td>Specifies which port-channel interface that traffic stream are directed to. The range of the port-channel ID is 1 to 64.</td>
</tr>
</tbody>
</table>
5.20.3.5. conform-color

This command is used to enable color-aware traffic policing and define the conform-color class maps used. Used in conjunction with the police command where the fields for the conform level (for simple, single-rate, and two-rate policing) are specified. The <class-map-name> parameter is the name of an existing Diffserv class map, where different ones must be used for the conform and exceed colors.

Format  conform-color <class-map-name> exceed-color <class-map-name>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;class-map-name&gt;</td>
<td>Name of an existing Diffserv class map, where different ones must be used for the conform colors.</td>
</tr>
</tbody>
</table>

Default  None
Mode  Policy-Class-Map Config
Incompatibilities  Drop, Mirror

5.20.3.6. mark cos

This command marks all packets for the associated traffic stream with the specified class of service value in the priority field of the 802.1p header. If the packet does not already contain this header, one is inserted. The CoS value is an integer from 0 to 7.

Format  mark cos <0-7>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;0-7&gt;</td>
<td>The range of COS value is 0 to 7.</td>
</tr>
</tbody>
</table>

Default  None
Mode  Policy-Class-Map Config
Incompatibilities  Drop, Mark IP DSCP, IP Precedence, Police
5.20.3.7.  mark cos-as-sec-cos

This command marks outer VLAN tag priority bits of all packets as the inner VLAN tag priority, marking CoS as Secondary CoS. This essentially means that the inner VLAN tag CoS is copied to the outer VLAN tag CoS.

Format     mark cos-as-sec-cos
Default     None
Mode        Policy-Class-Map Config
Incompatibilities  Drop, Mark IP DSCP, IP Precedence, Police

5.20.3.8.  class

This command creates an instance of a class definition within the specified policy for the purpose of defining treatment of the traffic class through subsequent policy attribute statements.

Format     class <classname>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;classname&gt;</td>
<td>The name of an existing DiffServ class. Note that this command causes the specified policy to create a reference to the class definition.</td>
</tr>
</tbody>
</table>

Default     None
Mode        Policy-Map Config

5.20.3.9.  no class

This command deletes the instance of a particular class and its defined treatment from the specified policy.

Format     no class <classname>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;classname&gt;</td>
<td>The name of an existing DiffServ class. Note that this command removes the reference to the class definition for the specified policy.</td>
</tr>
</tbody>
</table>

Default     None
Mode        Policy-Map Config
5.20.3.10. mark ip-dscp

This command marks all packets for the associated traffic stream with the specified IP DSCP value.

Format   mark ip-dscp <value>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;value&gt;</td>
<td>Specified as either an integer from 0 to 63, or symbolically through one of the following keywords: af11, af12, af13, af21, af22, af23, af31, af32, af33, af41, af42, af43, be, cs0, cs1, cs2, cs3, cs4, cs5, cs6, cs7, ef.</td>
</tr>
</tbody>
</table>

Default   None

Mode      Policy-Class-Map Config

Incompatibilities   Drop, Mark CoS, Mark IP Precedence, Police

5.20.3.11. mark ip-precedence

This command marks all packets for the associated traffic stream with the specified IP Precedence value. The IP Precedence value is an integer from 0 to 7.

Format   mark ip-precedence <0-7>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;0-7&gt;</td>
<td>IP precedence value in the range of 0 to 7</td>
</tr>
</tbody>
</table>

Default   None

Mode      Policy-Class-Map Config

Incompatibilities   Drop, Mark (all forms)

5.20.3.12. police-simple

This command is used to establish the traffic policing style for the specified class. The simple form of the police command uses a single data rate and burst size, resulting in two outcomes: conform and violate. The conforming data rate is specified in kilobits-per-second (Kbps) and is an integer from 1 to 4294967295. The conforming burst size is specified in kilobytes (KB) and is an integer from 1 to 128.

For each outcome, the only possible actions are drop, set-cos-transmit, set-dscp-transmit, setprec-transmit, or transmit. In this simple form of the police command, the conform action defaults to transmit and the violate action defaults to drop.
For set-dscp-transmit, a <dscpval> value is required and is specified as either an integer from 0 to 63, or symbolically through one of the following keywords: af11, af12, af13, af21, af22, af23, af31, af32, af33, af41, af42, af43, be, cs0, cs1, cs2, cs3, cs4, cs5, cs6, cs7, ef.

For set-prec-transmit, an IP Precedence value is required and is specified as an integer from 0-7.

For set-cos-transmit an 802.1p priority value is required and is specified as an integer from 0-7.

**Format**

```
```

The simple form of the police command uses a single data rate and burst size, resulting in two outcomes:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;conform-action &amp; violate-action&gt;</td>
<td>The conforming data rate is specified in kilobits-per-second (Kbps) and is an integer from 1 to 4294967295. The conforming burst size is specified in kilobytes (KB) and is an integer from 1 to 128. For each outcome, the only possible actions are drop, set-dscp-transmit, set-prec-transmit, or set-cos-transmit. In this simple form of the police command, the conform action defaults to transmit and the violate action defaults to drop. These actions can be set with this command once the style has been configured. Beside, the set-cos-transmit is to combine only with drop between the conform-action and the violate-action.</td>
</tr>
<tr>
<td>&lt;set-cos-transmit&gt;</td>
<td>Priority value is required and is specified as an integer from 0-7.</td>
</tr>
<tr>
<td>&lt;set-dscp-transmit&gt;</td>
<td>Required and specified as either an integer from 0 to 63, or symbolically through one of the following keywords: af11, af12, af13, af21, af22, af23, af31, af32, af33, af41, af42, af43, be, cs0, cs1, cs2, cs3, cs4, cs5, cs6, cs7, ef.</td>
</tr>
<tr>
<td>&lt;set-prec-transmit&gt;</td>
<td>IP Precedence value is required and is specified as an integer from 0-7.</td>
</tr>
</tbody>
</table>

**Default** None

**Mode** Policy-Class-Map Config

**Incompatibilities** Drop, Mark (all forms)

### 5.20.3.13. **police-single-rate**

This command is the single-rate form of the police command and is used to establish the traffic policing style for the specified class. For each outcome, the only possible actions are drop, set-cos-as-sec-cos, set-cos-transmit, set-sec-cos-transmit, set-dscp-transmit, set-prec-transmit, or transmit. In this single-rate form of the police command, the conform action defaults to send, the exceed action defaults to drop, and the violate action defaults to drop. These actions can be set with this command once the style has been configured.
**5.20.3.14. police-two-rate**

This command is the two-rate form of the police command and is used to establish the traffic policing style for the specified class. For each outcome, the only possible actions are drop, set-cos-as-sec-cos, set-cos-transmit, set-sec-cos-transmit, set-dscp-transmit, set-prec-transmit, or transmit. In this two-rate form of the police command, the conform action defaults to send, the exceed action defaults to drop, and the violate action defaults to drop. These actions can be set with this command once the style has been configured.

**Format**

```
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>&lt;conform-action &amp; violate-action &amp; exceed-action&gt;</strong></td>
<td>The conforming data rate is specified in kilobits-per-second (Kbps) and is an integer from 1 to 4294967295. The conforming burst size is specified in kilobytes (KB) and is an integer from 1 to 128. For each outcome, the only possible actions are drop, set-cos-as-sec-cos, set-dscp-transmit, set-prec-transmit, or set-cos-transmit. In this simple form of the police command, the conform action defaults to transmit and the violate action defaults to drop. These actions can be set with this command once the style has been configured. Beside, the set-cos-transmit is to combine only with drop between the conform-action and the violate-action.</td>
</tr>
<tr>
<td><strong>&lt;set-cos-transmit&gt;</strong></td>
<td>Priority value is required and is specified as an integer from 0-7.</td>
</tr>
<tr>
<td><strong>&lt;set-dscp-transmit&gt;</strong></td>
<td>Required and specified as either an integer from 0 to 63, or symbolically through one of the following keywords: af11, af12, af13, af21, af22, af23, af31, af32, af33, af41, af42, af43, be, cs0, cs1, cs2, cs3, cs4, cs5, cs6, cs7, ef.</td>
</tr>
<tr>
<td><strong>&lt;set-prec-transmit&gt;</strong></td>
<td>IP Precedence value is required and is specified as an integer from 0-7.</td>
</tr>
</tbody>
</table>

**Table**

**Default**

None

**Mode**

Policy-Class-Map Config
### 5.20.3.15. **policy-map**

This command establishes a new DiffServ policy. The `<policyname>` parameter is a case-sensitive alphanumeric string from 1 to 31 characters uniquely identifying the policy. The type of policy is specific to the inbound traffic direction as indicated by the `in` parameter.

**Format**
```
policy-map <policyname> [(in | out)]
no policy-map <policyname>
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;policyname&gt;</code></td>
<td>Policy name up to 31 alphanumeric characters.</td>
</tr>
</tbody>
</table>

Default: None

Mode: Global Config

### 5.20.3.16. **policy-map rename**

This command changes the name of a DiffServ policy. The `<policyname>` is the name of an existing DiffServ class. The `<newpolicyname>` parameter is a case-sensitive alphanumeric string from 1 to 31 characters uniquely identifying the policy.

**Format**
```
policy-map rename <policyname> <newpolicyname>
```

Default: None

Mode: Global Config
The 'service' command set is used in DiffServ to define:

**Traffic Classification** Assign a DiffServ traffic conditioning policy (as specified by the policy commands) to an interface in the incoming direction.

**Service Provisioning** Assign a DiffServ service provisioning policy (as specified by the policy commands) to an interface in the outgoing direction.

The service commands attach a defined policy to a directional interface. Only one policy may be assigned at any one time to an interface in a particular direction. The policy type (in, out) must match the interface direction to which it is attached.

This set of commands consists of service addition/removal.

The CLI command root is `service-policy`.

### 5.20.4.1. service-policy

This command attaches a policy to an interface in a particular direction.

**Format**

```
service-policy {in | out} <policy-map-name>
```

**Parameter**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;policy-map-name&gt;</td>
<td>The name of an existing DiffServ policy, whose type must match the interface direction. Note that this command causes a service to create a reference to the policy.</td>
</tr>
</tbody>
</table>

The command can be used in the **Interface Config** mode to attach a policy to a specific interface. Alternatively, the command can be used in the **Global Config** mode to attach this policy to all system interfaces. The direction value is either in or out.

**Default** None

**Mode** Global Config, Interface Config
Restrictions Only a single policy may be attached to a particular interface in a particular direction at any one time.

5.20.4.2. no service-policy

This command detaches a policy from an interface in a particular direction.

Format no service-policy {in | out} <policy-map-name>

The command can be used in the Interface Config mode to detach a policy from a specific interface. Alternatively, the command can be used in the Global Config mode to detach this policy from all system interfaces to which it is currently attached. The direction value is either in or out.

This command effectively disables DiffServ on an interface (in a particular direction). There is no separate interface administrative 'mode' command for DiffServ.

Default None

Mode Global Config, Interface Config

5.20.5. Show commands

The 'show' command set is used in DiffServ to display configuration and status information for:

- Classes
- Policies
- Services

This information can be displayed in either summary or detailed formats. The status information is only shown when the DiffServ administrative mode is enabled; it is suppressed otherwise. There is also a 'show' command for general DiffServ information that is available at any time.

5.20.5.1. show class-map

This command displays all configuration information for the specified class.

Format show class-map [<classname>]
**Parameter**	**Description**
<classname> | The name of an existing DiffServ class.

**Default**  None  
**Mode**  Privileged Exec

### Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Class Name</strong></td>
<td>The name of this class.</td>
</tr>
<tr>
<td><strong>Class Type</strong></td>
<td>The class type (all, any, or acl) indicating how the match criteria are evaluated for this class. A class type of all means every match criterion defined for the class is evaluated simultaneously they must all be true to indicate a class match. For a type of any each match criterion is evaluated sequentially and only one need be true to indicate a class match. Class type acl rules are evaluated in a hybrid manner, with those derived from each ACL Rule grouped and evaluated simultaneously, while each such grouping is evaluated sequentially.</td>
</tr>
<tr>
<td><strong>L3 Protocol</strong></td>
<td>The Layer 3 protocol for this class. Possible values are IPv4 and IPv6.</td>
</tr>
<tr>
<td><strong>Match Criteria</strong></td>
<td>The Match Criteria fields will only be displayed if they have been configured. They will be displayed in the order entered by the user. These are evaluated in accordance with the class type. The possible Match Criteria fields are: Class of Service, Destination IP Address, Destination Layer 4 Port, Destination MAC Address, Every, IP DSCP, IP Precedence, IP TOS, Protocol Keyword, Reference Class, Source IP Address, Source Layer 4 Port, Source MAC Address, and VLAN.</td>
</tr>
<tr>
<td><strong>Values</strong></td>
<td>This field displays the values of the Match Criteria.</td>
</tr>
<tr>
<td><strong>Class Name</strong></td>
<td>The name of this class. (Note that the order in which classes are displayed is not necessarily the same order in which they were created.)</td>
</tr>
<tr>
<td><strong>Class Type</strong></td>
<td>Class type of 'all' means every match criterion defined for the class is evaluated simultaneously and must all be true to indicate a class match.</td>
</tr>
<tr>
<td><strong>Reference Class Name</strong></td>
<td>The name of an existing DiffServ class whose match conditions are being referenced by the specified class definition.</td>
</tr>
</tbody>
</table>

### 5.20.5.2.  `show diffserv`

This command displays the DiffServ General Status Group information, which includes the current administrative mode setting as well as the current and maximum number of rows in each of the main DiffServ private MIB tables.

**Format**  
`show diffserv`
This command displays policy service information for the specified interface and direction.

**Format**

```
show diffserv service <slot/port> {in | out}
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;slot/port&gt;</code></td>
<td>Specifies a valid slot number and port number for the system. The direction parameter indicates the interface direction of interest.</td>
</tr>
</tbody>
</table>

**Default** None

**Mode** Privileged Exec

**Display Message**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DiffServ Admin mode</td>
<td>The current setting of the DiffServ administrative mode. An attached policy is only in effect on an interface while DiffServ is in an enabled mode.</td>
</tr>
<tr>
<td>Interface</td>
<td>The slot number and port number of the interface (slot/port).</td>
</tr>
<tr>
<td>Direction</td>
<td>The traffic direction of this interface service.</td>
</tr>
</tbody>
</table>
5.20.5.4.  show diffserv service brief

This command displays all interfaces in the system to which a DiffServ policy has been attached. The direction parameter is optional; if specified, only services in the indicated direction are shown.

**Format**  show diffserv service brief [in | out]

**Default**  None

**Mode**  Privileged Exec

**Display Message**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DiffServ Admin mode</td>
<td>The current setting of the DiffServ administrative mode. An attached policy is only active on an interface while DiffServ is in an enabled mode.</td>
</tr>
</tbody>
</table>

The following information is repeated for interface and direction (only those interfaces configured with an attached policy are shown):

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The slot number and port number of the interface (slot/port).</td>
</tr>
<tr>
<td>Direction</td>
<td>The traffic direction of this interface service.</td>
</tr>
<tr>
<td>OperStatus</td>
<td>The current operational status of this DiffServ service interface.</td>
</tr>
<tr>
<td>Policy Name</td>
<td>The name of the policy attached to the interface in the indicated direction.</td>
</tr>
</tbody>
</table>

5.20.5.5.  show policy-map

This command displays all configuration information for the specified policy.

**Format**  show policy-map [<policy-map-name>]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt; policy-map-name &gt;</td>
<td>The name of an existing DiffServ policy.</td>
</tr>
</tbody>
</table>
The following information is repeated for each class associated with this policy
(only those policy attributes actually configured are displayed):

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Name</td>
<td>The name of this class.</td>
</tr>
<tr>
<td>Mark CoS</td>
<td>Denotes the class of service value that is set in the 802.1p header of outbound packets. This is not displayed if the mark cos was not specified.</td>
</tr>
<tr>
<td>Mark IP DSCP</td>
<td>Denotes the mark/re-mark value used as the DSCP for traffic matching this class. This is not displayed if mark ip description is not specified using the police-two-rate command, or if policing is in use for the class under this policy.</td>
</tr>
<tr>
<td>Mark IP Precedence</td>
<td>Denotes the mark/re-mark value used as the IP Precedence for traffic matching this class. This is not displayed if either mark DSCP or policing is in use for the class under this policy.</td>
</tr>
<tr>
<td>Policing Style</td>
<td>This field denotes the style of policing, if any, used simple.</td>
</tr>
<tr>
<td>Committed Rate (Kbps)</td>
<td>This field displays the committed rate, used in simple policing, single-rate policing, and two-rate policing.</td>
</tr>
<tr>
<td>Committed Burst Size (KB)</td>
<td>This field displays the committed burst size, used in simple policing.</td>
</tr>
<tr>
<td>Conform Action</td>
<td>The current setting for the action taken on a packet considered to conform to the policing parameters. This is not displayed if policing is not in use for the class under this policy.</td>
</tr>
<tr>
<td>Conform COS Value</td>
<td>This field shows the priority mark value if the conform action is markcos.</td>
</tr>
<tr>
<td>Conform DSCP Value</td>
<td>This field shows the DSCP mark value if the conform action is markdscp.</td>
</tr>
<tr>
<td>Conform IP Precedence Value</td>
<td>This field shows the IP Precedence mark value if the conform action is markprec.</td>
</tr>
</tbody>
</table>
5.20.5.6.  show policy-map interface

This command displays policy-oriented statistics information for the specified interface and direction.

Format  show policy-map interface {<slot/port> | port-channel <1-64>} {in | out}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;slot/port&gt;</td>
<td>Specifies a valid slot number and port number for the system. The direction parameter indicates the interface direction of interest.</td>
</tr>
<tr>
<td>&lt;1-64&gt;</td>
<td>Specifies the port-channel interface. The range of port-channel ID is 1 to 64.</td>
</tr>
</tbody>
</table>

Default  None

Mode     Privileged Exec
Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The slot number and port number of the interface (slot/port)</td>
</tr>
<tr>
<td>Direction</td>
<td>The traffic direction of this interface service, either in or out.</td>
</tr>
<tr>
<td>Operational Status</td>
<td>The current operational status of this DiffServ service interface.</td>
</tr>
<tr>
<td>Policy Name</td>
<td>The name of the policy attached to the interface in the indicated direction.</td>
</tr>
</tbody>
</table>

The following information is repeated for each interface and direction (only those interfaces configured with an attached policy are shown):

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Name</td>
<td>The name of this class instance.</td>
</tr>
<tr>
<td>In Offered Packets</td>
<td>Count of the packets offered to this class instance before the defined DiffServ treatment is applied. Only displayed for the 'in' direction.</td>
</tr>
<tr>
<td>In Discarded Packets</td>
<td>Count of the packets discarded for this class instance for any reason due to DiffServ treatment of the traffic class. Only displayed for the 'in' direction.</td>
</tr>
</tbody>
</table>

None of the counters listed here are guaranteed to be supported on all platforms. Only supported counters are shown in the display output.

5.20.5.7.  `show service-policy`

This command displays a summary of policy-oriented statistics information for all interfaces in the specified direction. The direction parameter indicates the interface direction of interest. This command enables or disables the route reflector client. A route reflector client relies on a route reflector to re-advertise its routes to the entire AS. The possible values for this field are `enable` and `disable`.

Format  `show service-policy {in | out}`

Default  None

Mode  Privileged Exec

Display Message

The following information is repeated for each interface and direction (only those interfaces configured with an attached policy are shown):
None of the counters listed here are guaranteed to be supported on all platforms. Only supported counters are shown in the display output.

5.21. ACL Commands

This chapter contains the CLI commands used for showing and configuring MAC Access Control List (ACL) and IP Access Control List (ACL).

5.21.1. Show commands

5.21.1.1. show mac access-lists name

This command displays a MAC access list and all of the rules that are defined for the ACL. The command output varies based on the match criteria configured within the rules of the ACL.

Format show mac access-lists <name>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>The ACL name which is used to identify a specific MAC ACL to display.</td>
</tr>
</tbody>
</table>

Default None

Mode Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL Name</td>
<td>The name of the MAC ACL rule.</td>
</tr>
<tr>
<td>Sequence Number</td>
<td>The ordered rule number identifier defined within the ACL.</td>
</tr>
<tr>
<td>Action</td>
<td>Displays the action associated with each rule. The possible values are Permit or Deny.</td>
</tr>
<tr>
<td>Source MAC Address</td>
<td>Displays the source MAC address for this rule.</td>
</tr>
<tr>
<td>Source MAC Mask</td>
<td>Displays the source MAC mask for this rule.</td>
</tr>
</tbody>
</table>
5.21.1.2. show mac access-lists

This command displays a summary of all defined MAC access lists in the system.

**Format**

```
show mac access-lists
```

**Mode**

Privileged EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current number of all ACLs</td>
<td>The number of user-configured rules defined for this ACL</td>
</tr>
<tr>
<td>Maximum number of all ACLs</td>
<td>The maximum number of ACL rules.</td>
</tr>
<tr>
<td>MAC ACL Name</td>
<td>The name of the MAC ACL rule.</td>
</tr>
<tr>
<td>Rules</td>
<td>The number of rules in this ACL.</td>
</tr>
</tbody>
</table>
5.21.1.3.  show ip access-lists

Use this command to view summary information about all IP ACLs configured on the switch. To view more detailed information about a specific access list, specify the ACL number or name that is used to identify the IP ACL.

**Format**  
show ip access-lists [<1-199> | <name>]

**Parameter**  
Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-199</td>
<td>The ACL ID used to identify a specific IP ACL to display.</td>
</tr>
<tr>
<td>name</td>
<td>The ACL name used to identify a specific IP ACL to display.</td>
</tr>
</tbody>
</table>

**Default**  
None

**Mode**  
Privileged EXEC, User Exec

**Display Message**

**Fields**  
**Definition**

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current number of all ACLs</td>
<td>The number of user-configured rules defined for this ACL</td>
</tr>
<tr>
<td>Maximum number of all ACLs</td>
<td>The maximum number of ACL rules.</td>
</tr>
<tr>
<td>ACL ID/Name</td>
<td>The identifier or Name of this ACL.</td>
</tr>
<tr>
<td>Rules</td>
<td>The number of rules configured for the ACL.</td>
</tr>
<tr>
<td>Direction</td>
<td>Shows whether the ACL is applied to traffic coming into the interface (ingress) or leaving the interface (egress).</td>
</tr>
<tr>
<td>Interface(s)</td>
<td>The interface(s) to which the ACL is applied (ACL interface Bindings)</td>
</tr>
<tr>
<td>VLAN(s)</td>
<td>The VLAN(s) to which the ACL is applied (ACL VLAN Bindings)</td>
</tr>
<tr>
<td>Sequence Number</td>
<td>The ordered rule number identifier defined within the ACL.</td>
</tr>
<tr>
<td>Action</td>
<td>Displays the action associated with each rule. The possible values are Permit or Deny.</td>
</tr>
</tbody>
</table>
5.21.1.4. show access-lists interface

This command displays ACL information for a designated interface and direction. Use the control-plane keyword to display the ACLs applied on the CPU port.

**Format**  
show access-lists interface { {<slot/port> | port-channel <1-64>} in | out } | control-plane }

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>slot/port</td>
<td>The interface number</td>
</tr>
</tbody>
</table>
5.21.1.5. show access-lists vlan

This command displays ACL information for a particular VLAN ID.

Format show access-lists vlan <vlan-id> {in | out}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan-id</td>
<td>The VLAN ID</td>
</tr>
<tr>
<td>in</td>
<td>out</td>
</tr>
</tbody>
</table>

Default None
Mode Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL Type</td>
<td>The type of access list (IP, IPv6 or MAC)</td>
</tr>
<tr>
<td>ACL ID</td>
<td>The identifier of this ACL.</td>
</tr>
<tr>
<td>Sequence Number</td>
<td>An optional sequence number may be specified to indicate the order of this</td>
</tr>
<tr>
<td></td>
<td>access list relative to other access lists already assigned to this</td>
</tr>
<tr>
<td></td>
<td>interface and direction. A lower number indicates higher precedence order.</td>
</tr>
<tr>
<td></td>
<td>If a sequence number is already in use for this interface and direction,</td>
</tr>
<tr>
<td></td>
<td>the specified access list replaces the currently attached access list</td>
</tr>
<tr>
<td></td>
<td>using that sequence number. If the sequence number is not specified by</td>
</tr>
<tr>
<td></td>
<td>the user, a sequence number that is one greater than the highest sequence</td>
</tr>
<tr>
<td></td>
<td>number currently in use for this interface and direction is used. Valid</td>
</tr>
<tr>
<td></td>
<td>range is (1 to 4294967295).</td>
</tr>
</tbody>
</table>

Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan-id</td>
<td>The VLAN ID</td>
</tr>
<tr>
<td>in</td>
<td>out</td>
</tr>
</tbody>
</table>

Default None
Mode Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL Type</td>
<td>The type of access list (IP, IPv6 or MAC)</td>
</tr>
<tr>
<td>ACL ID</td>
<td>The identifier of this ACL.</td>
</tr>
<tr>
<td>Sequence Number</td>
<td>The ordered rule number identifier defined within the ACL.</td>
</tr>
</tbody>
</table>
5.21.2. Configuration commands

5.21.2.1.  mac access-list extended

This command creates a MAC access control list (ACL) identified by name, consisting of classification fields defined for the Layer 2 header of an Ethernet frame.

If a MAC ACL by this name already exists, this command enters Mac-Access-List config mode to allow updating the existing ACL.

**Format**  [no] mac access-list extended <name>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>The ACL name which is used to identify a specific MAC ACL. It is a case-sensitive alphanumeric string from 1 to 31 characters uniquely identifying the MAC access list.</td>
</tr>
<tr>
<td>no</td>
<td>Remove this MAC ACL.</td>
</tr>
</tbody>
</table>

**Default**  None

**Mode**  Global Config

5.21.2.2.  mac access-list extended rename

This command changes the name of a MAC Access Control List (ACL). The command fails if a MAC ACL by the name newname already exists.

**Format**  mac access-list extended rename <oldname> <newname>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>oldname</td>
<td>The name of an existing MAC ACL to be changed.</td>
</tr>
<tr>
<td>newname</td>
<td>New name which uniquely identifies the MAC access list.</td>
</tr>
</tbody>
</table>

**Default**  None

**Mode**  Global Config

5.21.2.3.  mac access-list resequence

Use this command to renumber the sequence numbers of the entries for specified MAC access list with the given increment value starting from a particular sequence number. The command is used to edit the sequence
numbers of ACL rules in the ACL and change the order in which entries are applied. This command is not saved in startup configuration and is not displayed in running configuration.

**Format**  
mac access-list resequence {<name>} <1-2147483647> <1-2147483647>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>The ACL name which is used to identify a specific MAC ACL. It is a case-sensitive alphanumeric string from 1 to 31 characters uniquely identifying the MAC access list.</td>
</tr>
<tr>
<td>&lt;1-2147483647&gt;</td>
<td>The sequence number from which to start. The range is 1-2147483647. The default is 1.</td>
</tr>
<tr>
<td>&lt;1-2147483647&gt;</td>
<td>The amount to increment. The range is 1-2147483647. The default is 1.</td>
</tr>
</tbody>
</table>

**Default**  
1

**Mode**  
Global Config

### 5.21.2.4. mac access-list

This command creates a new rule for the current MAC access list. Each rule is appended to the list of configured rules for the list. Note that an implicit 'deny all' MAC rule always terminates the access list.

Note: The 'no' form of this command is not supported, as the rules within an ACL cannot be deleted individually. Rather, the entire ACL must be deleted and re-specified.

A rule may either deny or permit traffic according to the specified classification fields. At a minimum, the source and destination MAC value and mask pairs must be specified, each of which may be substituted using the keyword any to indicate a match on any value in that field. The bdpu keyword may be specified for the destination MAC value/mask pair indicating a well-known BPDU MAC value of 01-80-c2-xx-xx-xx (hex), where 'xx' indicates a don't care. The remaining command parameters are all optional.

The Ethertype may be specified as either a keyword or a four-digit hexadecimal value from 0x0600-0xFFFF. The currently supported <ethertypekey> values are: appletalk, arp, ibmsna, ipv4, ipv6, ipx, mpls-mcast, mpls-ucast, netbios, novell, pppoe, rarp. Each of these translates into its equivalent Ethertype value(s).

The vlan and cos parameters refer to the VLAN identifier and 802.1p user priority fields, respectively, of the VLAN tag. For packets containing a double VLAN tag, this is the first (or outer) tag.

The assign-queue parameter allows specification of a particular hardware queue for handling traffic that matches this rule. The allowed <queue-id> value is 0-(n-1), where n is the number of user configurable queues available for the hardware platform.

The mirror parameter allows the traffic matching this rule to be copied to the specified <slot/port>, while the redirect parameter allows the traffic matching this rule to be forwarded to the specified <slot/port> The assign-queue and redirect parameters are only valid for a 'permit' rule.

The time-range parameter allows imposing time limitation on the MAC ACL rule as defined by the parameter time-range-name. If a time range with the specified name does not exist and the MAC ACL containing this ACL rule is applied to an interface or bound to a VLAN, then the ACL rule is applied immediately. If a time range with specified name exists and the MAC ACL containing this ACL rule is applied to an interface or bound to a VLAN,
then the ACL rule is applied when the time-range with specified name becomes active. The ACL rule is removed when the time-range with specified name becomes inactive.

**Format**

\[
[1-2147483647] \ {\{\{deny | permit\}\} \{\{<srcmac> <srcmask>\} | any\}\{\{<dstmac> <dstmask>\} | any | bpdu\}\{<ethertypekey> | <0x0600-0xFFFF>\} \{vlan \{eq <0-4095>\}\} \{cos <0-7>\} \{log\} \{time-range time-range-name\} \{assign-queue <queue-id>\} \{[mirror | redirect] \{<slot/port> | port-channel <portchannel-id>\}\}\{rate-limit <1-4294967295><1-128>\}
\]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2147483647</td>
<td>The sequence number of the ACL.</td>
</tr>
<tr>
<td>deny</td>
<td>permit</td>
</tr>
<tr>
<td>srcmac</td>
<td>srcmask</td>
</tr>
<tr>
<td>destmac</td>
<td>destmask</td>
</tr>
<tr>
<td>ethertypekey</td>
<td></td>
</tr>
<tr>
<td>log</td>
<td>Enable logging for this access list rule</td>
</tr>
<tr>
<td>time-range-name</td>
<td>Specify the name of the time-range if the MAC ACL rule has referenced a time range.</td>
</tr>
<tr>
<td>queue-id</td>
<td>Specify the queue identifier to which packets matching this rule are assigned</td>
</tr>
<tr>
<td>mirror</td>
<td>redirect</td>
</tr>
<tr>
<td>slot/port</td>
<td>The interface number to be mirrored or redirected to.</td>
</tr>
<tr>
<td>portchannel-id</td>
<td>The port channel ID to be mirrored or redirected to.</td>
</tr>
<tr>
<td>rate-limit</td>
<td>Specify the allowed rate of traffic as per the configured rate in &lt;1-4294967295&gt; kb/s, and burst-size in &lt;1-128&gt; kilobytes.</td>
</tr>
</tbody>
</table>

**Default** None

**Mode** Mac Access-list Config

To remove the rule with the specified ID, use the below no form command.

**Format** no rule-id <ID>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>The rule with ID to be removed.</td>
</tr>
</tbody>
</table>

**Default** None

**Mode** Mac Access-list Config
Format  [no] remark <remark>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>remark</td>
<td>To Add an ACL rule remark</td>
</tr>
<tr>
<td>&lt;remark&gt;</td>
<td>The rule ID to be removed.</td>
</tr>
<tr>
<td>no</td>
<td>To remove an ACL rule remark</td>
</tr>
</tbody>
</table>

Default  None

Mode  Mac Access-list Config

5.21.2.5.  mac access-group

This command attaches a specific MAC Access Control List (ACL) identified by <name> to an interface, or associates it with a VLAN ID, in a given direction. The <name> parameter must be the name of an existing MAC ACL.

An optional sequence number may be specified to indicate the order of this access list relative to other access lists already assigned to this interface and direction. A lower number indicates higher precedence order. If a sequence number is already in use for this interface and direction, the specified access list replaces the currently attached access list using that sequence number. If the sequence number is not specified for this command, a sequence number that is one greater than the highest sequence number currently in use for this interface and direction will be used.

This command specified in 'Interface Config' mode only affects a single interface, whereas the 'Global Config' mode setting is applied to all interfaces. The 'Interface Config' mode command is only available on platforms that support independent per-port class of service queue configuration. The VLAN keyword is only valid in the 'Global Config' mode.

⚠️ The command with out direction does not apply to the packets generated by own-device. For example, the ping packets from device cannot be filtered by this command with out direction.

Format  mac access-group <name> [vlan <vlan-id>] {in | out} [<1-4294967295>]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>The ACL name which is used to identify a specific MAC ACL. It is a case-sensitive alphanumeric string from 1 to 31 characters uniquely identifying the MAC access list.</td>
</tr>
<tr>
<td>vlan-id</td>
<td>The VLAN ID. The VLAN keyword is only valid in the 'Global Config' mode.</td>
</tr>
<tr>
<td>in</td>
<td>out</td>
</tr>
</tbody>
</table>
5.21.2.6.  ip access-list

Use this command to create an extended IP Access Control List (ACL) identified by <name>, consisting of classification fields defined for the IP header of an IPv4 frame.

If an IP ACL by this name already exists, this command enters IPv4-Access_List config mode to allow updating the existing IP ACL.

Format  [no] ip access-list <name>

Parameter	Description
name | The ACL name which is used to identify a specific IP ACL. It is a case-sensitive alphanumeric string from 1 to 31 characters uniquely identifying the IP access list. |
no | Remove this IP ACL identified by <name> from the system. |

5.21.2.7.  ip access-list rename

This command changes the name of a IP Access Control List (ACL). The command fails if a IP ACL by the name newname already exists. The newname must be a case-sensitive alphanumeric string from 1 to 31 characters uniquely identifying the IP access list.

Format  ip access-list rename <oldname> <newname>

Parameter	Description
oldname | The name of an existing IP ACL to be changed. |
newname | New name which uniquely identifies the IP access list. |

Default | None |
Mode | Global Config |
5.21.2.8. **ip access-list resequence**

Use this command to renumber the sequence numbers of the entries for specified IP access list with the given increment value starting from a particular sequence number. The command is used to edit the sequence numbers of ACL rules in the ACL and change the order in which entries are applied. This command is not saved in startup configuration and is not displayed in running configuration.

**Format**  
`ip access-list resequence {name | id} <1-2147483647> <1-2147483647>`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>The ACL name which is used to identify a specific IP ACL. It is a case-sensitive alphanumeric string from 1 to 31 characters uniquely identifying the IP access list.</td>
</tr>
<tr>
<td>id</td>
<td>The ACL ID used to identify a specific IP ACL. The value is 1~199.</td>
</tr>
<tr>
<td>&lt;1-2147483647&gt;</td>
<td>The sequence number from which to start. The range is 1-2147483647. The default is 1.</td>
</tr>
<tr>
<td>&lt;1-2147483647&gt;</td>
<td>The amount to increment. The range is 1-2147483647. The default is 10.</td>
</tr>
</tbody>
</table>

**Default**  
1

**Mode**  
Global Config

---

5.21.2.9. **access-list (ip)**

This command creates an IP Access Control List (ACL) that is identified by the access list number, which is 1-99 for standard ACLs or 100-199 for extended ACLs.

**Format**  
IP standard ACL

`access list <1-99> {remark <remark>} | { [deny | permit] {every | <srcip> <srcmask> | host <srcip>} [log] [time-range time-range-name] [assign-queue <queue-id>] [[mirror | redirect] <slot/port>]} [rate-limit <1-4294967295> <1-128>]`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-99</td>
<td>The access list number for the IP standard ACL.</td>
</tr>
<tr>
<td>remark</td>
<td>Adds a comment (remark) to an IP standard or IP extended ACL.</td>
</tr>
<tr>
<td>1-2147483647</td>
<td>Specifies a sequence number for the IP ACL rule. Every rule is assigned a sequence number which is configured by user or generated by the system.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>deny</td>
<td>permit</td>
</tr>
<tr>
<td>every</td>
<td>Matches every packet</td>
</tr>
<tr>
<td>&lt;srcip&gt; &lt;srcmask&gt;</td>
<td>Specify a source ip address and source netmask pair for the match condition of this IP ACL rule.</td>
</tr>
<tr>
<td>host &lt;srcip&gt;</td>
<td>Specify host designated source ip address for this rule.</td>
</tr>
<tr>
<td>log</td>
<td>Enable logging for this access list rule</td>
</tr>
<tr>
<td>time-range-name</td>
<td>Specify the name of the time-range if the IP ACL rule has referenced a time range.</td>
</tr>
<tr>
<td>queue-id</td>
<td>Specify the queue identifier to which packets matching this rule are assigned</td>
</tr>
<tr>
<td>mirror</td>
<td>redirect</td>
</tr>
<tr>
<td>slot/port</td>
<td>The interface number to be mirrored or redirected to.</td>
</tr>
<tr>
<td>portchannel-id</td>
<td>The port channel ID to be mirrored or redirected to.</td>
</tr>
<tr>
<td>rate-limit</td>
<td>Specifies the allowed rate of traffic as per the configured rate in &lt;1-4294967295&gt; kb/s, and burst-size in &lt;1-128&gt; kilobytes</td>
</tr>
</tbody>
</table>

**Mode**  
Global Config

**Format**  
IP extended ACL

```
access list <100-199> {remark <remark>} | { [<1-2147483647>] } {deny | permit} { every | { { <0-255> | eigrp | gre | icmp | igmp | ip | ipinip | ospf | pim | tcp | udp } {<srcip> <srcmask> | any | host <srcip> } { range {<portkey>|<startport>} {<portkey>|<endport>} } | { eq | neq | lt | gt } {<portkey>|<0-65535>} } | {<dstip> |<dstmask> | any | host <dstip> } { range {<portkey>|<startport>} {<portkey>|<endport>} } | { eq | neq | lt | gt } {<portkey>|<0-65535>} } | { flag [+fin | -fin] [+syn | -syn] [+rst | -rst] [+ack | -ack] [+urg | -urg] [established]] | { icmp-type <icmp-type> | icmp-code <icmp-code> } | { icmp-message <icmp-message> } } | { igmp-type <igmp-type> | [dscp <value>] | precedence <0-7> | tos <tos> |<tosmask> } | [fragments] } [log] [time-range time-range-name] [assign-queue <queue-id>] } [mirror | redirect] {<slot/port> | port-channel <portchannel-id>} } [rate-limit <1-4294967295> |<1-128>] }
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-199</td>
<td>The access list number for the IP extended ACL.</td>
</tr>
<tr>
<td>remark</td>
<td>Adds a comment (remark) to an IP standard or IP extended ACL.</td>
</tr>
<tr>
<td>1-2147483647</td>
<td>Specifies a sequence number for the IP ACL rule. Every rule is assigned a sequence number which is configured by user or generated by the system.</td>
</tr>
<tr>
<td>deny</td>
<td>permit</td>
</tr>
<tr>
<td>every</td>
<td>Matches every packet</td>
</tr>
</tbody>
</table>
```plaintext
{<0-255>|eigrp|gre
 |icmp|igmp|ip
 |ipinip|ospf|pim|tcp|udp}
 Specifies the protocol to filter for an extended IP ACL rule.

srcip srcmask |any|host
 Specifies a source IP address and source netmask pair for matching condition of this rule.
 The parameter any specifies srcip as 0.0.0.0 and srcmask as 255.255.255.255.
 The parameter host A.B.C.D specifies srcip as A.B.C.D and srcmask as 0.0.0.0.

dstip dstmask |any|host
 Specifies a destination IP address and netmask pair for matching condition of this rule.
 The parameter any specifies dstip as 0.0.0.0 and dstmask as 255.255.255.255.
 The parameter host A.B.C.D specifies dstip as A.B.C.D and dstmask as 0.0.0.0.

Range {<portkey>|<startport>}{<portkey>|<endport>}
 Specifies the source layer 4 port match condition for the IP ACL rule. You can use the port number ranging from 0-65535, or specify the portkey, which can be one of the following keywords:
 ● For UDP: domain,echo,ntp,rip,snmp,tftp,time,who.
 For both TCP and UDP, each of these keywords translates into its equivalent port number, which is used as both the start and end of a port range.

 If the parameter range is specified, the IP ACL rule matches only if the layer 4 port number falls within the specified port range. The startport and endport parameters identify the first and last ports that are parts of the range. They have values from 0 to 65535. The ending port must have a value equal or greater than the starting port. The starting port, ending port, and all ports in between will be part of the layer 4 port range.

 Note: This option is available only if the protocol is TCP or UDP.

{eq|neq|lt|gt}{<portkey>|<0-65535>}
 Specifies the layer 4 port match condition as comparison form for the rule. You can use the port number ranging from 0-65535, or specify the portkey.
 eq: equal to ; lt: less than ; gt: great than ; neq: not equal to.
 When eq is specified, the IP ACL rule matches only if the layer 4 port number is equal to the specified port number or portkey.
 When lt is specified, IP ACL rule matches only if the layer 4 port number is less than the specified port number or portkey. It is equivalent to specifying the range as 0 to <specified port number-1>.
 When gt is specified, the IP ACL rule matches if the layer 4 port number is greater than the specified port number or portkey. It is equivalent to specifying the range as <specified port number+1> to 65535.
 When neq is specified, IP ACL rule matches only if the layer 4 port number is not equal to the specified port number or portkey.

 Note: This option is available only if the protocol is TCP or UDP. Port number matches only apply to unfragmented or first fragments.
```
### flag <value>

Specifies that the IP ACL rule matches on the TCP flags. The `value` parameter represents:


When `+` is specified, a match occurs if the specified flag is set in the TCP header. When `-` is specified, a match occurs if the specified flag is NOT set in the TCP header. When `established` is specified, a match occurs if the specified RST or ACK bits are set in the TCP.

Note: This option is available only if the protocol is TCP.

### icmp-type <icmp-type> [icmp-code <icmp-code> [ icmp-message <icmp-message>]]

This option is available only if the protocol is ICMP.

Specifies a match condition for ICMP packets.

When `icmp-type` is specified, the IP ACL rule matches on the specified ICMP message type, a number from 0 to 255.

When `icmp-code` is specified, the IP ACL rule matches on the specified ICMP message code, a number from 0 to 255.

Specifying `icmp-message` implies that both `icmp-type` and `icmp-code` are specified. The following `icmp-messages` are supported: echo, echo-reply, host-redirect, mobile-redirect, net-redirect, net-unreachable, redirect, packet-too-big, port-unreachable, source-quench, router-solicitation, router-advertisement, time-exceeded, ttl-exceeded and unreachable.

### igmp-type <igmp-type>

This option is available only if the protocol is IGMP.

When `igmp-type` is specified, the IP ACL rule matches on the specified IGMP message type, a number from 0 to 255.

### dscp <value>

Specifies the TOS for an IP ACL rule depending on a match of DSCP value using parameters dscp.

### precedence <0-7>

Specifies the TOS for an IP ACL rule depending on a match of precedence values using parameters `<0-7>`.

### tos <tos> [tosmask]

Specifies the TOS for an IP ACL rule depending on a match value using parameters `tos/tosmask`.

### fragments

Specifies that the IP ACL rule matches on fragmented IP packets.

### log

Enable logging for this access list rule.

### time-range-name

Specify the name of the time-range if the IP ACL rule has referenced a time range.

### queue-id

Specify the queue identifier to which packets matching this rule are assigned.

### mirror | redirect

Specify the traffic matching the rule to be copied/redirected to the specific slot/port or port-channel.

### slot/port

The interface number to be mirrored or redirected to.

### portchannel-id

The port channel ID to be mirrored or redirected to.
To remove the rule with the specified ID, use the below no form command.

**Format**  
`no rule-id <ID>`

**Parameter** | **Description**
--- | ---
ID | The rule with ID to be removed.

**Default**  
None

**Mode**  
Global Config

### 5.21.2.10. no access-list

This command deletes an ACL that is identified by the parameter IP ACL <1-99> or <100-199> from the system or remove an ACL rule that is identified by the parameter <1-n> from the an IP ACL <1-99> or <100-199>.

**Format**  
`no access-list {<1-99> | <100-199>} [rule-id]`

**Parameter** | **Description**
--- | ---
<1-99> | The access list number for the IP standard ACL.
<100-199> | The access list number for the IP extended ACL.
rule-id | Specifies the access list rule ID. The value is 1~n, where n is the maximum number of user configurable rules per ACL.

**Default**  
None

**Mode**  
Global Config

### 5.21.2.11. ip access-group

This command attaches a specified access-control list to an interface, range of interfaces, or all interfaces: or associates it with a VLAN ID in a given direction.

An optional sequence number may be specified to indicate the order of this IP access list relative to other IP access lists already assigned to this interface and direction. A lower number indicates higher precedence order. If a sequence number is already in use for this interface and direction, the specified access list replaces the
currently attached IP access list using that sequence number. If the sequence number is not specified for this command, a sequence number that is one greater than the highest sequence number currently in use for this interface and direction is used.

This command specified in 'Interface Config' mode only affects a single interface, whereas the 'Global Config' mode setting is applied to all interfaces. The VLAN keyword is only valid in the 'Global Config' mode.

⚠️ The command with out direction does not apply to the packets generated by own-device. For example, the ping packets from device cannot be filtered by this command with out direction.

**Format**

```plaintext
ip access-group {<1-199> | <name>} [vlan <vlan-id>] {in | out} [<1-4294967295>]
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>The ACL name which is used to identify a specific IP ACL. It is a case-sensitive alphanumeric string from 1 to 31 characters uniquely identifying the MAC access list.</td>
</tr>
<tr>
<td>&lt;1-199&gt;</td>
<td>The identifier of this ACL. Range 1 to 99 is the access list number for an IP standard ACL. Range 100 to 199 is the access list number for an IP extended ACL.</td>
</tr>
<tr>
<td>vlan-id</td>
<td>The VLAN ID. The VLAN keyword is only valid in the 'Global Config' mode.</td>
</tr>
<tr>
<td>in</td>
<td>out</td>
</tr>
<tr>
<td>1-4294967295</td>
<td>The sequence number of the ACL.</td>
</tr>
</tbody>
</table>

**Default** None

**Mode**

- Global Config
- Interface Config

### 5.21.2.12. **no ip access-group**

This command removes a specified access-control list from an interface, range of interfaces, or all interfaces: or associates it with a VLAN ID in a given direction.

This command specified in 'Interface Config' mode only affects a single interface, whereas the 'Global Config' mode setting is applied to all interfaces. The VLAN keyword is only valid in the 'Global Config' mode.
### Format

no ip access-group {<1-199> | <name>} [vlan <vlan-id>] {in | out}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>The ACL name which is used to identify a specific IP ACL. It is a case-sensitive alphanumeric string from 1 to 31 characters uniquely identifying the MAC access list.</td>
</tr>
<tr>
<td>&lt;1-199&gt;</td>
<td>The identifier of this ACL. Range 1 to 99 is the access list number for an IP standard ACL. Range 100 to 199 is the access list number for an IP extended ACL.</td>
</tr>
<tr>
<td>vlan-id</td>
<td>The VLAN ID. The VLAN keyword is only valid in the 'Global Config' mode.</td>
</tr>
<tr>
<td>in</td>
<td>out</td>
</tr>
</tbody>
</table>

### Default

None

### Mode

Global Config
Interface Config

### 5.21.2.13. {deny|permit}

This command creates a new rule for the current IP access list. Each rule is appended to the list of configured rules for the list.

⚠️ The ‘no’ form of this command is not supported, since the rules within an IP ACL cannot be deleted individually. Rather, the entire IP ACL must be deleted and respecified.

An implicit ‘deny all’ IP rule always terminates the access list.

A rule may either deny or permit traffic according to the specified classification fields. At a minimum, either the ‘every’ keyword or the protocol, source address, and destination address values must be specified. The source and destination IP address fields may be specified using the keyword ‘any’ to indicate a match on any value in that field. The remaining command parameters are all optional, but the most frequently used parameters appear in the same relative order as shown in the command format.

The assign-queue parameter allows specification of a particular hardware queue for handling traffic that matches this rule. The allowed <queue-id> value is 0-(n-1), where n is the number of user configurable queues available for the hardware platform. The assign-queue parameter is valid only for a permit rule.

The mirror parameter allows the traffic matching this rule to be copied to the specified <slot/port>, while the redirect parameter allows the traffic matching this rule to be forwarded to the specified <slot/port>. The assign-queue and redirect parameters are only valid for a permit rule.

The time-range parameter allows imposing time limitation on the IP ACL rule as defined by the parameter time-range-name. If a time range with the specified name does not exist and the IP ACL containing this ACL rule is applied to an interface or bound to a VLAN, then the ACL rule is applied immediately. If a time range with specified name exists and the IP ACL containing this ACL rule is applied to an interface or bound to a VLAN, then...
the ACL rule is applied when the time-range with specified name becomes active. The ACL rule is removed when the time-range with specified name becomes inactive.

**Format**

{deny | permit} \{every [rule-id] [assign-queue <queue-id>] [log] \{[mirror | redirect] <slot/port> | port-channel <port-channel-group-id>\}\} [rate-limit <1-4294967295> <1-128>] [sequence <1-2147483647>] [time-range <name>] | {{<0-255> | icmp | ip | tcp | udp} \{<source-ip/source-mask> | any | host <srcip>\} [eq {<0-65535> | <portkey>} [destination-ip/destination-mask] | any | host <dstip>\} [eq {<0-65535> | <portkey>} [flag [+fin | -fin] [+syn | -syn] [+rst | -rst] [+psh | -psh] [+ack | -ack] [+urg | -urg] [established]] [dscp <value>] [flow-label <value>] [icmp-type <icmp-type> [icmp-code <icmp-code>] | icmp-message <icmp-message>] [fragments] [routing] [rule-id] [assign-queue <queue-id>] [log] \{[mirror | redirect] <slot/port> | port-channel <port-channel-group-id>\}\} [rate-limit <1-4294967295> <1-128>] [sequence <1-2147483647>] [time-range <name>]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>deny or permit</td>
<td>Specifies whether the IP ACL rule permits or denies the matching traffic.</td>
</tr>
<tr>
<td>every</td>
<td>Specifies to match every packet.</td>
</tr>
<tr>
<td>[rule-id]</td>
<td>Specifies a rule ID, the value range from 1 to 1023.</td>
</tr>
<tr>
<td>[assign-queue &lt;queue-id&gt;]</td>
<td>Specifies the assign-queue, which is the queue identifier to which packets matching this rule are assigned, the value range from 0 to 7.</td>
</tr>
<tr>
<td>[log]</td>
<td>Specifies that this rule is to be logged.</td>
</tr>
<tr>
<td>{mirror</td>
<td>redirect} {&lt;slot/port&gt;</td>
</tr>
<tr>
<td>rate-limit &lt;rate&gt; &lt;burst-size&gt;</td>
<td>Specifies the allowed rate of traffic as per the configured rate in kbps range from 1 to 4294967295, and burst-size in kbytes range from 1 to 128.</td>
</tr>
<tr>
<td>sequence &lt;sequence-number&gt;</td>
<td>Specifies a sequence number for the ACL rule. Every rule receives a sequence number. The sequence number is specified by the user or is generated by the device, the value range from 1 to 2147483647.</td>
</tr>
<tr>
<td>time-range &lt;name&gt;</td>
<td>Specifies a time limitation on the ACL rule as defined by the parameter time-range-name.</td>
</tr>
<tr>
<td>&lt;0-255&gt;</td>
<td>Specifies the protocol to match for the IP ACL rule, the value range from 0 to 255.</td>
</tr>
<tr>
<td>&lt;source-ip/source-mask&gt;</td>
<td>Specifies a source IP address and mask to match for the IP ACL rule.</td>
</tr>
<tr>
<td>&lt;destination-ip/destination-mask&gt;</td>
<td>Specifies a destination IP address and mask to match for the IP ACL rule.</td>
</tr>
<tr>
<td>Any</td>
<td>Specifying any implies specifying “0.0.0.0” with mask “255.255.255.255”.</td>
</tr>
<tr>
<td>host &lt;srcip&gt;</td>
<td>Specifies host source IP address implies matching the specified IP address.</td>
</tr>
<tr>
<td>host &lt;dstip&gt;</td>
<td>Specifies host destination IP address implies matching the specified IP address.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| eq {<0-65535> | <portkey>} | Specifies the layer 4 port match condition for the IP ACL rule. A port number can be used, in the range 0-65535, or the portkey, which can be one of the following keywords:  
  - For TCP: bgp, domain, echo, ftp, ftp-data, http, smtp, telnet, www, pop2, pop3  
  - For UDP: domain, echo, ntp, rip, snmp, tftp, time, who. |
| flag [+fin | -fin] [+syn | -syn] [+rst | -rst] [+psh | -psh] [+ack | -ack] [+urg | -urg] [established] | Specifies that the IP ACL rule matches on the tcp flags. When +<tcpflagname> is specified, a match occurs if specified <tcpflagname> flag is set in the TCP header. When “-<tcpflagname>” is specified, a match occurs if specified <tcpflagname> flag is *NOT* set in the TCP header. When established is specified, a match occurs if specified either RST or ACK bits are set in the TCP header. Two rules are installed in hardware to when “established” option is specified. This option is visible only if protocol is “tcp”. |
| dscp <value> | Specifies the dscp value to match for for the IP rule. The value range from 0 to 63 or a DSCP keyword (af11, af12, af13, af21, af22, af23, af31, af32, af33, af41, af42, af43, be, cs0, s1, cs2, cs3, cs4, cs5, cs6, cs7, ef). |
| flow-label <value> | Specifies the flow-label value to match for for the IP rule. The value range from 0 to 1048575. |
| icmp-type <icmp-type> [icmp-code <icmp-code> [icmp-message <icmp-message>]] | This option is available only if the protocol is ICMP. Specifies a match condition for ICMP packets.  
  
  When *icmp-type* is specified, the IP ACL rule matches on the specified ICMP message type, a number from 0 to 255.  
  When *icmp-code* is specified, the IP ACL rule matches on the specified ICMP message code, a number from 0 to 255.  
  
  Specifying *icmp-message* implies that both *icmp-type* and *icmp-code* are specified. The following icmp-messages are supported: destination-unreachable, echo-reply, echo-request, header, hop-limit, mld-query, mld-reduction, mld-report, nd-na, nd-ns, next-header, no-admin, no-route, packet-too-big, port-unreachable, router-solicitation, router-advertisement, router-renumbering, time-exceeded, and unreachable.  
  
  The ICMP message is decoded into the corresponding ICMP type and ICMP code within that ICMP type. |
| [fragments] | Specifies that IP ACL rule matches on fragmented IP packets. |
| [routing] | Specifies that IP ACL rule matches on IP packets that have the routing extension header. |

**Default** None  
**Mode** IP-Access-List Config
5.22. IPv6 ACL Commands

5.22.1. Show commands

5.22.1.1. show ipv6 access-lists

This command displays an IPv6 access list and all of the rules that are defined for the IPv6 ACL. Use the [name] parameter to identify a specific IPv6 ACL to display.

Format  show ipv6 access-lists [name]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;name&gt;</td>
<td>ACL name which uniquely identifies the IPv6 ACL to display.</td>
</tr>
</tbody>
</table>

Default  None

Mode  Privileged EXEC
      User EXEC

Display Message

If the "<name>" parameter is not specified, the following fields are displayed:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current number of all ACLs</td>
<td>The current number of all ACLs.</td>
</tr>
<tr>
<td>Maximum number of all ACLs</td>
<td>The maximum number of all ACLs.</td>
</tr>
<tr>
<td>IPv6 ACL Name</td>
<td>The access-list name.</td>
</tr>
<tr>
<td>Rules</td>
<td>The number of rules in this ACL.</td>
</tr>
<tr>
<td>Direction</td>
<td>The applied direction of the ACL on the interface, inbound or outbound.</td>
</tr>
<tr>
<td>Interface(s)</td>
<td>The interfaces which the ACL applied on.</td>
</tr>
<tr>
<td>VLAN(s)</td>
<td>The VLAN which the ACL applied on.</td>
</tr>
</tbody>
</table>

If the "<name>" parameter is specified, the following fields are displayed:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL Name</td>
<td>The access-list name.</td>
</tr>
<tr>
<td>Sequence Number</td>
<td>The ordered rule number identifier defined within the IPv6 ACL.</td>
</tr>
<tr>
<td><strong>Action</strong></td>
<td>The action associated with each rule. The possible values are Permit or Deny.</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------------------------------------------------</td>
</tr>
<tr>
<td><strong>Match Every</strong></td>
<td>Indicates whether this access list applies to every packet. Possible values are True or False.</td>
</tr>
<tr>
<td><strong>IPv6 Protocol</strong></td>
<td>The protocol to filter for this rule.</td>
</tr>
<tr>
<td><strong>Source IP Address</strong></td>
<td>The source IP address for this rule.</td>
</tr>
<tr>
<td><strong>Source L4 Port Keyword</strong></td>
<td>The source port for this rule.</td>
</tr>
<tr>
<td><strong>Destination IP Address</strong></td>
<td>The destination IP address for this rule.</td>
</tr>
<tr>
<td><strong>Destination L4 Port Keyword</strong></td>
<td>The destination port for this rule.</td>
</tr>
<tr>
<td><strong>Fragments</strong></td>
<td>Specifies that IPv6 ACL rule matches on fragmented IPv6 packets or not.</td>
</tr>
<tr>
<td><strong>Routing</strong></td>
<td>Specifies that IPv6 ACL rule matches on IPv6 packets that have the routing extension header or not.</td>
</tr>
<tr>
<td><strong>IP DSCP</strong></td>
<td>The value specified for IP DSCP.</td>
</tr>
<tr>
<td><strong>Flow Label</strong></td>
<td>The value specified for IPv6 Flow Label.</td>
</tr>
<tr>
<td><strong>Log</strong></td>
<td>Displays when you enable logging for the rule.</td>
</tr>
<tr>
<td><strong>Assign Queue</strong></td>
<td>The queue identifier to which packets matching this rule are assigned.</td>
</tr>
<tr>
<td><strong>Mirror Interface</strong></td>
<td>The slot/port to which packets matching this rule are copied.</td>
</tr>
<tr>
<td><strong>Redirect Interface</strong></td>
<td>The slot/port to which packets matching this rule are forwarded.</td>
</tr>
<tr>
<td><strong>Redirect External AgentId</strong></td>
<td>The agent-id is a unique identifier for the external receive client application. Indicates whether matching flow packets are allowed to be sent to external applications running alongside ICOS on a control CPU.</td>
</tr>
<tr>
<td><strong>Time Range Name</strong></td>
<td>Displays the name of the time-range if the IPv6 ACL rule has referenced a time range.</td>
</tr>
<tr>
<td><strong>Rule Status</strong></td>
<td>Status (Active/Inactive) of the MAC ACL rule.</td>
</tr>
<tr>
<td><strong>Committed Rate</strong></td>
<td>The committed rate defined by the rate-limit attribute.</td>
</tr>
<tr>
<td><strong>Committed Burst</strong></td>
<td>The committed burst size defined by the rate-limit attribute.</td>
</tr>
</tbody>
</table>

### 5.22.2. Configuration Commands

#### 5.22.2.1. ipv6 access-list

This command creates an IPv6 Access Control List (ACL) identified by `<name>`, consisting of classification fields defined for the IP header of an IPv6 frame. The `<name>` parameter is a case-sensitive alphanumeric string from 1 to 31 characters.
uniquely identifying the IPv6 access list.

If an IPv6 ACL by this name already exists, this command enters IPv6-Access-List config mode to allow updating the existing IPv6 ACL.

To delete the IPv6 ACL identified by <name> from the system, use the no form of this command.

**Format**  
ipv6 access-list <name>  
no ipv6 access-list <name>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;name&gt;</td>
<td>access-list name up to 31 characters in length.</td>
</tr>
</tbody>
</table>

**Default**  
None

**Mode**  
Global Config

The CLI mode changes to IPv6-Access-List Config mode when you successfully execute this command.

### 5.22.2.2. ipv6 access-list rename

This command changes the name of an IPv6 ACL. The <name> parameter is the name of an existing IPv6 ACL. The <newname> parameter is a case-sensitive alphanumeric string from 1 to 31 characters uniquely identifying the IPv6 access list.

This command fails is an IPv6 ACL by the name <newname> already exists.

**Format**  
ipv6 access-list rename <oldname> <newname>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;oldname&gt;</td>
<td>Current Access Control List name.</td>
</tr>
<tr>
<td>&lt;newname&gt;</td>
<td>New Access Control List name.</td>
</tr>
</tbody>
</table>

**Default**  
None

**Mode**  
Global Config

### 5.22.2.3. ipv6 access-list resequence

Use this command to renumber the sequence numbers of the entries for specified IPv6 access list with the given increment value starting from a particular sequence number. The command is used to edit the sequence numbers of ACL rules in the ACL and change the order in which entries are applied. This command is not saved in startup configuration and is not displayed in running configuration.
Format: ipv6 access-list resequence <name> <1-2147483647> <1-2147483647>

Parameter	Description
name | The ACL name which is used to identify a specific IP ACL. It is a case-sensitive alphanumeric string from 1 to 31 characters uniquely identifying the IP access list.

<1-2147483647> | The sequence number from which to start. The range is 1-2147483647. The default is 1.

<1-2147483647> | The amount to increment. The range is 1-2147483647. The default is 10.

Default: 1

Mode: Global Config

5.22.2.4. {deny|permit}

This command creates a new rule for the current IPv6 access list. Each rule is appended to the list of configured rules for the list.

⚠️ The ‘no’ form of this command is not supported, since the rules within an IPv6 ACL cannot be deleted individually. Rather, the entire IPv6 ACL must be deleted and respecified.

An implicit ‘deny all’ IPv6 rule always terminates the access list.

A rule may either deny or permit traffic according to the specified classification fields. At a minimum, either the ‘every’ keyword or the protocol, source address, and destination address values must be specified. The source and destination IPv6 address fields may be specified using the keyword ‘any’ to indicate a match on any value in that field. The remaining command parameters are all optional, but the most frequently used parameters appear in the same relative order as shown in the command format.

The assign-queue parameter allows specification of a particular hardware queue for handling traffic that matches this rule. The allowed <queue-id> value is 0-(n-1), where n is the number of user configurable queues available for the hardware platform. The assign-queue parameter is valid only for a permit rule.

The mirror parameter allows the traffic matching this rule to be copied to the specified <slot/port>, while the redirect parameter allows the traffic matching this rule to be forwarded to the specified <slot/port>. The assign-queue and redirect parameters are only valid for a permit rule.

The time-range parameter allows imposing time limitation on the IPv6 ACL rule as defined by the parameter time-range-name. If a time range with the specified name does not exist and the IPv6 ACL containing this ACL rule is applied to an interface or bound to a VLAN, then the ACL rule is applied immediately. If a time range with specified name exists and the IPv6 ACL containing this ACL rule is applied to an interface or bound to a VLAN, then the ACL rule is applied when the time-range with specified name becomes active. The ACL rule is removed when the time-range with specified name becomes inactive.
**Format**
{deny | permit} {every [rule-id] [assign-queue <queue-id>] [log] [{mirror | redirect} <slot/port> | port-channel <port-channel-group-id>] [rate-limit <1-4294967295> <1-128>] [sequence <1-2147483647>] [time-range <name>] | {{<0-255> | icmpv6 | ipv6 | tcp | udp} {<source-ipv6-prefix/prefix-length> | any | host <ipv6 srcip>} [eq | <portkey>] | <destination-ipv6-prefix/prefix-length> | any | host <ipv6 dstip>} [eq | <portkey>] [flag [+fin | -fin] [+syn | -syn] [+rst | -rst] [+psh | -psh] [+ack | -ack] [+urg | -urg] [established]] [dscp <value>] [flow-label <value>] [icmp-type <icmp-type> [icmp-code <icmp-code>] | icmp-message <icmp-message>] [fragments] [routing] [rule-id] [assign-queue <queue-id>] [log] [{mirror | redirect} <slot/port> | port-channel <port-channel-group-id>] [rate-limit <1-4294967295> <1-128>] [sequence <1-2147483647>] [time-range <name>]}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>deny or permit</td>
<td>Specifies whether the IPv6 ACL rule permits or denies the matching traffic.</td>
</tr>
<tr>
<td>every</td>
<td>Specifies to match every packet.</td>
</tr>
<tr>
<td>[rule-id]</td>
<td>Specifies a rule ID, the value range from 1 to 1023.</td>
</tr>
<tr>
<td>[assign-queue &lt;queue-id&gt;]</td>
<td>Specifies the assign-queue, which is the queue identifier to which packets matching this rule are assigned, the value range from 0 to 7.</td>
</tr>
<tr>
<td>[log]</td>
<td>Specifies that this rule is to be logged.</td>
</tr>
<tr>
<td>{mirror</td>
<td>redirect}</td>
</tr>
<tr>
<td>{.slot/port}</td>
<td>Specifies the port-channel slot/port to which packets matching this rule are copied or forwarded, respectively.</td>
</tr>
<tr>
<td>[port-channel &lt;port-channel-group-id&gt;]</td>
<td>Specifies the port-channel group to which packets matching this rule are copied or forwarded, respectively.</td>
</tr>
<tr>
<td>rate-limit &lt;rate&gt; &lt;burst-size&gt;</td>
<td>Specifies the allowed rate of traffic as per the configured rate in kbps range from 1 to 4294967295, and burst-size in kbytes range from 1 to 128.</td>
</tr>
<tr>
<td>Sequence &lt;sequence-number&gt;</td>
<td>Specifies a sequence number for the ACL rule. Every rule receives a sequence number. The sequence number is specified by the user or is generated by the device, the value range from 1 to 2147483647.</td>
</tr>
<tr>
<td>time-range &lt;name&gt;</td>
<td>Specifies a time limitation on the ACL rule as defined by the parameter time-range-name.</td>
</tr>
<tr>
<td>&lt;0-255&gt;</td>
<td>Specifies the protocol to match for the IPv6 ACL rule, the value range from 0 to 255.</td>
</tr>
<tr>
<td>&lt;source-ipv6-prefix/prefix-length&gt;</td>
<td>Specifies a source IPv6 source address and prefix length to match for the IPv6 ACL rule.</td>
</tr>
<tr>
<td>&lt;destination-ipv6-prefix/prefix-length&gt;</td>
<td>Specifies a source IPv6 destination address and prefix length to match for the IPv6 ACL rule.</td>
</tr>
<tr>
<td>Any</td>
<td>Specifying any implies specifying “::/0 “</td>
</tr>
<tr>
<td>host &lt;ipv6 srcip&gt;</td>
<td>Specifying host source-ipv6-address implies matching the specified IPv6 address.</td>
</tr>
<tr>
<td>host &lt;ipv6 dstip&gt;</td>
<td>Specifying host destination-ipv6-address implies matching the specified IPv6 address.</td>
</tr>
</tbody>
</table>
### Example Command Syntax

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
</table>
| `eq {<0-65535> | <portkey>}` | Specifies the layer 4 port match condition for the IPv6 ACL rule. A port number can be used, in the range 0-65535, or the portkey, which can be one of the following keywords:  
  - For TCP: bgp, domain, echo, ftp, ftp-data, http, smtp, telnet, www, pop2, pop3  
  - For UDP: domain, echo, ntp, rip, snmp, tftp, time, who. |
| `flag [+fin | -fin] [+syn | -syn] [+rst | -rst] [+psh | -psh] [+ack | -ack] [+urg | -urg] [established]` | Specifies that the IPv6 ACL rule matches on the tcp flags. When `+<tcpflagname>` is specified, a match occurs if specified `<tcpflagname>` flag is set in the TCP header. When `"-<tcpflagname>"` is specified, a match occurs if specified `<tcpflagname>` flag is *NOT* set in the TCP header. When established is specified, a match occurs if specified either RST or ACK bits are set in the TCP header. Two rules are installed in hardware to when "established" option is specified. This option is visible only if protocol is "tcp". |
| `dscp <value>`         | Specifies the dscp value to match for the IPv6 rule. The value range from 0 to 63 or a DSCP keyword (af11, af12, af13, af21, af22, af23, af31, af32, af33, af41, af42, af43, be, cs0, s1, cs2, cs3, cs4, cs5, cs6, cs7, ef).                                           |
| `flow-label <value>`   | Specifies the flow-label value to match for the IPv6 rule. The value range from 0 to 1048575.                                                                                                             |
| `icmp-type <icmp-type> [icmp-code <icmp-code> | icmp-message <icmp-message>]` | This option is available only if the protocol is ICMPv6.  
  Specifies a match condition for ICMP packets.  
  When `icmp-type` is specified, the IPv6 ACL rule matches on the specified ICMP message type, a number from 0 to 255.  
  When `icmp-code` is specified, the IPv6 ACL rule matches on the specified ICMP message code, a number from 0 to 255.  
  Specifying `icmp-message` implies that both `icmp-type` and `icmp-code` are specified. The following icmp-messages are supported: destination-unreachable, echo-reply, echo-request, header, hop-limit, mld-query, mld-reduction, mld-report, nd-na, nd-ns, next-header, no-admin, no-route, packet-too-big, port-unreachable, router-solicitation, router-advertisement, router-renumbering, time-exceeded, and unreachable.  
  The ICMP message is decoded into the corresponding ICMP type and ICMP code within that ICMP type. |
| `[fragments]`          | Specifies that IPv6 ACL rule matches on fragmented IPv6 packets (packets that have the next header field set to 44).                                                                                 |
| `[routing]`            | Specifies that IPv6 ACL rule matches on IPv6 packets that have the routing extension header (the next header field is set to 43).                                                                |

**Default**

None

**Mode**

IPv6-Access-List Config
5.22.2.5.  no rule-id

This command removes a rule for the current IPv6 access list.

**Format**  no rule-id <ID>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;ID&gt;</td>
<td>Specifies a rule ID, the value range from 1 to 2147483647.</td>
</tr>
</tbody>
</table>

**Default**  None

**Mode**  IPv6-Access-List Config

5.22.2.6.  ipv6 traffic-filter

This command either attaches a specific IPv6 ACL identified by <name> to an interface or associates with a VLAN ID in a given direction. The <name> parameter must be the name of an existing IPv6 ACL.

An optional sequence number may be specified to indicate the order of this mac access list relative to other IPv6 access lists already assigned to this interface and direction. A lower number indicates higher precedence order. If a sequence number is already in use for this interface and direction, the specified IPv6 access list replaces the currently attached IPv6 access list using that sequence number. If the sequence number is not specified for this command, a sequence number that is one greater than the highest sequence number currently in use for this interface and direction is used.

This command specified in Interface Config mode only affects a single interface, whereas the Global Config mode setting is applied to all interfaces. The control-plane and vlan keyword is only valid in the Global Config mode. The Interface Config mode command is only available on platforms that support independent per-port class of service queue configuration.

To remove an IPv6 ACL identified by <name> from the interface(s) in a given direction, use the no form of this command.

**Format**  ipv6 traffic-filter <name> {{control-plane | in | out} | vlan <vlan-id> {in | out}} [1-4294967295]]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>in</td>
<td>out</td>
</tr>
<tr>
<td>&lt;vlan-id&gt;</td>
<td>VLAN ID. The range of VLAN ID is 1 to 4093.</td>
</tr>
<tr>
<td>&lt;1-4294967295&gt;</td>
<td>The sequence number (greater than 0) to rank precedence for this interface and direction. A lower sequence number has higher precedence. The range of sequence is 1 to 4294967295.</td>
</tr>
<tr>
<td><strong>Default</strong></td>
<td>None</td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td><strong>Mode</strong></td>
<td>Global Config</td>
</tr>
<tr>
<td></td>
<td>Interface Config</td>
</tr>
</tbody>
</table>
5.23. CoS (Class of Service) Command

5.23.1. Show commands

5.23.1.1. show queue cos-map

This command displays the current Dot1p (802.1p) priority mapping to internal traffic classes for a specific interface. The slot/port parameter is optional and is only valid on platforms that support independent per-port class of service mappings. If specified, the 802.1p mapping table of the interface is displayed. If omitted, the most recent global configuration settings are displayed.

Format  show queue cos-map {<slot/port> | port-channel <id>}

Parameter    Description

| slot/port | The interface number. |
| id         | Specified the port channel ID |

Default      None
Mode          Privileged EXEC

Display Message

The following information is repeated for each user priority.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Priority</td>
<td>The 802.1p user priority value.</td>
</tr>
<tr>
<td>Traffic Class</td>
<td>The traffic class internal queue identifier to which the user priority value is mapped.</td>
</tr>
</tbody>
</table>

5.23.1.2. show queue ip-dscp-mapping

This command maps an IP DSCP value to an internal traffic class. The <ipdscp> value is specified as either an integer from 0 to 63, or symbolically through one of the following keywords: af11, af12, af13, af21, af22, af23, af31, af32, af33, af41, af42, af43, be, cs0, cs1, cs2, cs3, cs4, cs5, cs6, cs7, ef.

The <trafficclass> values can range from 0-6, although the actual number of available traffic classes depends on the platform.

Format  show queue ip-dscp-mapping
Default  None
Mode          Privileged EXEC
5.23.1.3. **show queue trust**

This command displays the current trust mode setting for a specific interface. The slot/port parameter is optional and is only valid on platforms that support independent per-port class of service mappings. If specified, the port trust mode of the interface is displayed. If omitted, the port trust mode of each interface in the system is shown. If the platform does not support independent per-port class of service mappings, the output represents the system-wide port trust mode used for all interfaces.

**Format**  
```yaml
show queue trust {<slot/port> | port-channel <id>}
```

**Parameter**  
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>slot/port</td>
<td>The interface number.</td>
</tr>
<tr>
<td>id</td>
<td>Specified the port channel ID</td>
</tr>
</tbody>
</table>

**Default**  
None

**Mode**  
Privileged EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class of Service Trust Mode</td>
<td>The trust mode of this interface.</td>
</tr>
<tr>
<td>Non-IP Traffic Class</td>
<td>The traffic class used for non-IP traffic. This is only displayed when the COS trust mode is set to either 'trust ip-dscp' or 'trust ip-precedence'.</td>
</tr>
<tr>
<td>Untrusted Traffic Class</td>
<td>The traffic class used for all untrusted traffic. This is only displayed when the COS trust mode is set to 'untrusted'.</td>
</tr>
</tbody>
</table>

5.23.1.4. **show queue cos-queue**

This command displays the class-of-service queue configuration for the specified interface. The slot/port parameter is optional and is only valid on platforms that support independent per-port class of service mappings. If specified, the class-of-service queue configuration of the interface is displayed. If omitted, the most recent global configuration settings are displayed.
**Format**

```
show queue trust {<slot/port> | port-channel <id>}
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>slot/port</td>
<td>The interface number.</td>
</tr>
<tr>
<td>id</td>
<td>Specified the port channel ID</td>
</tr>
</tbody>
</table>

**Default**

None

**Mode**

Privileged EXEC

**Display Message**

**Fields**

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Shaping Rate</td>
</tr>
<tr>
<td>This displays the slot/port of the interface. If displaying the global</td>
</tr>
<tr>
<td>configuration, this output line is replaced with a Global Config indication.</td>
</tr>
<tr>
<td>Interface Shaping Rate</td>
</tr>
<tr>
<td>The maximum transmission bandwidth limit for the interface as a whole. It</td>
</tr>
<tr>
<td>is independent of any per-queue maximum bandwidth value(s) in effect for</td>
</tr>
<tr>
<td>the interface. This is a configured value.</td>
</tr>
</tbody>
</table>

The following information is repeated for each queue on the interface.

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue Id</td>
</tr>
<tr>
<td>Interface supports n queues numbered 0 to (n-1). The specific n value is</td>
</tr>
<tr>
<td>platform dependent.</td>
</tr>
<tr>
<td>Minimum Bandwidth</td>
</tr>
<tr>
<td>The minimum transmission bandwidth guarantee for the queue, expressed as</td>
</tr>
<tr>
<td>a percentage. A value of 0 means bandwidth is not guaranteed and the queue</td>
</tr>
<tr>
<td>operates using best-effort. This is a configured value.</td>
</tr>
<tr>
<td>Scheduler Type</td>
</tr>
<tr>
<td>Indicates whether this queue is scheduled for transmission using a strict</td>
</tr>
<tr>
<td>priority or a weighted scheme. This is a configured value.</td>
</tr>
<tr>
<td>Queue Mgmt Type</td>
</tr>
<tr>
<td>The queue depth management technique used for this queue, either tail drop</td>
</tr>
<tr>
<td>or weighted random early discard (WRED). This is a configured value.</td>
</tr>
</tbody>
</table>

### 5.23.1.5. `show queue random-detect`

This command displays the global WRED settings for each CoS queue. If you specify the slot/port, the command displays the WRED settings for each CoS queue on the specified interface.

**Format**

```
show queue random-detect {<slot/port> | port-channel <id>}
```
5.23.2. Configuration commands

5.23.2.1. queue cos-map

This command maps an 802.1p priority to an internal traffic class on a "per-port" basis.

Format

```
queue cos-map <0-7> <0-7>
no queue cos-map
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;0-7&gt;</td>
<td>The range of queue priority is 0 to 7.</td>
</tr>
<tr>
<td>&lt;0-7&gt;</td>
<td>The range of mapped traffic class is 0 to 7.</td>
</tr>
<tr>
<td>no</td>
<td>Reset to the default mapping of the queue priority and the mapped traffic class.</td>
</tr>
</tbody>
</table>

Default  None

Mode     Interface Config
This command maps an 802.1p priority to an internal traffic class for a device.

**Format**  
queue cos-map all <0-7> <0-7>  
no queue cos-map all

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;0-7&gt;</td>
<td>The range of queue priority is 0 to 7.</td>
</tr>
<tr>
<td>&lt;0-7&gt;</td>
<td>The range of mapped traffic class is 0 to 7.</td>
</tr>
<tr>
<td>no</td>
<td>Reset to the default mapping of the queue priority and the mapped traffic class.</td>
</tr>
</tbody>
</table>

**Default**  
None

**Mode**  
Global Config

### 5.23.2.2. queue trust

This command sets the class of service trust mode of an interface. You can set the mode to trust one of the Dot1p (802.1p) or IP DSCP packet markings. You can also set the interface mode to untrusted. If you configure an interface to use Dot1p, the mode does not appear in the output of the show running config command because Dot1p is the default.

**Format**  
queue trust {dot1p | ip-dscp | untrusted} all  
no queue trust all

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>Sets the class of service trust mode to untrusted for all interfaces.</td>
</tr>
</tbody>
</table>

**Default**  
dot1p

**Mode**  
Global Config

**Format**  
queue trust {dot1p | ip-dscp | untrusted}  
no queue trust

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>Sets the class of service trust mode to untrusted for an interfaces.</td>
</tr>
</tbody>
</table>

**Default**  
dot1p
Mode Interface Config

5.23.2.3. queue cos-queue min-bandwidth

This command specifies the minimum transmission bandwidth guarantee for each interface queue.

Format
queue cos-queue min-bandwidth <bw-0> <bw-1> ⋅⋅⋅ <bw-7>
no queue cos-queue min-bandwidth

Parameter Description

<table>
<thead>
<tr>
<th>&lt;bw-0&gt; &lt;bw-1&gt; &lt;bw-7&gt;</th>
<th>Each Valid range is (0 to 100) in increments of 5 and the total sum is less than or equal to 100.</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>Restores the default for each queue's minimum bandwidth value.</td>
</tr>
</tbody>
</table>

Default None
Mode Interface Config

This command specifies the minimum transmission bandwidth guarantee for each interface queue in the device.

Format
queue cos-queue min-bandwidth all <bw-0> <bw-1> ⋅⋅⋅ <bw-7>
no queue cos-queue min-bandwidth all

Parameter Description

<table>
<thead>
<tr>
<th>&lt;bw-0&gt; &lt;bw-1&gt; &lt;bw-7&gt;</th>
<th>Each Valid range is (0 to 100) in increments of 5 and the total sum is less than or equal to 100.</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>Restores the default for each queue's minimum bandwidth value in the device.</td>
</tr>
</tbody>
</table>

Default None
Mode Global Config

5.23.2.4. queue cos-queue strict

This command activates the strict priority scheduler mode for each specified queue on a "per-port" basis.

Format
queue cos-queue strict <queue-id-0> [<queue-id-1> ⋅⋅⋅ <queue-id-7>]
no queue cos-queue strict <queue-id-0> [<queue-id-1> ⋅⋅⋅ <queue-id-7>]
This command activates the strict priority scheduler mode for each specified queue on a device.

**Format**
```
queue cos-queue strict all <queue-id-0> [<queue-id-1> ... <queue-id-7>]
no queue cos-queue strict all <queue-id-0> [<queue-id-1> ... <queue-id-7>]
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;queue-id&gt;</code></td>
<td>Queue ID from 0 to 7.</td>
</tr>
<tr>
<td>no</td>
<td>Restores the default weighted scheduler mode for each specified queue on a device.</td>
</tr>
</tbody>
</table>

**Default** None

**Mode** Interface Config

5.23.2.5. **queue cos-queue traffic-shape**

This command specifies the maximum transmission bandwidth limit for the interface as a whole. Also known as rate shaping, this has the effect of smoothing temporary traffic bursts over time so that the transmitted traffic rate is bounded.

**Format**
```
queue cos-queue traffic-shape <bw>
no queue cos-queue traffic-shape
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;bw&gt;</code></td>
<td>Valid range is (0 to 100) in increments 1.</td>
</tr>
<tr>
<td>no</td>
<td>Restores the default shaping rate value.</td>
</tr>
</tbody>
</table>

**Default** None

**Mode** Interface Config
This command specifies the maximum transmission bandwidth limit for all interfaces. Also known as rate shaping, this has the effect of smoothing temporary traffic bursts over time so that the transmitted traffic rate is bounded.

**Format**
```
queue cos-queue traffic-shape all <bw>
no queue cos-queue traffic-shape all
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt; bw &gt;</td>
<td>Valid range is (0 to 100) in increments 1.</td>
</tr>
<tr>
<td>no</td>
<td>Restores the default shaping rate value for all interfaces.</td>
</tr>
</tbody>
</table>

**Default** None

**Mode** Global Config

### 5.23.2.6. queue cos-queue random-detect

This command activates weighted random early discard (WRED) for each specified queue on the interfaces. Specific WRED parameters are configured using the random-detect queue-parms and the random-detect exponential-weighting-constant commands.

**Format**
```
queue cos-queue random-detect <queue-id-0> [queue-id-1] ··· [queue-id-7]
no queue cos-queue random-detect <queue-id-0> [queue-id-1] ··· [queue-id-7]
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;queue-id&gt;</td>
<td>Queue ID from 0 to 7.</td>
</tr>
<tr>
<td>no</td>
<td>Restores the default value.</td>
</tr>
</tbody>
</table>

**Default** None

**Mode** Global Config

### Interface Config

### 5.23.2.7. random-detect exponential-weighting-constant

This command is used to configure the WRED decay exponent for a CoS queue interface.

**Format**
```
random-detect exponential-weighting-constant <exponent>
no random-detect exponential-weighting-constant
```
5.23.2.8. random-detect queue-parms

This command is used to configure WRED parameters for each drop precedence level supported by a queue. It is used only when per-COS queue configuration is enabled (using the cos-queue random-detect command).

Format random-detect queue-parms <queue-id> [<queue-id>...] ... [units {KB|percentage}] min-thresh <minthresh-green> <minthresh-yellow> <minthresh-red> <minthresh-nontcp> max-thresh <maxthresh-green> <maxthresh-yellow> <maxthresh-red> <maxthresh-nontcp> drop-prob <drop-prob-green> <drop-prob-yellow> <drop-prob-red> <drop-prob-nontcp> [ecn]

Mode Global Config
Interface Config

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>queue-id</td>
<td>The internal class of service queue. Range 0 to 6.</td>
</tr>
<tr>
<td></td>
<td>This is the internal CoS queue number, which is not the same as the CoS or DSCP value received in the packet. Use the show class of service dot1p-mapping command to display the Cos value to CoS queue mapping.</td>
</tr>
<tr>
<td>units</td>
<td>Minimum and maximum threshold values can be configured in KB or percentage.</td>
</tr>
<tr>
<td>min-thresh</td>
<td>The minimum congestion threshold (in terms of percentage of queue depth) at which to begin dropping or ECN marking packets at 1/8th of the configured drop probability. At or below the minimum threshold, no packets are dropped. The range between the minimum and maximum thresholds is divided equally into 8 increasing levels of drop probability.</td>
</tr>
<tr>
<td>max-thresh</td>
<td>The maximum congestion threshold to end dropping at the configured maximum drop probability and to begin dropping at 100%.</td>
</tr>
<tr>
<td>drop-probability</td>
<td>The maximum drop probability. Range 0-100. This is the drop probability for a packet when the maximum threshold is reached. Above the maximum threshold, 100% of matching packets are dropped.</td>
</tr>
<tr>
<td>ecn</td>
<td>Enable ECN marking on the selected S queues. When ECN is enabled, packets not marked as ECN capable are dropped when selected for discard by WRED.</td>
</tr>
</tbody>
</table>
5.24. iSCSI Optimization Commands

This section describes commands you use to monitor iSCSI sessions and prioritize iSCSI packets. iSCSI Optimization provides a means of giving traffic between iSCSI initiator and target systems special Quality of Service (QoS) treatment. This is accomplished by monitoring traffic to detect packets used by iSCSI stations to establish iSCSI sessions and connections. Data from these exchanges is used to create classification rules that assign the traffic between the stations to a configured traffic class. Packets in the flow are queued and scheduled for egress on the destination port based on these rules.

5.24.1. show iscsi

Use this command to display the iSCSI settings.

Format  show iscsi

Mode     Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>iSCSI enabled/disabled</td>
<td>Displays if iSCSI session monitor is enabled or disabled.</td>
</tr>
<tr>
<td>iSCSI Egress queue</td>
<td>Indicates the egress queue for the iSCSI session.</td>
</tr>
<tr>
<td>Session aging time</td>
<td>The number of minutes a session must be inactive prior to its removal. Range: 1-43,200</td>
</tr>
<tr>
<td>Maximum number of sessions</td>
<td>Indicates the maximum number of the iSCSI sessions. The value is 192.</td>
</tr>
<tr>
<td>TCP Port</td>
<td>iSCSI target TCP port.</td>
</tr>
<tr>
<td>Target IP Address</td>
<td>iSCSI target IP address.</td>
</tr>
<tr>
<td>Name</td>
<td>iSCSI target Name</td>
</tr>
</tbody>
</table>

5.24.2. show iscsi sessions

Use this command to display the iSCSI sessions.

Format  show iscsi sessions [detailed]

Mode     Privileged EXEC
### 5.24.3. iscsi enable

Use this command to globally enables iSCSI awareness.

**Format**  
iscsi enable

**Default**  
Disable

**Mode**  
Global Config

### 5.24.4. no iscsi enable

The command disables iSCSI awareness. When you use the `no iscsi enable` command, iSCSI resources will be released.

**Format**  
no iscsi enable

**Default**  
Disable

**Mode**  
Global Config
5.24.5. iscsi aging time

Use this command to configure the aging time for iSCSI sessions. Behavior when changing aging time:

- When aging time is increased, current sessions will be timed out according to the new value.
- When aging time is decreased, any sessions that have been dormant for a time exceeding the new setting will be immediately deleted from the table. All other sessions will continue to be monitored against the new time out value.

Format  iscsi aging time <time>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;time&gt;</td>
<td>Time in minutes. The range of session id is 1 to 43200.</td>
</tr>
</tbody>
</table>

Default  10
Mode     Global Config

5.24.6. no iscsi aging time

The command recovery iSCSI aging time to default value.

Format  no iscsi aging time

Default  10
Mode     Global Config

5.24.7. iscsi queue

Use this command to configure iSCSI egress queue value.

Format  iscsi queue <queue>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;queue&gt;</td>
<td>iSCSI egress queue value. The range of session id is 0 to 7.</td>
</tr>
</tbody>
</table>

Default  3
Mode     Global Config
5.24.8. no iscsi queue

The command recovery iSCSI egress queue out parameter.

Format
no iscsi queue

Default
3

Mode
Global Config

5.24.9. iscsi target

Use this command to configure an iSCSI target port and, optionally, a target system’s IP address and IQN name. When working with private iSCSI ports (not IANA-assigned ports 3260/860), it is recommended to specify the target IP address as well, so that the switch will only snoop frames with which the TCP destination port is one of the configured TCP ports, and the destination IP is the target’s IP address. This way the CPU will not be falsely loaded by non-iSCSI flows (if by chance other applications also choose to use these un-reserved ports).

When a port is already defined and not bound to an IP address, and you want to bind it to an IP address, you should first remove it by using the no form of the command and then add it again, this time together with the relevant IP address.

Target names are only for display when using the show iscsi command. These names are not used to match with the iSCSI session information acquired by snooping.

A maximum of 16 TCP ports can be configured either bound to IP or not.

Format
iscsi target port <tcp-port1> [<tcp-port2> ... <tcp-port16>] [address <ip-address>] [name <target-name>]

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>tcp-port 1 [ tcp-port 2 tcp-port 16]</td>
<td>TCP port number or list of TCP port numbers on which the iSCSI target listens to requests. Up to 16 TCP ports can be defined in the system in one command or by using multiple commands.</td>
</tr>
<tr>
<td>ip-address</td>
<td>IP address of the iSCSI target. When the no form of this command is used, and the tcp port to be deleted is one bound to a specific IP address, the address field must be present.</td>
</tr>
<tr>
<td>target-name</td>
<td>iSCSI name of the iSCSI target. The name can be statically configured; however, it can be obtained from iSCSI or from sendTargets response. The initiator must present both its iSCSI Initiator Name and the iSCSI Target Name to which it wishes to connect in the first login request of a new session or connection. The iSCSI target name containing up to 223 characters.</td>
</tr>
</tbody>
</table>

Default
iSCSI well-known ports 3260 and 860 are configured as default but can be removed as any other configured target.
5.24.10.  **no iscsi target**

The command delete an iSCSI target port, address, and name.

**Format**

```
no iscsi target port <tcp-port1> [<tcp-port2> ... <tcp-port16>] [address <ip-address>]
```

**Default**

iSCSI well-known ports 3260 and 860 are configured as default but can be removed as any other configured target

**Mode**

Global Config
5.25. Domain Name Server Client Commands

5.25.1. show hosts

This command displays the static host name-to-address mapping table.

Format   show hosts [hostname]
Default   None
Mode      Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS Client Source Interface</td>
<td>The source interface of the DNS client.</td>
</tr>
<tr>
<td>Host Name</td>
<td>Domain host name.</td>
</tr>
<tr>
<td>Default Domain</td>
<td>Default domain name.</td>
</tr>
<tr>
<td>Default Domain List</td>
<td>Default domain list.</td>
</tr>
<tr>
<td>Domain Name Lookup</td>
<td>DNS client enabled/disabled.</td>
</tr>
<tr>
<td>Number of Retries</td>
<td>Number of time to retry sending DNS queries.</td>
</tr>
<tr>
<td>Retry Timeout Period</td>
<td>Amount of time to wait for a response to a DNS query.</td>
</tr>
<tr>
<td>Name Servers</td>
<td>Configured name servers.</td>
</tr>
</tbody>
</table>

Example: The following shows examples of the CLI display output for the commands.

(M4500-48XF8C) #show hosts

Host name............................................ M4500-48XF8C
Default domain................................. Domain name is not configured
Default domain list............................ Domain Name List is not configured
Domain Name Lookup............................. Enabled
Number of retries......................... 2
Retry timeout period..................... 3
Name servers (Preference order)......... 10.1.1.7, 10.1.1.6
Dns Client Source Interface.................... (not configured)

Configured host name-to-address mapping:

<table>
<thead>
<tr>
<th>Host</th>
<th>Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No host name is configured to IP address

<table>
<thead>
<tr>
<th>Host</th>
<th>Total</th>
<th>Elapsed</th>
<th>Type</th>
<th>Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No hostname is mapped to an IP address

### 5.25.2. ip host

This command creates a static entry in the DNS table that maps a host name to an IP address.

**Format**  
`ip host <name> <ipaddr>`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;name&gt;</td>
<td>Host name.</td>
</tr>
<tr>
<td>&lt;ipaddr&gt;</td>
<td>IPv4 address of the host.</td>
</tr>
</tbody>
</table>

**Default**  
None

**Mode**  
Global Config

### 5.25.3. no ip host

Remove the corresponding name to IP address mapping entry.

**Format**  
`no ip host <name>`

**Mode**  
Global Config
5.25.4. clear host

This command clears the entire static host name-to-address mapping table.

**Format**
clear host <hostname | all>

**Default**
None

**Mode**
Privileged Exec

5.25.5. ip domain-name

This command defines the default domain name to be appended to incomplete host names (i.e., host names passed from a client are not formatted with dotted notation).

**Format**
ip domain-name <name>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;name&gt;</td>
<td>Default domain name used to complete unqualified host names. Do not include the initial period that separates an unqualified name from the domain name. (Range: 1-64 characters)</td>
</tr>
</tbody>
</table>

**Default**
None

**Mode**
Global Config

5.25.6. no ip domain-name

This command removes the default domain name.

**Format**
no ip domain-name

**Mode**
Global Config

5.25.7. ip domain-list

This command defines the domain list of default domain names to complete unqualified names.

**Format**
ip domain-list <name>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;name&gt;</td>
<td></td>
</tr>
</tbody>
</table>
5.25.8. no ip domain-list

This command removes the default domain list.

**Format**

```
no ip domain-list <name>
```

**Mode**

Global Config

5.25.9. ip name-server

This command specifies the address of one or more domain name servers to use for name-to-address resolution.

**Note:** The listed name servers are queried in the specified sequence until a response is received, or the end of the list is reached with no response.

**Format**

```
ip name-server <ipaddr>
```

---

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;ipaddr&gt;</code></td>
<td>IP address of the Domain Name Servers.</td>
</tr>
</tbody>
</table>

**Default**

None

**Mode**

Global Config

5.25.10. no ip name-server

Remove the corresponding Domain Name Server entry from the table.

**Format**

```
no ip name-server [<ipaddr>]
```

**Mode**

Global Config
5.25.11.  **ip name-server source-interface**

This command specifies the source address of dns client to use for name-to-address resolution.

**Format**  
`ip name-server source-interface {<slot/port> | loopback <loopback-id> | serviceport | tunnel <tunnel-id> | vlan <vlan-id>}`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;slot/port&gt;</code></td>
<td>Specifies the interface to use as the source interface.</td>
</tr>
<tr>
<td><code>&lt;loopback-id&gt;</code></td>
<td>Specifies the loopback interface to use as the source interface. The range of the loopback ID is 0 to 63.</td>
</tr>
<tr>
<td><code>serviceport</code></td>
<td>Specifies the serviceport interface to use as the source interface.</td>
</tr>
<tr>
<td><code>&lt;tunnel-id&gt;</code></td>
<td>Specifies the tunnel interface to use as the source interface. The range of the tunnel ID is 0 to 7.</td>
</tr>
<tr>
<td><code>&lt;vlan-id&gt;</code></td>
<td>Specifies the VLAN interface to use as the source interface. The range of the VLAN ID is 1 to 4093.</td>
</tr>
</tbody>
</table>

**Default**  
None

**Mode**  
Global Config

5.25.12.  **no ip name-server source-interface**

This command will reset the DNS source interface to the default settings.

**Format**  
`no ip name-server source-interface`

**Mode**  
Global Config

5.25.13.  **ip domain-lookup**

This command enables the IP Domain Naming System (DNS)-based host name-to-address translation.

**Format**  
`ip domain-lookup`

**Default**  
None

**Mode**  
Global Config
5.25.14.  no ip domain-lookup

This command disables the IP Domain Naming System (DNS)-based host name-to-address translation.

**Format**   no ip domain-lookup

**Mode**    Global Config

5.25.15.  ip domain-retry

This command specifies the number of times to retry sending Domain Name System (DNS) queries.

**Format**   ip domain-retry <0-100>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;0-100&gt;</td>
<td>The number of times to retry sending a DNS query to the server.</td>
</tr>
</tbody>
</table>

**Default**    2

**Mode**    Global Config

5.25.16.  no ip domain-retry

This command will reset the number of retry times to the default settings.

**Format**   no ip domain-retry

**Mode**    Global Config

5.25.17.  ip domain-retry-timeout

This command specifies the amount of time to wait for a response to a DNS query.

**Format**   ip domain-retry-timeout <0-3600>

**Default**    3

**Mode**    Global Config
5.25.18.  **no ip domain-retry-timeout**

This command will reset the timeout to the default setting.

**Format**  
no ip domain-retry-timeout

**Mode**  
Global Config

5.25.19.  **ipv6 host**

This command creates a static entry in the DNS table that maps a host name to an IPv6 address.

**Format**  
ipv6 host <name> <ipv6-address>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;name&gt;</td>
<td>Host name.</td>
</tr>
<tr>
<td>&lt;ipv6-address&gt;</td>
<td>IPv6 address of the host.</td>
</tr>
</tbody>
</table>

**Default**  
None

**Mode**  
Global Config

5.25.20.  **no ipv6 host**

This command removes the corresponding host name from an IPv6 address mapping entry.

**Format**  
no ipv6 host <name>

**Mode**  
Global Config
5.26. **Unidirectional Link Detection Commands**

This section describes the commands you use to configure and display Unidirectional Link Detection (UDLD). The purpose of the UDLD feature is to detect and avoid unidirectional links. A unidirectional link is a forwarding anomaly in a Layer 2 communication channel in which a bi-directional link stops passing traffic in one direction.

### 5.26.1. `udld enable` (Global Config)

Use this command to enable UDLD globally on the switch.

**Format**
```
udld enable
```

**Default**
Disable

**Mode**
Global Config

### 5.26.2. `no udld enable` (Global Config)

Use this command to disable UDLD globally on the switch.

**Format**
```
no udld enable
```

**Mode**
Global Config

### 5.26.3. `udld message time`

Use this command to configure the interval value (in seconds) between UDLD probe messages on ports that are in the advertisement phase.

**Format**
```
udld message time <7-90>
```

**Default**
15

**Mode**
Global Config

### 5.26.4. `no udld message time`

For the interval between UDLD probe messages on ports that are in the advertisement phase, use this command to restore the interval value to the default value.

**Format**
```
no udld message time
```

**Mode**
Global Config
5.26.5. udld timeout interval

Use this command to configure the time interval value (in seconds) after which the UDLD link is considered to be unidirectional.

**Format**
udld timeout interval <5-60>

**Default**
5

**Mode**
Global Config

5.26.6. no udld timeout interval

Use this command to restore the time interval value after which the UDLD link is considered to be unidirectional to the default value.

**Format**
no udld timeout interval

**Mode**
Global Config

5.26.7. udld enable (Interface Config)

Use this command to enable UDLD on the specified interface.

**Format**
udld enable

**Default**
Disable

**Mode**
Interface Config

5.26.8. no udld enable (Interface Config)

Use this command to disable UDLD on the specified interface.

**Format**
no udld enable

**Mode**
Interface Config
5.26.9. udld port

Use this command to select the UDLD mode operating on this interface.

**Format**  
udld port [aggressive]

**Default**  
normal

**Mode**  
Interface Config

5.26.10. udld reset

Use this command to reset all interfaces that have been shutdown by UDLD.

**Format**  
udld reset

**Mode**  
Privileged EXEC

5.26.11. show udld

Use this command to display the global settings of UDLD. If you specify a slot and port, the command displays the UDLD setting for the specified slot and port.

**Format**  
show udld [slot/port | all]

**Mode**  
Privileged EXEC

User EXEC

**Display Message for the global settings**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin Mode</td>
<td>The global administrative mode of UDLD.</td>
</tr>
<tr>
<td>Message Interval</td>
<td>The time period (in seconds) between the transmission of UDLD probe packets.</td>
</tr>
<tr>
<td>Timeout Interval</td>
<td>The time period (in seconds) between the decision that the link is unidirectional.</td>
</tr>
</tbody>
</table>

Example: The following example shows the CLI display output for the command *show udld*.

(M4500-32C) #show udld

Admin Mode.............................. Enabled

Message Interval............................. 15
Display Message for a specified slot and port

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Port</strong></td>
<td>The identifying port of the interface.</td>
</tr>
<tr>
<td><strong>Admin Mode</strong></td>
<td>The administrative mode of UDLD configured on this interface. The mode is</td>
</tr>
<tr>
<td></td>
<td>either enabled or disabled.</td>
</tr>
<tr>
<td><strong>UDLD Mode</strong></td>
<td>The UDLD mode configured on this interface. The mode is either normal or</td>
</tr>
<tr>
<td></td>
<td>aggressive.</td>
</tr>
<tr>
<td><strong>UDLD Status</strong></td>
<td>The status of the link as determined by UDLD. The options are:</td>
</tr>
<tr>
<td></td>
<td>• Undetermined – UDLD has not collected information to determine the state</td>
</tr>
<tr>
<td></td>
<td>of the link.</td>
</tr>
<tr>
<td></td>
<td>• Not applicable – UDLD is disabled, either globally or on the port.</td>
</tr>
<tr>
<td></td>
<td>• Shutdown – UDLD has detected a unidirectional link and shutdown the port.</td>
</tr>
<tr>
<td></td>
<td>That is, the port is in an errDisabled state.</td>
</tr>
<tr>
<td></td>
<td>• Bidirectional – UDLD has detected a bidirectional link.</td>
</tr>
<tr>
<td></td>
<td>• Undetermined (Link Down) – The port would transition into this state</td>
</tr>
<tr>
<td></td>
<td>when the port link physically goes down due to any reasons other than the</td>
</tr>
<tr>
<td></td>
<td>port has been put into D-Disable mode by the UDLD protocol on switch.</td>
</tr>
</tbody>
</table>

Example: The following example shows the CLI display output for the command show udld 0/3.

(M4500-32C) #show udld 0/3

<table>
<thead>
<tr>
<th>Port</th>
<th>Admin Mode</th>
<th>UDLD Mode</th>
<th>UDLD Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/3</td>
<td>Enabled</td>
<td>Aggressive</td>
<td>Bidirectional</td>
</tr>
</tbody>
</table>

Host device ID: NTGROZ534000A

Host port ID: 0/3

Echo entry 1

-------------
Time-To-Live: 39
Neighbor echo 1 device: NTGROZ5200014
Neighbor echo 1 port: 0/3

Message Interval: 15
Timeout Interval: 5
Neighbor Device Name: SW2
5.27. Multi-chassis Link Aggregation Commands

This section describes the commands you use to configure and display Multi-Chassis Link Aggregation (MLAG). MLAG allows links that are physically connected to two different devices to appear as a single Port Channel to a third device.

Note: MLAG can support RSTP and IGMP Snooping. The configuration of RSTP and IGMP Snooping on peers of MLAG must be the same to guarantee that MLAG can work correctly.

5.27.1. mlag

This command enables Multi-Chassis Link Aggregation (MLAG) globally.

Format  

Default Disable

Mode  Global Config

5.27.2. no mlag

This command disables MLAG globally.

Format  no mlag

Mode  Global Config

5.27.3. mlag domain

This command creates a MLAG domain with the specified domain ID. Only one MLAG domain can be created on a given device. The domain-id of the MLAG domain should be equal to the one configured on the other MLAG peer with which this device wants to form a MLAG pair. The configured MLAG domain-ids are exchanged during role election and if they are configured differently on the peer devices, the MLAG does not become operational. Domain-id is used to derive the auto-generated MLAG virtual MAC address that is used in the actor ID field in the LACP PDUs.

Format  mlag domain <1-255>

Default None

Mode  Global Config
5.27.4. no mlag domain

This command deletes the MLAG domain with the specified domain ID.

Format  no mlag domain <1-255>
Mode    Global Config

5.27.5. mlag system-mac

Use this command to manually configure the MAC address for the MLAG domain. The specified MAC address should be a unicast MAC and cannot be equal to the MAC address of either the primary MLAG or secondary MLAG device. The configured MLAG MAC address is exchanged during role election and, if they are configured differently on the peer devices, MLAG does not become operational.

The <mac-address> used in the LACP PDUs and STP BPDUs that are sent out on MLAG member ports, if MLAG primary device election takes place after the MLAG MAC address is configured. When the MLAG MAC address is configured after the MLAG primary device is elected, the operational MLAG MAC address is used in the LACP PDUs and STP BPDUs instead of the configured MLAG MAC address.

Format  mlag system-mac < mac-address>
Default 00:00:00:00:00:00
Mode    Global Config

5.27.6. no mlag system-mac

This command returns the MLAG system MAC address to the default settings.

Format  no mlag system-mac
Mode    Global Config

5.27.7. mlag system-priority

This command manually configures a system priority for the MLAG domain. The system-priority is used in the LACPPDU and BPU. If the configured MLAG system priority is different on MLAG peers, the MLAG will not come up.

Format  mlag system-priority <1-65535>
Default 32767
5.27.8. no mlag system-priority
This command restores the MLAG system priority to the default settings.

Format  no mlag system-priority
Mode    Global Config

5.27.9. mlag role priority
This command configures a role priority for the MLAG domain. This value is used for the MLAG role election. The MLAG switch with lower priority becomes the Primary and the switch with higher priority becomes the Secondary. If both MLAG peer switches have the same role priority, the device with the lower system MAC address becomes the Primary.

Format  mlag role priority <1-255>
Default 100
Mode    Global Config

5.27.10. no mlag role priority
This command resets the MLAG role priority to the default settings.

Format  no mlag system-priority
Mode    Global Config

5.27.11. mlag peer-link
This command configures a port channel as the MLAG peer link.

Format  mlag peer-link
Default None
Mode    Port Channel Interface Config
5.27.12.  **no mlag peer-link**

This command removes the MLAG peer link.

**Format**  
no mlag peer-link

**Mode**  
Port Channel Interface Config

5.27.13.  **mlag id**

This command configures a port channel as part of a MLAG. Upon issuing this command, the port channel is down until the port channel member information is exchanged and agreed between the MLAG peer switches.

**Format**  
mlag <1-63>

**Default**  
None

**Mode**  
Port Channel Interface Config

5.27.14.  **no mlag id**

This command returns the MLAG id to the default settings.

**Format**  
no mlag <1-63>

**Mode**  
Port Channel Interface Config

5.27.15.  **mlag peer detection interval**

This command configures the DCPDP transmission interval and reception timeout (in mini seconds).

The configurable transmission interval range is 200ms - 4000ms (Default is 1000ms). The configurable reception timeout range is 700ms - 14000ms (Default is 3500ms).

**Format**  
mlag peer detection interval <200-4000> timeout <700-14000>

**Default**  
Transmission interval: 1000ms  
Reception timeout: 3500ms

**Mode**  
Global Config
5.27.16. **no mlag peer detection interval**

This command resets the DCPDP transmission interval and reception timeout to default values.

**Format**  
no mlag peer detection interval <200-4000> timeout <700-14000>

**Mode**  
Global Config

5.27.17. **mlag peer-keepalive destination**

This command configures the IP address of the peer MLAG switch, which is the destination IP address of the DCPDP on the peer MLAG switch.

The configurable range for the UDP port is 1 to 65535 (Default is 50000)

**Format**  
mlag peer-keepalive destination <ipaddress> source <ipaddress> [udp-port <1-65535>]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination &lt;ipaddress&gt;</td>
<td>The IP address of the peer MLAG switch.</td>
</tr>
<tr>
<td>source &lt;ipaddress&gt;</td>
<td>The IP address of the self MLAG switch.</td>
</tr>
<tr>
<td>udp-port</td>
<td>The UDP port on which the MLAG switch listens to the DCPDP messages.</td>
</tr>
</tbody>
</table>

**Default**  
UDP port: 50000

**Mode**  
Global Config

5.27.18. **no mlag peer-keepalive destination**

This command removes the self IP address and the peer IP address, and returns the UDP port to the default settings.

**Format**  
no mlag peer-keepalive destination <ipaddress> switch <ipaddress>

**Mode**  
Global Config

5.27.19. **mlag peer-keepalive enable**

This command starts the keepalive state machine on the MLAG device if MLAG is globally enabled.

**Default**  
Disable
Format mlag peer-keepalive enable
Mode Global Config

5.27.20. no mlag peer-keepalive enable
This command stops the MLAG peer keepalive state machine.
Format no mlag peer-keepalive enable
Mode Global Config

5.27.21. mlag peer-keepalive timeout
This command configures the peer keepalive timeout value (in seconds). If a MLAG switch does not receive a keepalive message from the peer for the duration of this timeout value, it transitions its role (if required).
Format mlag peer-keepalive timeout <2-15>
Default 5
Mode Global Config

5.27.22. no mlag peer-keepalive timeout
This command returns the MLAG peer keepalive timeout value to the default settings.
Format no mlag peer-keepalive timeout
Mode Global Config

5.27.23. show mlag brief
This command displays the MLAG global status and current MLAG operational mode including the peer link, keepalive status, number of configured MLAG members, operational MLAG, the system MAC, and role state. If the MLAG operational status is disabled, the reason would be displayed in the brackets of MLAG operational status.
Format show mlag brief
Mode Privileged EXEC
Example 1: The following example shows the CLI display output for the command `show mlag brief`. In this example, the MLAG operational status is enabled.

```
(M4500-32C) #show mlag brief

MLAG domain ID................................. 1
MLAG admin status.............................. Enabled
Keep-alive admin status....................... Enabled
MLAG operational status....................... Enabled
Self role....................................... Secondary
Peer role....................................... Primary
Peer detection admin status................. Disabled
Operational MLAG MAC......................... C4:54:44:EA:AA:01
Operational MLAG system priority............ 32767

Peer-Link details

Interface..................................... ch64
Peer-link admin status....................... Up
Peer-link STP admin status.................... Enabled
Configured VLANs.............................. 1
Egress tagged VLANs........................... none

MLAG Details

Number of MLAGs configured................... 1
Number of MLAGs operational............... 1
```
MLAG id# 1
-----------
Interface...................................... ch1
Configured VLANs.............................. 1
MLAG interface state......................... Active

Local Members  Status
---------------------
0/3               Up

Peer Members  Status
---------------------
0/3               Up

Example 2: The following example shows the CLI display output for the command `show mlag brief`. In this example, MLAG operational status is disabled because of disabling MLAG admin status. (The Peer-link would be down if the MLAG operational status or Keep-alive admin status is Disabled, so the peer switch would displayed Peer-link is down in the brackets of MLAG operational status)

(M4500-32C) #show mlag brief

MLAG domain ID............................ 1
MLAG admin status......................... Disabled
Keep-alive admin status.................... Enabled
MLAG operational status................... Disabled (Mlag admin status is disable)
Self role................................... none
Peer role..................................... none
Peer detection admin status............... Disabled
Operational MLAG MAC...................... 00:00:00:00:00:00
Operational MLAG system priority......... 0
5.27.24. show mlag

This command displays information about a MLAG. The configuration and operational modes of the MLAG are displayed; the MLAG is operationally enabled if all the preconditions are met. The port-channel that is configured as a MLAG interface is also displayed with the member ports on the current switch and peer switch (with their link status).

**Format**  
show mlag <1-63>

**Mode**  
Privileged EXEC

**Example:** The following example shows the CLI display output for the command `show mlag 1`.

```
(M4500-32C) #show mlag 1
MLAG id# 1

Config mode......................... Enabled
Operational mode.................... Enabled
Port channel........................... ch1

Local Members	Status

0/3	Up

Peer Members	Status

0/3	Up
```

5.27.25. show mlag role

This command displays information about the keepalive status and parameters. The role of the MLAG switch as well as the system MAC address and priority are displayed.

**Format**  
show mlag role

**Mode**  
Privileged EXEC
Example: The following example shows the CLI display output for the command *show mlag role*.

(M4500-32C) #show mlag role

Self
----
MLAG domain ID................................. 1
Keep-alive admin status...................... Enabled
Keep-alive operational status................ Enabled
Role Priority.................................. 100
Configured MLAG MAC......................... 00:00:00:00:00:00
Operational MLAG MAC......................... C4:54:44:EA:AA:01
Configured MLAG system priority............ 32767
Operational MLAG system priority........... 32767
Local System MAC............................. 2C:60:0C:8B:63:3B
Time-out...................................... 5
MLAG state.................................... Secondary
MLAG role..................................... Secondary
Peer
----
MLAG domain ID................................. 1
Role Priority.................................. 100
Configured MLAG MAC......................... 00:00:00:00:00:00
Operational MLAG MAC......................... C4:54:44:EA:AA:01
Configured MLAG system priority............ 32767
Operational MLAG system priority........... 32767
Role........................................... Primary
Local System MAC............................. 2c:60:0c:8b:65:09
5.27.26.  **show mlag consistency-parameters**

This command displays the global parameters of the self and peer devices which should be the identical in MLAG domain.

'*' means that the parameters between self and peer device configurations are different. “MST VLAN Configuration” displays associated vlans with MSTP (Multiple Spanning Tree Protocol) instance 0. “IGMP Snooping VLAN Configuration” displays associated vlans with IGMP Snooping. “MLD Snooping VLAN Configuration” displays associated vlans with MLD Snooping.

**Format**  
show mlag consistency-parameters {global | {interface port-channel <portchannel-id>}}

**Mode**  
Privileged Exec
User Exec

**Example:**

```
(M4500-32C) (Config)#show mlag consistency-parameters global
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Self Value</th>
<th>Peer Value</th>
<th>diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>STP Mode</td>
<td>Disabled</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>STP Version</td>
<td>IEEE 802.1w</td>
<td>IEEE 802.1s</td>
<td>*</td>
</tr>
<tr>
<td>BPDU Guard Mode</td>
<td>Disabled</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>FDB Age Time (seconds)</td>
<td>1000000</td>
<td>1000000</td>
<td></td>
</tr>
<tr>
<td>ARP Age Time (seconds)</td>
<td>1200</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>LACP system priority</td>
<td>32768</td>
<td>32768</td>
<td></td>
</tr>
<tr>
<td>MLAG system MAC address</td>
<td>00:00:00:00:00:00:00</td>
<td>00:00:00:00:00:00:00</td>
<td></td>
</tr>
<tr>
<td>MLAG system priority</td>
<td>32767</td>
<td>32767</td>
<td></td>
</tr>
<tr>
<td>MLAG domain ID</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IGMP Admin Mode</td>
<td>Enabled</td>
<td>Enabled</td>
<td></td>
</tr>
<tr>
<td>MLD Admin Mode</td>
<td>Disabled</td>
<td>Disabled</td>
<td></td>
</tr>
</tbody>
</table>

**MST VLAN Configuration**

```
<table>
<thead>
<tr>
<th>Instance</th>
<th>Associated VLANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Self 1</td>
</tr>
<tr>
<td></td>
<td>Peer 1</td>
</tr>
</tbody>
</table>
```

**IGMP Snooping VLAN Configuration**

```
<table>
<thead>
<tr>
<th>Associated VLANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self 1</td>
</tr>
<tr>
<td>Peer 1</td>
</tr>
</tbody>
</table>
```

**MLD Snooping VLAN Configuration**

```
<table>
<thead>
<tr>
<th>Associated VLANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self 1</td>
</tr>
<tr>
<td>Peer 1</td>
</tr>
</tbody>
</table>
```
5.27.27. **show mlag peer-keepalive**

This command displays the peer MLAG switch IP address used by the dual control plane detection protocol. The port used for the DCPDP is shown. This command also displays if peer detection is enabled. If enabled, the detection status is displayed. The DCPDP message transmission interval and reception timeout are also displayed.

**Format**  
show mlag peer-keepalive

**Mode**  
Privileged EXEC

Example: The following example shows the CLI display output for the command `show mlag peer-keepalive`.

```
(M4500-32C) #show mlag peer-keepalive
Peer IP address.............................. 172.16.2.33
Source IP address............................. 172.16.2.52
UDP port....................................... 50000
Peer detection admin status................. Enabled
Peer detection operational status......... Up
Peer is detected............................ TRUE
Configured Tx interval........................ 1000 milliseconds
Configured Rx timeout........................ 3500 milliseconds
Operational Tx interval...................... 1000 milliseconds
Operational Rx timeout...................... 3500 milliseconds
```

5.27.28. **show mlag statistics**

This command to displays counters for the keepalive and peer-link messages transmitted and received by the MLAG switch.

**Format**  
show mlag statistics (peer-keepalive | peer-link)

**Mode**  
Privileged EXEC

Example: The following example shows the CLI display output for the command `show mlag statistics peer-keepalive`.

```
(M4500-32C) # show mlag statistics peer-keepalive
Total transmitted............................. 63341
Tx successful.................................. 63341
```
Example: The following example shows the CLI display output for the command `show mlag statistics peer-link`.

```
(M4500-32C) # show mlag statistics peer-link
Peer link control messages transmitted........... 16
Peer link control messages Tx errors............. 0
Peer link control messages Tx timeout........... 0
Peer link control messages ACK transmitted....... 64
Peer link control messages ACK Tx errors........ 0
Peer link control messages received.............. 64
Peer link data messages transmitted.............. 642
Peer link data messages Tx errors............... 0
Peer link data messages Tx timeout.............. 0
Peer link data messages received.................. 1298
Peer link BPDU's transmitted to peer............. 0
Peer link BPDU's Tx errors....................... 0
Peer link BPDU's received from peer............. 14
Peer link BPDU's Rx errors....................... 0
Peer link LACPDU's transmitted to peer.......... 0
Peer link LACPDU's Tx errors.................... 0
Peer link LACPDU's received from peer.......... 642
Peer link LACPDU's Rx errors.................... 0
```
5.27.29. show mlag core-config

This command displays information about the core configurations to ensure this device can form a MLAG pair.

This command displays two sections: required configurations and optional configurations. In the required configurations section, all the required configurations that starts the MLAG peer keepalive state machine are displayed. In the optional configurations section, the configurations that might change the roles of devices which form MLAG pair are displayed.

**Format**  
show mlag core-config

**Mode**  
Privileged Exec  
User Exec

**Example:**

```plaintext
M4500-32C) (Config)#show mlag core-config
```

**Required configurations**

---

- MLAG domain ID: 1
- MLAG admin status: Enabled
- Keep-alive admin status: Enabled
- Peer-link interface: ch64
- Peer-link admin status: Up

**Optional configurations**

---

- Configured MLAG MAC: 00:00:00:00:00:00
- Role Priority: 100
- Time-out: 5

5.27.30. clear mlag statistics

This command clears all the keepalive and peer-link statistics.

**Format**  
clear mlag statistics {peer-keepalive | peer-link}

**Mode**  
Privileged EXEC
5.28. Control Plane Policing Commands

Control plane packets are generated or received from network device that are used for the operation of the network itself. Therefore, control plane packets always have a receive destination IP address and are handled by the CPU in the network device. Examples include protocols such as ARP, BGP, OSPF, and other protocols that glue the network together.

Main purpose of Control Plane Policing (CoPP) is to enhance security on the switch to prohibit unnecessary or DoS traffic and giving priority to important control plane and management traffic.

To use CoPP feature needs to set Access Control List (ACL) which matches your purpose and bind it to control-plane interface. Binding ACL to control-plane interface is always considered as “out direction”, so CoPP doesn’t support some ACL conditions which uses for “in direction” only, for example, condition “mirror”, or “redirect”.

You must ensure that the CoPP policy does not filter critical traffic such as routing protocols or interactive access to the switches. If you want to prevent access some of switch services, for example: SSH, it should set destination IP address to switch IP address in associating ACL rules. Since unassigned destination IP address (destination IP address is “any”) will filter out all service associating packets, and make them fail to route to remote server.

5.28.1. interface control-plane

To enter control-plane configuration mode and apply an IP, IPv6 or MAC access list to police traffic destined for the CPU port.

**Format**  
interface control-plane

**Default**  
None

**Mode**  
Global Config

Example: To deny all GRE packets which come from host 10.3.1.1

(M4500-32C) #configure

(M4500-32C) (Config)#ip access-list acl001

(M4500-32C) (Config-ipv4-acl)# deny gre host 10.3.1.1 any

Create ACL 1000 : Rule ID 1

(M4500-32C) (Config-ipv4-acl)#permit every

Create ACL 1000 : Rule ID 2

(M4500-32C) (Config-ipv4-acl)#exit
(M4500-32C) (Config)#interface control-plane

(M4500-32C) (if-control-plane)#ip access-group acl001

(M4500-32C) (if-control-plane)#

5.28.2. show access-lists interface control-plane

This command displays IP, IPv6, and MAC ACLs configurations for CPU port.

Format    show access-lists interface control-plane

Default   None

Mode      Privilege EXEC

Example:

(M4500-32C) #show access-lists interface control-plane

<table>
<thead>
<tr>
<th>ACL Type</th>
<th>ACL ID</th>
<th>Sequence Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP</td>
<td>acl001</td>
<td>1</td>
</tr>
</tbody>
</table>

(M4500-32C) #
5.29.  VXLAN and RIOT Commands

This section describes the commands you use to configure VXLAN and RIOT settings.

5.29.1. vxlan mode

Use this command to set VXLAN mode on the switch.

VXLAN mode must be enabled prior to performing any VXLAN configuration on the switch.

A VXLAN supports two different modes for flood traffic:

1. Multicast mode—A VXLAN uses an IP multicast address as the destination IP address to send broadcast, multicast, and unknown unicast flood frames.

2. Unicast mode—A VXLAN uses each VTEP’s single unicast IP address as the destination IP address to send broadcast, multicast, and unknown unicast flood frames.

By default, the mode is disabled. VXLAN mode must be disabled prior to performing any VXLAN mode changed.

Format  vxlan mode {unicast | multicast}

Default Disabled

Mode VXLAN Config

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>unicast</td>
<td>Set VXLAN to unicast mode</td>
</tr>
<tr>
<td>multicast</td>
<td>Set VXLAN to multicast mode</td>
</tr>
</tbody>
</table>

5.29.2. no vxlan mode

Use this command to return the VXLAN mode to the default settings.

Format  no vxlan mode

Mode VXLAN Config

5.29.3. vxlan source-interface

Use this command to configure VXLAN source interface on the switch.

The “vxlan source-interface” command specifies an interface from which the VTEP derives the source address (IP) that it uses when exchanging VXLAN frames. This address is used by UDP headers to specify source and destination addresses of hosts that send or receive VXLAN encapsulated packets.
A valid VXLAN configuration requires the assignment of an interface to the VTEP and the assignment of a valid IP address to the specified interface.

There is no default source interface assignment.

**Format**  
`vxlan source-interface {<slot/port> | loopback <loopback-id>| vlan <vlan-id>}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;slot/port&gt;</td>
<td>The Logic interface number.</td>
</tr>
<tr>
<td>&lt;loopback-id&gt;</td>
<td>The Loopback ID. (Range: 0-63)</td>
</tr>
<tr>
<td>&lt;vlan-id&gt;</td>
<td>The VLAN ID. (Range: 1-4093)</td>
</tr>
</tbody>
</table>

**Default** None

**Mode**  
VXLAN Config

### 5.29.4. `no vxlan source-interface`

Use this command to return VXLAN source interface to the default settings.

**Format**  
`no vxlan source-interface`

**Mode**  
VXLAN Config

### 5.29.5. `vxlan udp-port`

Use this command to configure VXLAN UDP port on the switch.

Packets bridged to the switch from a specific VLAN are encapsulated with a VXLAN header, sent through a pre-configured UDP port. Packets that arrive through this port are assumed be VXLAN encapsulated packet and forward to the bridging domain of the recipient VLAN which determined by the VNI in the VXLAN header and the VNI and VLAN mapping.

Notice that the UDP port between various VTEPs must be the same, the VXLAN packets can’t forward if the UDP port between source and destination VTEPs are different.

By default, the UDP port is 4789.

**Format**  
`vxlan udp-port <port-id>`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;port-id&gt;</td>
<td>The Udp port ID. (Range : 1-65535)</td>
</tr>
</tbody>
</table>
5.29.6. no vxlan udp-port

Use this command to return VXLAN udp port to the default settings.

Format  no vxlan udp-port

Mode     VXLAN Config

5.29.7. vxlan unicast-group

Use this command to configure VXLAN unicast group on the switch.

The setting is available when VXLAN mode is unicast mode. Switch uses each VTEP’s source IP address as the destination IP address to send broadcast, multicast, and unknown unicast flood frames. Flood frames are replicated, and encapsulated with a VXLAN header. Packets that have a unicast MAC address will sent directly to the destination VTEP IP address.

There is no default unicast group assignment. The maximum number of unicast group is 32

Format  vxlan unicast-group <ipaddr>

Default  None

Mode     VXLAN Config

5.29.8. no vxlan unicast-group

Use this command to return VXLAN unicast group to the default settings.

Format  no vxlan unicast-group <ipaddr>

Mode     VXLAN Config
5.29.9. default vxlan multicast-group

Use this command to configure VXLAN default multicast group on the switch.

The setting is available when VXLAN mode is in multicast mode. Switch uses the value as a default multicast group. The default value applied when user creates a new tenant. There is no default multicast group assignment.

Format    vxlan default-multicast-group <ipaddr>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;ipaddr&gt;</td>
<td>Configure multicast-group IP address</td>
</tr>
</tbody>
</table>

Default    None
Mode        VXLAN Config

5.29.10. no vxlan default-multicast-group

Use this command to return default VXLAN multicast group to the default settings.

Format    no vxlan default-multicast-group

Default    None
Mode        VXLAN Config

5.29.11. vxlan vni multicast-group

Use this command to configure VXLAN multicast group on the switch.

The setting is available when VXLAN mode is multicast mode. Switch uses a specified multicast group as the destination IP address to send broadcast, multicast, and unknown unicast flood frames. Flood frames are encapsulated with a VXLAN header and forwarded. Inter-VTEP multicast communications include all VTEPs that are associated with the specified multicast group.

There is no default multicast group assignment.

Format    vxlan vni <vn-id> multicast-group <ipaddr>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;vn-id&gt;</td>
<td>The VNI ID. (Range:1-16777214)</td>
</tr>
</tbody>
</table>
5.29.12. **no vxlan vni multicast-group**

Use this command to return VXLAN multicast group to the default settings.

**Format**

```
no vxlan vni multicast-group
```

**Mode**

VXLAN Config

5.29.13. **vxlan vlan vni**

Use this command to configure VXLAN VLAN to VNI mapping on the switch.

The “vxlan vlan vni” command associates a VLAN ID with a virtual network identifier (VNI). When a VLAN bridges a packet to the VTI, the packet is encapsulated with a VXLAN header that includes the VNI associated with the VLAN. Packets that arrive on the VTI’s UDP socket are bridged to the VLAN that is associated with the VNI specified by the VXLAN header that encapsulates the packet.

All ports belong the VLAN ID will be configured as VXLAN access port.

**Format**

```
vxlan vlan <vlan> vni <vn-id>
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;vlan&gt;</td>
<td>The VLAN ID. (Range:1-4093)</td>
</tr>
<tr>
<td>&lt;vn-id&gt;</td>
<td>The VNI ID. (Range:1-16777214)</td>
</tr>
</tbody>
</table>

**Default**

None

**Mode**

VXLAN Config

5.29.14. **no vxlan vlan vni**

Use this command to delete a specific mapping, which is VXLAN VLAN to VNI mapping.

**Format**

```
no vxlan vlan <vlan> vni <vn-id>
```
5.29.15. **interface vxlan**

Use this command to configure VXLAN interface on the switch.

**Format**  
interface vxlan <vxlan-id>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;vxlan-id&gt;</td>
<td>The VXLAN ID. (Range: 1-1)</td>
</tr>
</tbody>
</table>

**Default**  NA

**Mode**  Global Config

5.29.16. **show vxlan**

Use this command to display detailed information about the VXLAN configured on the switch.

**Format**  show vxlan

**Display Message**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>VXLAN interface</td>
</tr>
<tr>
<td>Mode</td>
<td>VXLAN mode (unicast or multicast)</td>
</tr>
<tr>
<td>RIOT Mode</td>
<td>RIOT mode (Enable or disable)</td>
</tr>
<tr>
<td>RIOT Physical Loopback</td>
<td>The loopback interface used for RIOT routing</td>
</tr>
<tr>
<td>Interface</td>
<td></td>
</tr>
<tr>
<td>UDP Destination Port</td>
<td>The UDP port which VXLAN uses to send/receive packets</td>
</tr>
<tr>
<td>Source Interface</td>
<td>The source interface of VXLAN</td>
</tr>
<tr>
<td>VXLAN and VLAN Mapping</td>
<td>The mapping of VLAN to VNI</td>
</tr>
<tr>
<td>Unicast Group Address</td>
<td>The IP address used to send broadcast, multicast, and unknown unicast flood frames</td>
</tr>
</tbody>
</table>
5.29.17.  **show vxlan vtep**

Use this command to display IP address about the VXLAN remote VTEPs on the switch.

This command only shows remote VTEPs which really have communication with local device. If system doesn’t receive any packet from remote VTEPs, it means there is no communication in the environment, this command shows nothing.

**Format**  
show vxlan vtep

**Mode**  
Privileged EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote VTEPs for Vxlan</td>
<td>Remote VTEPs which really have communication with local device</td>
</tr>
</tbody>
</table>

5.29.18.  **show vxlan address-table**

Use this command to display MAC address that VXLAN learning on the switch.

If system doesn’t learn any MAC address from VXLAN, this command shows nothing.

**Format**  
show vxlan address-table

**Mode**  
Privileged EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tenant ID</td>
<td>The tenant ID of VXLAN packet</td>
</tr>
<tr>
<td>Tenant MAC</td>
<td>Then source MAC address of VXLAN packet</td>
</tr>
<tr>
<td>VTEP</td>
<td>The source VTEP of VXLAN packet</td>
</tr>
<tr>
<td>Interface</td>
<td>The interface which receive VXLAN packet</td>
</tr>
<tr>
<td>Entry Type</td>
<td>Learned or static address</td>
</tr>
</tbody>
</table>
5.29.19. vxlan riot

Use this command to enable RIOT mode on the switch.

VXLAN must be enabled prior to enabling RIOT on the switch. RIOT is supported only under VXLAN unicast mode.

**Format** vxlan riot

**Default** Disabled

**Mode** VXLAN Config

5.29.20. no vxlan riot

Use this command to return the RIOT mode to the default settings.

**Format** no vxlan riot

**Mode** VXLAN Config

5.29.21. vxlan riot-physical-loopback

Use this command to assign an interface as the VXLAN RIOT loopback interface on the switch.

VXLAN RIOT must be enabled prior to assigning an VXLAN RIOT loopback interface on the switch. Switch uses a specified physical port (or port-channel) as an VXLAN loopback port to be an VXLAN access port as well as an L3 router port. Therefore, the VXLAN loopback port need to join the VLAN mapped to VXLAN tenant. This VLAN should be a VLAN routing interface and the other front-end ports should not join to this VLAN.

Note: The outgoing packets on the riot loopback port need to be VLAN tagging.

**Format** vxlan riot-physical-loopback {<slot/port> | port-channel <1-64>}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;slot/port&gt;</td>
<td>The Logic interface number.</td>
</tr>
<tr>
<td>&lt;port channel id&gt;</td>
<td>The interface number of the port channel. (Range: 1-64)</td>
</tr>
</tbody>
</table>

**Default** None

**Mode** VXLAN Config

Here is the configuration example:

( Switch ) (Config)#interface 0/8
( Switch ) (Interface 0/8)#switchport allowed vlan add tagged 200
( Switch ) (Interface 0/8)#exit
(Switch) (Config)#interface vlan 200
(Switch) (if-vlan200)# ip address 192.168.20.1 255.255.255.0
(Switch) (if-vlan200)#exit
(Switch) (Config)#interface vxlan 1
(Switch) (if-vxlan-1)#vxlan riot
(Switch) (if-vxlan-1)#vxlan riot-physical-loopback 0/8
(Switch) (if-vxlan-1)#vxlan vlan 200 vni 2001

5.29.22.  no vxlan riot-physical-loopback

Use this command to delete the VXLAN RIOT loopback interface on the switch.

**Format**  no vxlan riot-physical-loopback

**Mode**  VXLAN Config
5.30. Interface Error Disable and Auto Recovery

Interface error disable automatically disables an interface when an error is detected; no traffic is allowed until the interface is either manually re-enabled or, if auto recovery is configured, the configured auto recovery time interval has passed.

For interface error disable and auto recovery, an error condition is detected for an interface, the interface is placed in a diagnostic disabled state by shutting down the interface. The error disabled interface does not allow any traffic until the interface is re-enabled. The error disabled interface can be manually enabled. Alternatively administrator can enable auto recovery feature. Auto Recovery re-enables the interface after the expiry of configured time interval.

5.30.1. errdisable recovery cause

Use this command to enable auto recovery for a specified cause or all causes. When auto recovery is enabled, ports in the diag-disable state are recovered (link up) when the recovery interval expires. If the interface continues to experience errors, the interface may be placed back in the diag-disable state and disabled (link down). Interfaces in the diag-disable state can be manually recovered by entering the no shutdown command for the interface.

Format errdisable recovery cause {all | arp-inspection | bpduguard | bcast-storm | bpdustorm | dhcp-rate-limit | mcast-storm | port-security | sfp-mismatch | ucast-storm | udld | link-flap | loop-detection}

Default None

Mode Global Config

5.30.2. no errdisable recovery cause

Use this command to disable auto recovery for a specific cause. When disabled, auto recovery will not occur for interfaces in a diag-disable state due to that cause.

Format no errdisable recovery cause {all | arp-inspection | bpduguard | bcast-storm | bpdustorm | dhcp-rate-limit | mcast-storm | port-security | sfp-mismatch | ucast-storm | udld | link-flap | loop-detection}

Mode Global Config

5.30.3. errdisable recovery interval

Use this command to configure the auto recovery time interval. The auto recovery time interval is common for all causes. When the recovery interval expires, the system attempts to bring interfaces in the diag-disable state back into service (link up).

Format errdisable recovery interval <30-86400>
### 5.30.4. no errdisable recovery interval

Use this command to return the auto recovery interval to the default settings.

**Format**  
no errdisable recovery interval

**Mode**  
Global Config

### 5.30.5. show errdisable recovery

Use this command to display the errdisable configuration status of all configurable causes.

**Format**  
show errdisable recovery

**Mode**  
Privileged EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>arp-inspection</td>
<td>Enable/Disable status of arp-inspection auto recovery.</td>
</tr>
<tr>
<td>bcast-storm</td>
<td>Enable/Disable status of broadcast storm auto recovery.</td>
</tr>
<tr>
<td>mcast-storm</td>
<td>Enable/Disable status of multicast storm auto recovery.</td>
</tr>
<tr>
<td>ucast-storm</td>
<td>Enable/Disable status of unicast storm auto recovery.</td>
</tr>
<tr>
<td>bpduguard</td>
<td>Enable/Disable status of BPDU guard auto recovery.</td>
</tr>
<tr>
<td>port-security</td>
<td>Enable/Disable status of port security auto recovery.</td>
</tr>
<tr>
<td>dhcp-rate-limit</td>
<td>Enable/Disable status of dhcp-rate-limit auto recovery.</td>
</tr>
<tr>
<td>sfp-mismatch</td>
<td>Enable/Disable status of sfp-mismatch auto recovery.</td>
</tr>
<tr>
<td>udl</td>
<td>Enable/Disable status of UDLD auto recovery.</td>
</tr>
<tr>
<td>bpdustorm</td>
<td>Enable/Disable status of bpdustorm auto recovery.</td>
</tr>
<tr>
<td>time interval</td>
<td>Time interval for auto recovery in seconds.</td>
</tr>
<tr>
<td>link-flag</td>
<td>Enable/Disable status of link-flap.</td>
</tr>
</tbody>
</table>
Example: The following example shows the CLI display output for the command show errdisable recovery.

#show errdisable recovery

Errdisable Reason       Auto-recovery Status
----------------------- -----------------------
dhcp-rate-limit         Disabled
arp-inspection          Disabled
udld                   Disabled
bcast-storm             Disabled
mcast-storm             Disabled
ucast-storm             Disabled
bpdustorm               Disabled
sfp-mismatch            Disabled
port-security           Disabled

Timeout for Auto-recovery from D-Disable state  300

5.30.6. show interfaces status err-disabled

Use this command to display the interfaces that are error disabled and auto-recovery enabled (auto-recovery timer left more than zero).

Format    show interface status err-disabled

Mode      Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>An interface that is error disabled.</td>
</tr>
<tr>
<td>Errdisable Reason</td>
<td>The cause of the interface being error disabled.</td>
</tr>
<tr>
<td>Auto-Recovery Time Left</td>
<td>The amount of time left before auto recovery begins.</td>
</tr>
</tbody>
</table>
5.31. Role-Based Access Control

Role-Based Access Control (RBAC) allows you to create roles which define CLI executive permissions of individual functions, and assign roles to a user let him own the suitable authorization to manage and operate the system.

User Role

A role contains one or multiple rules that define the operations allowed for the user who is assigned the role, and one user can have multiple roles. For example, if role1 allows managing layer 3 routing functions and role2 allows managing VLAN function, then a user who has both role1 and role2 can manage routing and VLAN functions.

By default, the switch supports the following user roles, which you cannot change or delete:

- **network-admin**: it has full access commands to the entire system.
- **network-operator**: it can access read-only commands to the entire system.

CLI command string inside a rule

A CLI command string is used to define a rule whether to allow one or one kind of CLI commands to execute. The format of command string may be whole and explicit CLI command, likes “ip igmp snooping querier vlan 1”, or use wildcard character ‘*’ on the tail of command string to match any string after prefix string, likes “ip igmp snooping *”.

Feature

Features are system predefined sets of CLI commands which are divided by related functions.

Feature Group

Feature group provides to bond multiple features into a group name and assign to a role. The system administrator could customize different feature groups according to functional categories and give it an appropriate nickname.

Rule

A rule defines what operation could be allowed to execute for a role, in other words, a role is made up of one or many rules. A rule can be applied only one action which is a CLI command string, a feature, or a feature group. Every role has an invisible default rule “deny all commands”, if a user enters a command which can’t match any rule of its roles, this command won’t be permitted to execute.

Each rule must be assigned rule ID which is a unique integer between 1 and 256. All Rules in one role are applied in descending order of role ID, and it means when one role has many rules and some of their definition are conflicting, then the greater ID will be higher priority than less one.

For example, below role1 can execute all related commands about “show ip igmp”, except the command and sub-commands of “show ip igmp snooping”:

```
Switch(config)# role name role1
Switch(config-role)# rule 1 permit command “show ip igmp *”
Switch(config-role)# rule 2 deny command “show ip igmp snooping *”
```
One user could have many roles and there isn’t any different priority between roles. However, if rules are conflicting between roles, the rule that is “permit” action will be higher priority than another rule that is “deny” action.

For example, below User1 has role1 and role2, therefore, User1 can show all related commands of “ip igmp”. Since rule1 of role2 conflicts to rule1 of role1 and “permit” action is higher priority, the rule1 of role2 is invalid.

```
Switch(config)# role name role1
Switch(config-role)# rule 1 permit command “show ip igmp *”

Switch(config)# role name role2
Switch(config-role)# rule 1 deny command “show ip igmp groups *”

Switch(config)# username User1 role role1
Switch(config)# username User1 role role2
```

### 5.31.1. role based access control enable

This command is used to enable RBAC function.

When enabling RBAC function, only users who have the role 'network-admin' will build rule merged table immediately, other login users won't allow to execute any CLI command until he logout and login again to rebuild its rule merged table.

**Format**   role based access control enable

**Default**  Disabled

**Mode**     Global Config

### 5.31.2. no role based access control enable

This command is used to disable RBAC function.

**Format**   no role based access control enable

**Mode**     Global Config

### 5.31.3. role name

This command is used to create a new role or configure an existing role.
• Role name only allows to include alphabetic, numeric, dash, dot or underscore characters only. Name must start with a letter and the size of the name string must be less than or equal to 31 characters.

• Role name is case sensitive.

• System default role “network-admin” and “network-operator” can’t be destroyed or modified.

• The maximum number of roles is 256.

• A role can't be deleted, if any user still uses it.

**Format**  
role name <role-name>

**Default**  
None

**Mode**  
Global Config

### 5.31.4. no role name

This command is used to destroy an existing role.

**Format**  
no role name <role-name>

**Mode**  
Global Config

### 5.31.5. role description

This command is used to set a description to a role.

• Description could use single quotation mark (‘) or double quotation marks (“) to wrap the text which includes space character.

• The maximum length of description is 255 characters.

**Format**  
description <text>

**Default**  
None

**Mode**  
Role Interface

### 5.31.6. no role description

This command is used to clear a description to a role.
5.31.7. rule command

This command is used to add a rule of command string to a role.

- Rule ID is an integer between 1 and 256, and it shall be unique inside one role.
- Maximum length of rule command string is 255 characters.
- Rule command isn't case sensitive and it's converted to lower case automatically. All space characters put to the head or tail of command string will be deleted, and multiple space characters inside a command string will convert to a single space character.
- Wildcard character ‘*’ can match any string after prefix string, and it shall put to the tail of command string.
- Every word inside a command string must be a whole command word, except the last word with wildcard character ‘*’ could be incomplete, likes “show mac-addr*.”
- RBAC doesn't support "No form" format of rule command string, because normal command (e.g. "shutdown") and "No form" command (e.g. “no shutdown”) are bonded together to deal with access permission.
- RBAC Rule command shall not start with keyword "do", because keyword "do" will be removed before a command is executed.

Format  
```
rule <rule-id> <deny | permit> command <command-string>
```

Default  None

Mode  Role Interface

5.31.8. no rule (to delete a rule of command string)

This command is used to delete a rule of command string from a role.

Format  
```
no rule <rule-id>
```

Mode  Role Interface
5.31.9. rule feature

This command is used to add a rule of feature to a role.

- Rule ID is an integer between 1 and 256, and it shall be unique inside one role.
- Feature name comes from an existing feature.

Format rule <rule-id> <deny | permit> <read | read-write> feature <name>

Default None

Mode Role Interface

5.31.10. no rule (to delete a rule of feature)

This command is used to delete a rule of feature from a role.

Format no rule <rule-id>

Mode Role Interface

5.31.11. rule feature group

This command is used to add a rule of feature group to a role.

- Rule ID is an integer between 1 and 256, and it shall be unique inside one role.
- Feature group name comes from an existing feature group.
- Feature group name is case sensitive.

Format rule <rule-id> <deny | permit> <read | read-write> feature-group <name>

Default None

Mode Role Interface
5.31.12. no rule (to delete a rule of feature group)

This command is used to delete a rule of feature group from a role.

Format  no rule <rule-id>

Mode    Role Interface

5.31.13. rule <rule-id> <deny | permit> <read | read-write>

This command is used to add a rule which denies or permits to execute all “show commands” or all commands.

Rule ID is an integer between 1 and 256, and it shall be unique inside one role

Format  rule <rule-id> <deny | permit> <read | read-write>

Default  None

Mode    Role Interface

5.31.14. no rule (to delete a rule of read-write commands)

This command is used to delete a rule of read or read-write commands from a role.

Format  no rule <rule-id>

Mode    Role Interface

5.31.15. rule renumber

This command is used to change a rule ID to another one.

- Rule ID is an integer between 1 and 256, and it shall be unique inside one role.
- Old rule ID comes from an existing rule, and new rule ID shall not overlap to an existing rule ID.

Format  rule <old-rule-id> renumber <new-rule-id>

Default  None

Mode    Role Interface
5.31.16. role feature-group name

This command is used to create a new feature group or configure an existing feature group.

- Feature group name only allows to include alphabetic, numeric, dash, dot or underscore characters only. Name must start with a letter and the size of the name string must be less than or equal to 63 characters.
- Feature group name is case sensitive.
- The maximum number of feature groups is 256.
- A feature group can’t be deleted, if any rule of a role still uses the feature group.

Format: `role feature-group name <name>`

Default: None

Mode: Global Config

5.31.17. no role feature-group name

This command is used to delete an existing feature group.

Format: `no role feature-group name <name>`

Mode: Global Config

5.31.18. feature

This command is used to add a feature into a feature group.

Feature name is a system pre-defined name, and you need to assign the existing feature name.

Format: `feature <feature-name>`

Default: None

Mode: Feature Group Interface
5.31.19.  **no feature**

This command is used to remove a feature from a feature group.

**Format**  
no feature <feature-name>

**Mode**  
Feature Group Interface

5.31.20.  **username role**

This command is used to assign a role to a user.

- Username comes from an existing user.
- Role name comes from an existing role
- User 'admin' is a system account of administrator and it shall always own the system default role 'network-admin'.
- When RBAC function enables, a user can't access any command if he doesn't be assigned any role.

**Format**  
username <user-name> role <role-name>

**Default**  
None

**Mode**  
Global Config

5.31.21.  **no username role**

This command is used to remove a role from a user.

**Format**  
no username <user-name> role <role-name>

**Mode**  
Global Config

5.31.22.  **show role**

This command is used to display information about roles.

**Format**  
show role [name <role-name>]

**Default**  
None
Mode Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role Based Access Control</td>
<td>Indicates RBAC function is enabled or disabled now.</td>
</tr>
<tr>
<td>Current numbers of roles</td>
<td>Indicates how many numbers of roles are created now.</td>
</tr>
<tr>
<td>Maximum numbers of roles</td>
<td>Indicates maximum numbers of roles can be created on the device.</td>
</tr>
<tr>
<td>Role</td>
<td>The role name.</td>
</tr>
<tr>
<td>Description</td>
<td>Description of this role.</td>
</tr>
<tr>
<td>ID</td>
<td>Rule ID</td>
</tr>
<tr>
<td>Permit</td>
<td>Indicates permit or deny this role to execute this rule.</td>
</tr>
<tr>
<td>Read &amp; Write</td>
<td>Indicate this rule is “read” or “read-write”. The “read” means “it can execute ‘show command’ only”, and “read-write” means “it can execute ‘all commands’.”</td>
</tr>
<tr>
<td>Type</td>
<td>Indicates type of this rule is command string, feature, or feature group.</td>
</tr>
<tr>
<td>Content</td>
<td>Detailed definition of this rule.</td>
</tr>
</tbody>
</table>

5.31.23.  show role feature

This command is used to display information about features.

Format  show role feature [detail | name <feature-name>]

Default  None

Mode  Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature name</td>
<td>The system pre-defined feature name.</td>
</tr>
<tr>
<td>Command strings of feature</td>
<td>This feature contains related command strings.</td>
</tr>
</tbody>
</table>

5.31.24.  show role feature group

This command is used to display information about feature groups.
Format: `show role feature-group [detail | name <feature-group-name>]`

Default: None

Mode: Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current numbers of feature group</td>
<td>Indicates how many numbers of feature groups are created now.</td>
</tr>
<tr>
<td>Maximum numbers of feature group</td>
<td>Indicates maximum numbers of feature groups can be created on the device.</td>
</tr>
<tr>
<td>feature group name</td>
<td>The name of this feature group.</td>
</tr>
<tr>
<td>Feature name</td>
<td>The system pre-defined feature name.</td>
</tr>
<tr>
<td>Command strings of feature</td>
<td>This feature contains related command strings.</td>
</tr>
</tbody>
</table>

5.31.25. **show role user**

This command is used to display information of roles according to users.

Commands “show role user current”, “show role feature *”, and “show role feature groups *” are RBAC common permitted commands, and that is in order to get what commands can be executed for every user.

Format: `show role user [current | name <username>]`

Default: None

Mode: Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>The name of assigned user.</td>
</tr>
<tr>
<td>Authenticated method</td>
<td>Indicates what kind of login authenticated method to use by this user. Possible values are LOCAL, RADIUS, and TACACS</td>
</tr>
<tr>
<td>Current numbers of total commands per user</td>
<td>The total command strings which include rule commands, features, and feature-groups of all roles are assigned to this user.</td>
</tr>
<tr>
<td><strong>Maximum numbers of total commands per user</strong></td>
<td>The maximum numbers of total commands can be set to one user.</td>
</tr>
<tr>
<td><strong>Role</strong></td>
<td>The role name.</td>
</tr>
<tr>
<td><strong>Description</strong></td>
<td>Description of this role.</td>
</tr>
<tr>
<td><strong>ID</strong></td>
<td>Rule ID</td>
</tr>
<tr>
<td><strong>Permit</strong></td>
<td>Indicates permit or deny this role to execute this rule.</td>
</tr>
<tr>
<td><strong>Read &amp; Write</strong></td>
<td>Indicate this role is “read” or “read-write”. The “read” means “it can execute ‘show command’ only”, and “read-write” means “it can execute ‘all commands’.”</td>
</tr>
<tr>
<td><strong>Type</strong></td>
<td>Indicates type of this rule is command string, feature, or feature group.</td>
</tr>
<tr>
<td><strong>Content</strong></td>
<td>Detailed definition of this rule.</td>
</tr>
</tbody>
</table>
5.32. **Application Commands**

Use the application commands to manage applications on switches.

### 5.32.1. `show application`

This command displays the applications installed and their parameters.

**Format**  
`show application`

**Mode**  
Privileged EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name of the application.</td>
</tr>
<tr>
<td>StartOnBoot</td>
<td>If the application is configured to start on boot up.</td>
</tr>
<tr>
<td></td>
<td>▶ Yes: The application will start on boot up.</td>
</tr>
<tr>
<td></td>
<td>▶ No: The application will not start on boot up.</td>
</tr>
<tr>
<td>AutoRestart</td>
<td>If the application is configured to restart when the application process ends.</td>
</tr>
<tr>
<td></td>
<td>▶ Yes: The application will restart when the application process ends.</td>
</tr>
<tr>
<td></td>
<td>▶ No: The application will not restart when the application process ends.</td>
</tr>
<tr>
<td>CPU Sharing</td>
<td>The configured application CPU utilization limit expressed as a percentage. 0 if unlimited.</td>
</tr>
<tr>
<td>Max Memory</td>
<td>The configured application memory limit in megabytes. 0 if unlimited.</td>
</tr>
</tbody>
</table>

### 5.32.2. `show application files`

This command displays the files in the application directory of the switch's file system.

**Format**  
`show application files`

**Mode**  
Privileged EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>File size</td>
<td>Number of bytes the file occupies in the file system.</td>
</tr>
</tbody>
</table>
5.32.3. application install

This command starts the application through the designated executable file available for configuration and execution. The parameters of this command determine how the application runs on the switch.

This command can be issued using an already installed application file name to update the parameters. This updates the configuration for the next time the application is started.

This command can be issued for a file that is not currently on the switch. This allows pre-configuration of the execution parameters. The configuration does not take effect until the executable file is present in the switch file system.

Format  application install <filename> [start-on-boot] [auto-restart] [cpu-sharing <0-99>] [max-megabytes <megabytes>]

no application install <filename>

Default  Enabled

Mode  Global Config

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;filename&gt;</td>
<td>The name of the file containing the executable or script that is started as a Linux process for the application.</td>
</tr>
<tr>
<td>start-on-boot</td>
<td>Starts the application each time the switch boots up. Takes effect on the first reboot after setting. Omit this keyword from the command to disable starting the application at boot time.</td>
</tr>
<tr>
<td>auto-restart</td>
<td>Automatically restarts the application’s process(es) if they stop running. Omit this keyword from the command to disable the automatic restart of the application.</td>
</tr>
<tr>
<td>cpu-sharing</td>
<td>Sets the CPU share allocated to this application, expressed as a percentage between 0 and 99. If 0 is specified, the application process(es) are not limited. If this keyword is not specified, the default value 0 is used.</td>
</tr>
<tr>
<td>max-megabytes</td>
<td>Sets the maximum memory resource that the application process(es) can consume. Expressed as megabytes between 0 and 200. If 0 is specified, the application process(es) are not limited. If keyword is not specified, the default value 0 is used.</td>
</tr>
</tbody>
</table>
5.32.4. application start

This command starts the execution of the specified application. The application must be installed before it can be started using this command.

Format  application start <filename>

Mode    Privileged EXEC

5.32.5. application stop

This command stops the execution of the specified application.

Format  application stop <filename>

Mode    Privileged EXEC
5.33. Precision Time Protocol Transparant Clock Commands

The switch supports Precision Time Protocol (PTP) Transparant Clock (TC).

5.33.1. ptp clock e2e-transparent

Use this command to enable the PTP E2E transparent clock at system level (that is, globaly) or for an interface. In Global Config mode, the command applies the PTP transparent clock configuration to all physical ports and LAGs on the switch. In Interface Config mode, the command provides a next-level control so that you can disable this feature selectively for an individual physical port or LAG.

You can configure the PTP transparent clock for physical ports and LAGs, but not for another type of interface, such as a VLAN, loopback, or tunnel. If you configure the PTP transparent clock on a LAG, the configuration is applied to all member ports. For example, if a member port is enabled and the LAG is disabled, the operational mode of that member is disabled because the LAG configuration takes precedence over the administrative mode of the member port.

To disable the PTP E2E transparent clock at system level or for an interface, use the no form of this command.

Format  

    ptp clock e2e-transparent  
    no ptp clock e2e-transparent

Default  

    Enabled at system level and for all interfaces

Mode  

    Global Config  
    Interface Config

5.33.2. show ptp clock e2e-transparent

Use this command to display the operational and configuration status of the PTP E2E transparent clock, both at system level and at interface level.

Format  

    show ptp clock e2e-transparent

Mode  

    Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The interface on which the feature is configured.</td>
</tr>
<tr>
<td>Configured Mode</td>
<td>The configuration status of the PTP E2E transparent clock on the interface.</td>
</tr>
<tr>
<td>Operational Mode</td>
<td>The operational status of the PTP E2E transparent clock on the interface.</td>
</tr>
</tbody>
</table>
**Example:**

(M4500-48XP8C) # show ptp clock e2e-transparent

PTP TC global mode.................................. Enabled

<table>
<thead>
<tr>
<th>Interface</th>
<th>Configured Mode</th>
<th>Operational Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>0/2</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>0/3</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>0/4</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>0/5</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>0/6</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>0/7</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>0/8</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>0/9</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>0/10</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>0/11</td>
<td>Disabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>0/12</td>
<td>Disabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>0/13</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>0/14</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
6. Routing Commands

6.1. Address Resolution Protocol (ARP) Commands

6.1.1. Show commands

6.1.1.1. show ip arp

This command displays the Address Resolution Protocol (ARP) cache. If the VRF is not specified, the shown ARP cache is in the default VRF. If the VRF is specified, the ARP cache in the specified VRF is shown.

Format  show ip arp [vrf <vrf-name>]

Default  None

Mode  Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age Time</td>
<td>Is the time it takes for an ARP entry to age out. This value was configured into the unit. Age time is measured in seconds.</td>
</tr>
<tr>
<td>Response Time</td>
<td>Is the time it takes for an ARP request timeout. This value was configured into the unit. Response time is measured in seconds.</td>
</tr>
<tr>
<td>Retries</td>
<td>Is the maximum number of times an ARP request is retried. This value was configured into the unit.</td>
</tr>
<tr>
<td>Cache Size</td>
<td>Is the maximum number of entries in the ARP table. This value was configured into the unit.</td>
</tr>
<tr>
<td>Dynamic renew mode</td>
<td>Displays whether the ARP component automatically attempts to renew dynamic ARP entries when they aged out.</td>
</tr>
<tr>
<td>Total Entry Count</td>
<td>Field listing the total entries in the ARP table and the peak entry count in the ARP table.</td>
</tr>
<tr>
<td>Current/Peak</td>
<td></td>
</tr>
<tr>
<td>Static Entry Count</td>
<td>Field listing configured static entry count, active static entry count, and maximum static entry count in the ARP table.</td>
</tr>
<tr>
<td>Configured/Active/Max</td>
<td></td>
</tr>
</tbody>
</table>

The following are displayed for each ARP entry.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>Is the IP address of a device on a subnet attached to an existing routing interface.</td>
</tr>
</tbody>
</table>
6.1.1.2. `show ip arp brief`

This command displays the brief Address Resolution Protocol (ARP) table information. If the VRF is not specified, the shown ARP cache is in the default VRF. If the VRF is specified, the ARP cache in the specified VRF is shown.

**Format**  
show ip arp [vrf <vrf-name>] brief

**Default**  
None

**Mode**  
Privileged EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Age Time</strong></td>
<td>Is the time it takes for an ARP entry to age out. This value was configured into the unit. Age time is measured in seconds.</td>
</tr>
<tr>
<td><strong>Response Time</strong></td>
<td>Is the time it takes for an ARP request timeout. This value was configured into the unit. Response time is measured in seconds.</td>
</tr>
<tr>
<td><strong>Retries</strong></td>
<td>Is the maximum number of times an ARP request is retried. This value was configured into the unit.</td>
</tr>
<tr>
<td><strong>Cache Size</strong></td>
<td>Is the maximum number of entries in the ARP table. This value was configured into the unit.</td>
</tr>
<tr>
<td><strong>Dynamic renew mode</strong></td>
<td>Displays whether the ARP component automatically attempts to renew dynamic ARP entries when they aged out.</td>
</tr>
<tr>
<td><strong>Total Entry Count</strong></td>
<td>Field listing the total entries in the ARP table and the peak entry count in the ARP table.</td>
</tr>
<tr>
<td><strong>Static Entry Count</strong></td>
<td>Field listing configured static entry count, active static entry count, and maximum static entry count in the ARP table.</td>
</tr>
</tbody>
</table>
6.1.1.3. show ip arp static

This command displays the static Address Resolution Protocol (ARP) table information.

Format show ip arp static
Default None
Mode Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRF-ID</td>
<td>The VRF ID to which the IP address belongs.</td>
</tr>
<tr>
<td>VRF-Name</td>
<td>The VRF name for the VRF ID.</td>
</tr>
<tr>
<td>IP address</td>
<td>The IP address of a device on a subnet attached to an existing routing interface.</td>
</tr>
<tr>
<td>MAC address</td>
<td>The MAC address for that device.</td>
</tr>
</tbody>
</table>

6.1.2. Configuraton commands

6.1.2.1. arp

This command creates an ARP entry. The value for <ipaddress> is the IP address of a device on a subnet attached to an existing routing interface. The value for <macaddress> is a unicast MAC address for that device.

Format arp [vrf <vrf-name>] <ipaddr> <macaddr> [interface {<slot/port> | vlan <1-4093>}]  
no arp <ipaddr> [interface {<slot/port> | vlan <1-4093>}]  

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf-name</td>
<td>The specified VRF in which the ARP entry is going to be created.</td>
</tr>
<tr>
<td>IP address</td>
<td>Is the IP address of a device on a subnet attached to an existing routing interface.</td>
</tr>
<tr>
<td>MAC address</td>
<td>Is a MAC address for that device. The format is 6 two-digit hexadecimal numbers that are separated by colons, for example, 00:06:29:32:81:40.</td>
</tr>
</tbody>
</table>

no This command deletes an ARP entry.

Default None
Mode Global Config
6.1.2.2. ip proxy-arp

This command enables proxy ARP on a router interface or range of interfaces. Without proxy ARP, a device only responds to an ARP request if the target IP address is an address configured on the interface where the ARP request arrived. With proxy ARP, the device may also respond if the target IP address is reachable. The device only responds if all next hops in its route to the destination are through interfaces other than the interface that received the ARP request.

To disable proxy ARP on a router interface, use the no form of this command.

Format  
ip proxy-arp
        no ip proxy-arp

Default  Enable.

Mode  Interface Config

6.1.2.3. ip local-proxy-arp

This command allows an interface to respond to ARP request for IP address within the subnet and to forward traffic between hosts in the subnet.

To reset the local proxy ARP mode on the interface to the default value, use the no form of this command.

Format  
ip local-proxy-arp
        no ip local-proxy-arp

Default  Disable.

Mode  Interface Config

6.1.2.4. arp cachesize

This command configures the maximum number of entries in the ARP cache. The ARP cache size value is platform dependency.

Format  
arp cachesize <1152-8192> or arp cachesize <1152-6144>
        no arp cachesize

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;1152-8192&gt;</td>
<td>The range of cache size is 1152 to 8192 for the following platform</td>
</tr>
<tr>
<td></td>
<td>• ipv4-routing data-center default</td>
</tr>
<tr>
<td></td>
<td>• ipv4-routing dcvpn-data-center</td>
</tr>
</tbody>
</table>
The default cache size is 8192 or 6144, which depends on the platform currently used.

**Mode**  
Global Config

**6.1.2.5. arp dynamicrenew**

This command enables ARP component to automatically renew ARP entries of type dynamic when they age out.

**Format**

```
arp dynamicrenew
no arp dynamicrenew
```

**Fields**

<table>
<thead>
<tr>
<th>Definition</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>This command disables ARP component from automatically renewing ARP entries of type dynamic when they age out.</td>
</tr>
</tbody>
</table>

**Default**  
Disable

**Mode**  
Global Config

**6.1.2.6. arp resptime**

This command configures the ARP request response timeout.

**Format**

```
arp resptime <1-10>
no arp resptime
```

**Fields**

<table>
<thead>
<tr>
<th>Definition</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;1-10&gt;</td>
<td>The range of default response time is 1 to 10 seconds.</td>
</tr>
</tbody>
</table>
The default response time is 1.

**Mode**  Global Config

### 6.1.2.7. arp retries

This command configures the ARP count of maximum request for retries.

**Format**  
```
arp retries <0-10>
no arp retries
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;1-10&gt;</td>
<td>The range of maximum request for retries is 0 to 10.</td>
</tr>
<tr>
<td>no</td>
<td>This command configures the default count of maximum request for retries.</td>
</tr>
</tbody>
</table>

The default value is 4.

**Mode**  Global Config

### 6.1.2.8. arp timeout

This command configures the ARP entry ageout time.

**Format**  
```
arp timeout <15-21600>
no arp timeout
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;15-21600&gt;</td>
<td>Represents the IP ARP entry ageout time in seconds. The range is 15 to 21600 seconds.</td>
</tr>
<tr>
<td>no</td>
<td>This command configures the default ageout time for IP ARP entry.</td>
</tr>
</tbody>
</table>

The default value is 1200.

**Mode**  Global Config

### 6.1.2.9. arp access-list

Use this command to create an ARP ACL
**Format**

arp access-list <name>

no arp access-list <name>

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;name&gt;</td>
<td>Enter ARP access-list name &lt;1-31&gt; alphanumeric characters in length.</td>
</tr>
<tr>
<td>no</td>
<td>Use this command to delete a configured ARP ACL.</td>
</tr>
</tbody>
</table>

**Default** None

**Mode** Global Config

### 6.1.2.10. permit ip host mac host

Use this command to configure a rule for a valid IP address and MAC address combination used in ARP packet validation.

**Format**

permit ip host <sender-ip> mac host <sender-mac>

no permit ip host <sender-ip> mac host <sender-mac>

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;sender-ip&gt;</td>
<td>Specifies IP address in the ARP ACL rule.</td>
</tr>
<tr>
<td>&lt;sender-mac&gt;</td>
<td>Specifies MAC address in the ARP ACL rule.</td>
</tr>
<tr>
<td>no</td>
<td>Use this command to delete a rule for a valid IP and MAC combination.</td>
</tr>
</tbody>
</table>

**Default** None

**Mode** ARP Access-list Config

### 6.1.2.11. clear ip arp-cache

This command causes all ARP entries of type dynamic to be removed form the ARP cache. If the [gateway] parameter is specified, the dynamic entries of type gateway are purged as well.

**Format**

clear ip arp-cache [gateway | interface {<slot/port> | vlan <vlan-id>}] 

**Default** None

**Mode** Privileged Exec
6.2. IP Routing Commands

6.2.1. Show commands

6.2.1.1. show ip brief

This command displays all the summary information of the IP.

**Format**  
show ip brief

**Default**  
None

**Mode**  
Privileged EXEC  
User EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default Time to Live</td>
<td>The computed TTL (Time to Live) of forwarding a packet from the local router to the final destination.</td>
</tr>
<tr>
<td>Routing Mode</td>
<td>Shows whether the routing is enabled or disabled.</td>
</tr>
<tr>
<td>Maximum Next Hops</td>
<td>The maximum number of hops supported by this switch.</td>
</tr>
<tr>
<td>Maximum Routes</td>
<td>The maximum number of routes the packet can travel.</td>
</tr>
<tr>
<td>Maximum Static Routes</td>
<td>The maximum number of static routes supported by this switch.</td>
</tr>
<tr>
<td>ICMP Rate Limit Interval</td>
<td>Shows how often the token bucket is initialized with burst-size tokens. Burst-interval is from 0 to 2147483647 milliseconds. The default burst-interval is 1000 msec.</td>
</tr>
<tr>
<td>ICMP Rate Limit Burst Size</td>
<td>Shows the number of ICMPv4 error messages that can be sent during one burst-interval. The range is from 1 to 200 messages. The default value is 100 messages.</td>
</tr>
<tr>
<td>ICMP Echo Replies</td>
<td>Shows whether ICMP Echo Replies are enabled or disabled.</td>
</tr>
<tr>
<td>ICMP Redirects</td>
<td>Shows whether ICMP Redirects are enabled or disabled.</td>
</tr>
</tbody>
</table>

6.2.1.2. show ip interface port

This command displays all pertinent information about the IP interfaces.

**Format**  
show ip interface port <slot/port>

**Default**  
None
**Mode**
- Privileged EXEC
- User EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Routing Interface Status</strong></td>
<td>Determine the operational status of IPv4 routing Interface. The possible values are Up or Down.</td>
</tr>
<tr>
<td><strong>Primary IP Address</strong></td>
<td>The primary IP address and subnet masks for the interface. This value appears only if you configure it.</td>
</tr>
<tr>
<td><strong>Method</strong></td>
<td>Shows whether the IP address was configured manually or acquired from a DHCP server.</td>
</tr>
<tr>
<td><strong>Secondary IP Address</strong></td>
<td>One or more secondary IP addresses and subnet masks for the interface. This value appears only if you configure it.</td>
</tr>
<tr>
<td><strong>Helper IP Address</strong></td>
<td>The helper IP addresses configured by the command “ip helper-address (Interface Config)”</td>
</tr>
<tr>
<td><strong>Routing Mode</strong></td>
<td>The administrative mode of router interface participation. The possible values are enable or disable. This value is configurable.</td>
</tr>
<tr>
<td><strong>Administrative Mode</strong></td>
<td>The administrative mode of the specified interface. The possible values of this field are enable or disable. This value is configurable.</td>
</tr>
<tr>
<td><strong>Forward Net Directed Broadcasts</strong></td>
<td>Displays whether forwarding of network-directed broadcasts is enabled or disabled. This value is configurable.</td>
</tr>
<tr>
<td><strong>Proxy ARP</strong></td>
<td>Displays whether Proxy ARP is enabled or disabled on the system.</td>
</tr>
<tr>
<td><strong>Local Proxy ARP</strong></td>
<td>Displays whether Local Proxy ARP is enabled or disabled on the interface. Active State Displays whether the interface is active or inactive. An interface is considered active if its link is up and it is in forwarding state.</td>
</tr>
<tr>
<td><strong>Active State</strong></td>
<td>An interface is considered active if it has link up, is in forwarding state.</td>
</tr>
<tr>
<td><strong>Link Speed Data Rate</strong></td>
<td>An integer representing the physical link data rate of the specified interface. This is measured in Megabits per second (Mbps).</td>
</tr>
<tr>
<td><strong>MAC Address</strong></td>
<td>The burned in physical address of the specified interface. The format is 6 two-digit hexadecimal numbers that are separated by colons.</td>
</tr>
<tr>
<td><strong>Encapsulation Type</strong></td>
<td>The encapsulation type for the specified interface. The types are: Ethernet or SNAP.</td>
</tr>
<tr>
<td><strong>IP MTU</strong></td>
<td>The maximum transmission unit (MTU) size of a frame, in bytes.</td>
</tr>
<tr>
<td><strong>Bandwidth</strong></td>
<td>Shows the bandwidth of the interface.</td>
</tr>
</tbody>
</table>
6.2.1.3. show ip interface vlan

This command displays all pertinent information about the VLAN routing interfaces.

**Format**

```
show ip interface vlan <1-4093>
```

**Default**

None

**Mode**

Privileged EXEC
User EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Routing Interface Status</strong></td>
<td>Determine the operational status of IPv4 routing Interface. The possible values are Up or Down.</td>
</tr>
<tr>
<td><strong>Primary IP Address</strong></td>
<td>The primary IP address and subnet masks for the interface. This value appears only if you configure it.</td>
</tr>
<tr>
<td><strong>Method</strong></td>
<td>Shows whether the IP address was configured manually or acquired from a DHCP server.</td>
</tr>
<tr>
<td><strong>Secondary IP Address</strong></td>
<td>One or more secondary IP addresses and subnet masks for the interface. This value appears only if you configure it.</td>
</tr>
<tr>
<td><strong>Helper IP Address</strong></td>
<td>The helper IP addresses configured by the command “ip helper-address (Interface Config)”</td>
</tr>
<tr>
<td><strong>Routing Mode</strong></td>
<td>The administrative mode of router interface participation. The possible values are enable or disable. This value is configurable.</td>
</tr>
<tr>
<td><strong>Administrative Mode</strong></td>
<td>The administrative mode of the specified interface. The possible values of this field are enable or disable. This value is configurable.</td>
</tr>
<tr>
<td><strong>Forward Net Directed Broadcasts</strong></td>
<td>Displays whether forwarding of network-directed broadcasts is enabled or disabled. This value is configurable.</td>
</tr>
<tr>
<td><strong>Proxy ARP</strong></td>
<td>Displays whether Proxy ARP is enabled or disabled on the system.</td>
</tr>
</tbody>
</table>

**Destination Unreachables**

Displays whether ICMP Destination Unreachables may be sent (enabled or disabled).

**ICMP Redirects**

Displays whether ICMP Redirects may be sent (enabled or disabled).

**Interface Suppress Status**

Displays whether the interface suppressed or not.

**Interface Name**

Displays the routing interface name.
6.2.1.4. `show ip interface lookback`

This command displays information about configured loopback interfaces.

**Format**

`show ip interface loopback <0-63>`

**Default**

None

**Mode**

Privileged EXEC

User EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loopback Id</td>
<td>The loopback ID associated with the rest of the information in the row.</td>
</tr>
<tr>
<td>Interface</td>
<td>The interface name.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IPv4 address of the interface.</td>
</tr>
</tbody>
</table>
If you specify a loopback ID, the following information appears:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Routing Interface Status</strong></td>
<td>The operational status of IPv4 routing Interface. The possible values are Up or Down.</td>
</tr>
<tr>
<td><strong>Primary IP Address</strong></td>
<td>The primary IP address and subnet masks for the interface. This value appears only if you configure it.</td>
</tr>
<tr>
<td><strong>Secondary IP Address(es)</strong></td>
<td>One or more secondary IP addresses and subnet masks for the interface. This value appears only if you configure it.</td>
</tr>
<tr>
<td><strong>Routing Mode</strong></td>
<td>The administrative mode of router interface participation. The possible values are enable or disable. This value is configurable.</td>
</tr>
<tr>
<td><strong>Interface Name</strong></td>
<td>The routing interface name.</td>
</tr>
</tbody>
</table>

### 6.2.1.5. show ip interface brief

This command displays summary information about IP configuration settings for all ports in the router.

**Format**

`show ip interface brief`

**Default**

None

**Mode**

- Privileged EXEC
- User EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Interface</strong></td>
<td>Valid slot, and port number separated by forward slashes or VLAN routing interface.</td>
</tr>
<tr>
<td><strong>State</strong></td>
<td>Indicate the operational state of the routing interface.</td>
</tr>
<tr>
<td><strong>IP Address</strong></td>
<td>The IP address of the routing interface.</td>
</tr>
<tr>
<td><strong>IP Mask</strong></td>
<td>The IP mask of the routing interface.</td>
</tr>
<tr>
<td><strong>Method</strong></td>
<td>Is the way to get the IP Address. The possible value is “Manual”, “DHCP” or “None”.</td>
</tr>
<tr>
<td><strong>Netdir Bcast</strong></td>
<td>Indicates if IP forwards net-directed broadcasts on this interface. Possible values are Enable or Disable.</td>
</tr>
<tr>
<td><strong>MultiCast Fwd</strong></td>
<td>Indicates the multicast forwarding administrative mode on the interface. Possible values are Enable or Disable.</td>
</tr>
</tbody>
</table>
6.2.1.6. show ip route

This command displays the routing table. The <ip-address> specifies the network for which the route is to be displayed and displays the best matching best-route for the address. The <mask> specifies the subnet mask for the given <ip-address>. When you use the <longer-prefixes> keyword, the <ip-address> and <mask> pair becomes the prefix, and the command displays the routes to the addresses that match that prefix. Use the <protocol> parameter to specify the protocol that installed the routes. The value for <protocol> can be connected, bgp, ospf, static, or kernel. Use the <all> parameter to display all routes including best and nonbest routes. If you do not use the <all> parameter, the command only displays the best route. If you use static as <protocol>, a description option can be used to show the description of the static route.

⚠️ If you use the <connected> keyword for <protocol>, the all option is not available because there are no best or non-best connected routes.

**Format**
```bash
show ip route [vrf <vrf-name>] [{<ip-address> [<protocol>] | <ip-address> <mask> [longer-prefixes] [protocol]} | <protocol>] [all] | all]
```

**Default** None

**Mode** Privileged EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route Codes</td>
<td>Displays the key for the routing protocol codes that might appear in the routing table output. Route Codes: R - RIP Derived, O - OSPF Derived, C - Connected, S - Static B - BGP Derived, IA - OSPF Inter Area E1 - OSPF External Type 1, E2 - OSPF External Type 2 N1 - OSPF NSSA External Type 1, N2 - OSPF NSSA External Type 2 S U - Unnumbered Peer L - Leaked Route, K - Kernel, D - Database Route</td>
</tr>
<tr>
<td>State</td>
<td>Indicate the operational state of the routing interface.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address of the routing interface.</td>
</tr>
<tr>
<td>IP Mask</td>
<td>The IP mask of the routing interface.</td>
</tr>
<tr>
<td>Method</td>
<td>Is the way to get the IP Address. The possible value is “Manual”, “DHCP” or “None”.</td>
</tr>
<tr>
<td>Netdir Bcast</td>
<td>Indicates if IP forwards net-directed broadcasts on this interface. Possible values are Enable or Disable.</td>
</tr>
</tbody>
</table>
The command displays the routing tables in the following format:

<table>
<thead>
<tr>
<th>Code</th>
<th>IP-Address/Mask</th>
<th>[Preference/Metric]</th>
<th>via Next-Hop</th>
<th>Interface</th>
</tr>
</thead>
</table>

### Fields

- **Code**: The codes for the routing protocols that created the routes.
- **IP-Address/Mask**: The IP-Address and mask of the destination network corresponding to this route.
- **Preference**: The administrative distance associated with this route. Routes with low values are preferred over routes with higher values.
- **Metric**: The cost associated with this route.
- **via Next-Hop**: The outgoing router IP address to use when forwarding traffic to the next router (if any) in the path toward the destination.
- **Interface**: The outgoing router interface to use when forwarding traffic to the next destination.

#### 6.2.1.7. show ip route bestroutes

This command displays router route table information for the best routes.

**Format**  
show ip route bestroutes

**Default**  
None

**Mode**  
Privileged EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Routes</td>
<td>The total number of routes.</td>
</tr>
<tr>
<td>Network Address</td>
<td>Is an IP route prefix for the destination.</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>Is a mask of the network and host portion of the IP address for the router interface.</td>
</tr>
<tr>
<td>Protocol</td>
<td>Tells which protocol added the specified route. The possibilities are: local, static, OSPF.</td>
</tr>
</tbody>
</table>
For each next hop:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next Hop Intf</td>
<td>The outgoing router interface to use when forwarding traffic to the next destination.</td>
</tr>
<tr>
<td>Next Hop IP Address</td>
<td>The outgoing router IP address to use when forwarding traffic to the next router (if any) in the path toward the destination.</td>
</tr>
</tbody>
</table>

### 6.2.1.8. show ip route entry

This command displays the router route entry information.

**Format**  
`show ip route entry <networkaddress>`

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;networkaddress&gt;</code></td>
<td>Is a valid network address identifying the network on the specified interface.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>Privileged EXEC</td>
</tr>
</tbody>
</table>

**Display Message**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Address</td>
<td>Is a valid network address identifying the network on the specified interface.</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>Is a mask of the network and host portion of the IP address for the attached network.</td>
</tr>
<tr>
<td>Protocol</td>
<td>Tells which protocol added the specified route. The possibilities are: local, static, OSPF.</td>
</tr>
<tr>
<td>Total Number of Routes</td>
<td>The total number of routes.</td>
</tr>
</tbody>
</table>

For each next hop:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next Hop Intf</td>
<td>The outgoing router interface to use when forwarding traffic to the next destination.</td>
</tr>
<tr>
<td>Next Hop IP Address</td>
<td>The outgoing router IP address to use when forwarding traffic to the next router (if any) in the path toward the destination.</td>
</tr>
<tr>
<td>Metric</td>
<td>Specifies the metric for this route entry.</td>
</tr>
</tbody>
</table>
6.2.1.9. show ip route connected

This command displays directly connected routes.

**Format**
```
show ip route [vrf <vrf-name>] connected
```

**Default**
None

**Mode**
Privileged EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Route Codes</strong></td>
<td>Displays the key for the routing protocol codes that might appear in the routing table output.</td>
</tr>
</tbody>
</table>

The command displays the routing tables in the following format:

<table>
<thead>
<tr>
<th>Code</th>
<th>IP-Address/Mask</th>
<th>[Preference/Metric]</th>
<th>via Next-Hop</th>
<th>Interface</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Code</strong></td>
<td>The codes for the routing protocols that created the routes.</td>
</tr>
<tr>
<td><strong>IP-Address/Mask</strong></td>
<td>The IP-Address and mask of the destination network corresponding to this route.</td>
</tr>
<tr>
<td><strong>Preference</strong></td>
<td>The administrative distance associated with this route. Routes with low values are preferred over routes with higher values.</td>
</tr>
<tr>
<td><strong>Metric</strong></td>
<td>The cost associated with this route.</td>
</tr>
<tr>
<td><strong>via Next-Hop</strong></td>
<td>The outgoing router IP address to use when forwarding traffic to the next router (if any) in the path toward the destination.</td>
</tr>
<tr>
<td><strong>Interface</strong></td>
<td>The outgoing router interface to use when forwarding traffic to the next destination.</td>
</tr>
</tbody>
</table>

6.2.1.10. show ip route ospf

This command displays Open Shortest Path First (OSPF) routes. The option all command displays all (best and non-best) routes.

**Format**
```
show ip route [vrf <vrf-name>] ospf [all]
```

**Default**
None
### Mode
Privileged EXEC

### Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route Codes</td>
<td>Displays the key for the routing protocol codes that might appear in the routing table output.</td>
</tr>
</tbody>
</table>

The command displays the routing tables in the following format:

<table>
<thead>
<tr>
<th>Code</th>
<th>IP-Address/Mask</th>
<th>[Preference/Metric]</th>
<th>via Next-Hop,</th>
<th>Interface</th>
</tr>
</thead>
</table>

### Fields Definition

<table>
<thead>
<tr>
<th>Code</th>
<th>The codes for the routing protocols that created the routes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP-Address/Mask</td>
<td>The IP-Address and mask of the destination network corresponding to this route.</td>
</tr>
<tr>
<td>Preference</td>
<td>The administrative distance associated with this route. Routes with low values are preferred over routes with higher values.</td>
</tr>
<tr>
<td>Metric</td>
<td>The cost associated with this route.</td>
</tr>
<tr>
<td>via Next-Hop</td>
<td>The outgoing router IP address to use when forwarding traffic to the next router (if any) in the path toward the destination.</td>
</tr>
<tr>
<td>Interface</td>
<td>The outgoing router interface to use when forwarding traffic to the next destination.</td>
</tr>
</tbody>
</table>

### 6.2.1.11. **show ip route static**

This command displays Static Routes. The option all command displays all (best and non-best) routes.

<table>
<thead>
<tr>
<th>Format</th>
<th>show ip route [vrf &lt;vrf-name&gt;] static [all]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>None</td>
</tr>
<tr>
<td>Mode</td>
<td>Privileged EXEC</td>
</tr>
</tbody>
</table>

### Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route Codes</td>
<td>Displays the key for the routing protocol codes that might appear in the routing table output.</td>
</tr>
</tbody>
</table>

The command displays the routing tables in the following format:

<table>
<thead>
<tr>
<th>Code</th>
<th>IP-Address/Mask</th>
<th>[Preference/Metric]</th>
<th>via Next-Hop,</th>
<th>Interface</th>
</tr>
</thead>
</table>
6.2.1.12. **show ip route ecmp-groups**

This command displays all the current ECMP groups in the IPv4 routing table. An ECMP group is a set of two or more next hops used in one or more routes. The groups are numbered arbitrarily from 1 to n. The output indicates the number of next hops in the group and the number of routes that use the set of the next hops. The output lists the IPv4 address and the outgoing interface of each next hop in each group.

**Format**

```
show ip route [vrf <vrf-name>] ecmp-groups
```

**Default**

None

**Mode**

Privileged EXEC

6.2.1.13. **show ip route hw-failure**

This command displays the routes that failed to be added to the hardware due to the hash errors or a table full condition.

**Format**

```
show ip route hw-failure
```

**Default**

None

**Mode**

Privileged EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route Codes</td>
<td>Displays the key for the routing protocol codes that might appear in the routing table output.</td>
</tr>
</tbody>
</table>
The command displays the routing tables in the following format:

<table>
<thead>
<tr>
<th>Code</th>
<th>IP-Address/Mask</th>
<th>[Preference/Metric]</th>
<th>via Next-Hop,</th>
<th>Interface</th>
</tr>
</thead>
</table>

**Fields**

**Code**
The codes for the routing protocols that created the routes.

**IP-Address/Mask**
The IP-Address and mask of the destination network corresponding to this route.

**Preference**
The administrative distance associated with this route. Routes with low values are preferred over routes with higher values.

**Metric**
The cost associated with this route.

**via Next-Hop**
The outgoing router IP address to use when forwarding traffic to the next router (if any) in the path toward the destination.

**Interface**
The outgoing router interface to use when forwarding traffic to the next destination.

### 6.2.1.14. show ip route summary

This command displays the routing table summary. Use the optional **all** parameter to show the number of all routes, including best and non-best routes. To include only the number of best routes, do not use the optional parameter.

**Format**
```bash
show ip route [vrf <vrf-name>] summary [all]
```

**Default**
None

**Mode**
Privileged EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Connected Routes</strong></td>
<td>The total number of connected routes in the routing table.</td>
</tr>
<tr>
<td><strong>Static Routes</strong></td>
<td>Total number of static routes in the routing table.</td>
</tr>
<tr>
<td><strong>Kernel Routes</strong></td>
<td>Total number of kernel routes in the routing table.</td>
</tr>
<tr>
<td><strong>Unnumbered Peer Routes</strong></td>
<td>Total number of unnumbered peer routes in the routing table.</td>
</tr>
<tr>
<td><strong>BGP Routes</strong></td>
<td>Total number of routes installed by BGP protocol.</td>
</tr>
</tbody>
</table>

- **External**: The number of external BGP routes.
- **Internal**: The number of internal BGP routes.
| **Local**: The number of local BGP routes. |
| **OSPF Routes**: Total number of routes installed by OSPF protocol: |
| **Intra Area Routes**: Total number of Intra Area routes installed by OSPF protocol. |
| **Inter Area Routes**: Total number of Inter Area routes installed by OSPF protocol. |
| **External Type-1 Routes**: Total number of External Type-1 routes installed by OSPF protocol. |
| **External Type-2 Routes**: Total number of External Type-2 routes installed by OSPF protocol. |
| **Reject Routes**: Total number of reject routes installed by all protocols. |
| **Total Routes**: Total number of routes in the routing table. |
| **Best Routes (High)**: The number of best routes currently in the routing table. This number only counts the best route to each destination. The value in parentheses indicates the highest count of unique best routes after counters were last cleared. |
| **Alternate Routes**: The number of alternate routes currently in the routing table. An alternate route is a route that was not selected as the best route to its destination. |
| **Leaked Routes**: The number of leaked routes currently in the routing table. These leaked routes are the routes leaked into RTO from other VRF. |
| **RFC5549 Routes - IPv4 with IPv6 nexthop**: The number of RFC5549 routes currently in the routing table. These RFC5549 routes are advertising BGP IPv4 NLRI with an IPv6 Next Hop. |
| **Route Adds**: The number of routes that have been added to the routing table. |
| **Route Modifies**: The number of routes that have been changed after they were initially added to the routing table. |
| **Route Deletes**: The number of routes that have been deleted from the routing table. |
| **Unresolved Route Adds**: The number of route adds that failed because none of the route’s next hop were on a local subnet. Note that static routes can fail to be added to the routing table at startup because their routing interfaces are not yet up. This counter is incremented in this case. The static routes are added to the routing table when the routing interfaces come up. |
| **Invalid Route Adds**: The number of routes that failed to be added to the routing table because the route was invalid. A log message is written for each of these failures. |
| **Failed Route Adds**: The number of routes that failed to be added to the routing table because of a resource limitation in the routing table. |
| **Failed Kernel Route Adds**: The number of kernel routes that failed to be added to the routing table because of a kernel error or a table full condition. |
6.2.1.15. clear ip route counters

This command resets the IPv4 routing table counters reported in the command “show ip route summary” to zero. This command only resets event counters. Counters that report the current state of the routing table, such as the number of routes of each type, are not reset.

Format clear ip route counters [vrf <vrf-name>]

Default None

Mode Privileged EXEC

6.2.1.16. show ip route preferences

This command displays detailed information about the route preferences. Route preferences are used in determining the best route. Lower router preference values are preferred over higher router preference values.
**Format**

`show ip route [vrf <vrf-name>] preferences`

**Default**

None

**Mode**

Privileged EXEC

User EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Local</strong></td>
<td>This field displays the local route preference value.</td>
</tr>
<tr>
<td><strong>Static</strong></td>
<td>This field displays the static route preference value.</td>
</tr>
<tr>
<td><strong>BGP External</strong></td>
<td>This field displays the BGP external route preference value.</td>
</tr>
<tr>
<td><strong>OSPF Intra</strong></td>
<td>This field displays the OSPF intra route preference value.</td>
</tr>
<tr>
<td><strong>OSPF Inter</strong></td>
<td>This field displays the OSPF inter route preference value.</td>
</tr>
<tr>
<td><strong>OSPF External</strong></td>
<td>The OSPF External route preference value.</td>
</tr>
<tr>
<td><strong>BGP Internal</strong></td>
<td>The BGP Internal route preference value.</td>
</tr>
<tr>
<td><strong>BGP Local</strong></td>
<td>The BGP local route preference value.</td>
</tr>
<tr>
<td><strong>Configured Default Gateway</strong></td>
<td>The route preference value of the statically-configured default gateway.</td>
</tr>
<tr>
<td><strong>DHCP Default Gateway</strong></td>
<td>The route preference value of the default gateway learned from the DHCP server.</td>
</tr>
</tbody>
</table>

**6.2.17. show ip stats**

This command displays IP statistical information. Refer to RFC 1213 for more information about the fields that are displayed.

**Format**

`show ip stats [vrf <vrf-name>]`

**Default**

None

**Mode**

Privileged EXEC

**6.2.18. show routing heap summary**

This command displays a summary of the memory allocation from the routing heap. The routing heap is a chunk of memory set aside when the system boots for use by the routing protocols.

**Format**

`show routing heap summary`
Default: None
Mode: Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heap Size</td>
<td>The amount of memory, in bytes, allocated at startup for the routing heap.</td>
</tr>
<tr>
<td>Memory in Use</td>
<td>The number of bytes currently allocated.</td>
</tr>
<tr>
<td>Memory on Free List</td>
<td>The number of bytes currently on the free list. When a chunk of memory from</td>
</tr>
<tr>
<td></td>
<td>the routing heap is freed, it is placed on a free list for future reuse.</td>
</tr>
<tr>
<td>Memory Available in Heap</td>
<td>The number of bytes in the original heap that have never been allocated.</td>
</tr>
<tr>
<td>In Use High Water Mark</td>
<td>The maximum memory in use since the system last rebooted.</td>
</tr>
</tbody>
</table>

6.2.1.19. show ip load-sharing

This command displays the currently configured IP ECMP load balancing mode.

Format: show ip load-sharing
Mode: Privileged EXEC

6.2.1.20. show bfd neighbors

This command displays the BFD adjacency list showing the active BFD neighbors. The parameter details provides additional details with the routing protocol BFD has registered.

Format: show bfd neighbors [[details [{ip-address} | ipv6-address]]] [interface {<slot/port> | vlan <vlan-id>}] [details]
Mode: Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our IP address</td>
<td>The current IP address.</td>
</tr>
<tr>
<td>Neighbor IP address</td>
<td>The IP address of the active BFD neighbor.</td>
</tr>
<tr>
<td>State</td>
<td>The current state, either Up or Down.</td>
</tr>
<tr>
<td>Interface</td>
<td>The current interface.</td>
</tr>
</tbody>
</table>
6.2.2. Configuration commands

6.2.2.1. routing

This command enables routing for an interface.

**Format**
```
 routing
 no routing
```
6.2.2.2. ip routing

This command enables the IP Router Admin Mode for the master switch.

**Format**

```
ip routing
no ip routing
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>Disable the IP Router Admin Mode for the master switch.</td>
</tr>
</tbody>
</table>

**Default** Disable

**Mode** Interface Config

6.2.2.3. ip address

This command configures an IP address on an interface. The IP address may be a secondary IP address.

**Format**

```
ip address <ipaddr> {<subnet-mask> | <prefix-length>} [secondary]
no ip address <ipaddr> <subnet-mask> [secondary]
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;ipaddr&gt;</td>
<td>IP address of the interface.</td>
</tr>
<tr>
<td>&lt;subnet-mask&gt;</td>
<td>Subnet mask of the interface.</td>
</tr>
<tr>
<td>&lt;prefix-length&gt;</td>
<td>Implements RFC 3021 via using the / notation of the subnet mask. This integer indicates the length of the subnet mask. Range is from 1 to 31.</td>
</tr>
<tr>
<td>[secondary]</td>
<td>It is a secondary IP address.</td>
</tr>
<tr>
<td>no</td>
<td>Delete an IP address from an interface.</td>
</tr>
</tbody>
</table>

**Default** None

**Mode** Interface Config
6.2.2.4. ip address dhcp

This command enables the DHCPv4 client on an in-band interface so that it can acquire network information, such as the IP address, subnet mask, and default gateway, from a network DHCP server. When DHCP is enabled on the interface, the system automatically deletes all manually configured IPv4 addresses on the interface.

To enable the DHCPv4 client on an in-band interface and send DHCP client messages with the client identifier option (DHCP Option 61), use the `ip address dhcp client-id` command in interface configuration mode.

**Format**

```
ip address dhcp [{restart | client-id}]
no ip address dhcp [client-id]
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>[restart]</td>
<td>To restart the DHCPv4 client to acquire an IP Address from DHCP server.</td>
</tr>
<tr>
<td>[client-id]</td>
<td>To send the DHCPv4 messages with the DHCP client identifier.</td>
</tr>
<tr>
<td>no</td>
<td>This command releases a leased address and disables DHCPv4 on an interface.</td>
</tr>
</tbody>
</table>

**Default**  Disable

**Mode**  Interface Config

6.2.2.5. ip default-gateway

This command manually configures a global default gateway address. Only one default gateway can be configured. If you invoke this commands several times, each command replaces the previous configuration.

**Format**

```
ip default-gateway <ipaddr>
no ip default-gateway
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;ipaddr&gt;</td>
<td>A valid IPv4 address.</td>
</tr>
<tr>
<td>no</td>
<td>Remove the default gateway address from the configuration.</td>
</tr>
</tbody>
</table>

**Default**  None

**Mode**  Global Config
### 6.2.2.6. ip load-sharing

This command manually configures the IP ECMP load balancing mode.

**Format**

```
ip load-sharing <1-6> {inner | outer}
no ip load-sharing
```

**Fields**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;1 - 6&gt;</td>
<td>The load balancing or sharing mode for all ECMP groups.</td>
</tr>
<tr>
<td>1</td>
<td>Based on a hash using the Source IP address of the packet.</td>
</tr>
<tr>
<td>2</td>
<td>Based on a hash using the Destination IP address of the packet.</td>
</tr>
<tr>
<td>3</td>
<td>Based on a hash using the Source and Destination IP addresses of the packet.</td>
</tr>
<tr>
<td>4</td>
<td>Based on a hash using the Source IP address and the Source TCP/UDP Port field of the packet.</td>
</tr>
<tr>
<td>5</td>
<td>Based on a hash using the Destination IP address and the Destination TCP/UDP Port field of the packet.</td>
</tr>
<tr>
<td>6</td>
<td>Based on a hash using the Source and Destination IP address, and the Source and Destination TCP/UDP Port fields of the packet.</td>
</tr>
</tbody>
</table>

**Default**

6 inner

**Mode**

Global Config

### 6.2.2.7. ip route

This command configures a static route. Use the optional vrf parameter to configure the static route in the specified virtual router instance.

**Format**

```
ip route [vrf <vrf-name>] <networkaddr> <subnetmask> {{<nexthopip> | Null0 | interface {<slot/port> | vlan <vlan-id>} [<nexthopip>]} [[1-255 >] [description <description>]]}
nip route <networkaddr> <subnetmask> [{(<nexthopip> [1-255 >] | description)} | {Null0 [1-255 >] | description]}]]
```

**Fields**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;vrf-name&gt;</td>
<td>Specify the name of the VRF in which this static route is installed.</td>
</tr>
<tr>
<td>&lt;networkaddr&gt;</td>
<td>A valid IP address.</td>
</tr>
</tbody>
</table>
6.2.2.8. ip route default

This command configures the default route. Use the optional vrf parameter to configure the static route in the specified virtual router instance.

**Format**

```
ip route [vrf <vrf-name>] default <nexthopip> [1-255]
```

```
no ip route [vrf <vrf-name>] default [(<nexthopip> | <1-255>)]
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf-name</td>
<td>Specify the name of the VRF in which this static route is installed.</td>
</tr>
<tr>
<td>&lt;nexthopip&gt;</td>
<td>IP address of the next hop router.</td>
</tr>
<tr>
<td>&lt;1-255&gt;</td>
<td>Precedence value of this route.</td>
</tr>
</tbody>
</table>

**Default** None

**Mode** Global Config

6.2.2.9. ip route distance

This command sets the default distance (preference) for static routes. Use the optional vrf parameter to configure the default distance (preference) for static routes in the specified virtual router instance.
Lower route distance values are preferred when determining the best route. The `ip route` and `ip route default` commands allow you to optionally set the distance (preference) of an individual static route. The default distance is used when no distance is specified in these commands. Changing the default distance does not update the distance of existing static routes, even if they were assigned the original default distance. The new default distance will only be applied to static routes created after invoking the `ip route distance` command.

**Format**

```
ip route [vrf <vrf-name>] distance <1-255>
no ip route [vrf <vrf-name>] distance
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf-name</td>
<td>Specify the name of the VRF in which this static route is installed.</td>
</tr>
<tr>
<td>&lt;1-255&gt;</td>
<td>Default the Distance value of static routes. The range is 1 to 255.</td>
</tr>
</tbody>
</table>

**Default**
The default preference value is 1

**Mode**
Global Config

### 6.2.2.10. `ip route static bfd`

This command configures the BFD for static route. To remove the BFD for static route, use `no` form of this command.

QNOS BFD supports single-hop mode and multiple-hop mode.

Depending on status of the BFD session, static routes are added to or removed from the IP routing table. When a BFD session with a specific next hop goes down, all the static routes with the same next hop will be removed from the IP routing table. Once the BFD session comes up, all the static routes with the same next hop will be added into the IP routing table.

**Format**

```
ip route static bfd <next-hop-ip-addr> <src-ip-addr>
no ip route static bfd <nexthopip> <srcip>
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;nexthopip&gt;</td>
<td>IP address of the next hop router.</td>
</tr>
<tr>
<td>&lt;srcip&gt;</td>
<td>Local IP address of static route for BFD. This IP address must be one of</td>
</tr>
<tr>
<td></td>
<td>the interface IP address.</td>
</tr>
</tbody>
</table>

**Default**
None

**Mode**
Global Config
**6.2.2.11. ip route vrf static bfd**

This command configures the BFD for static route with specific VRF. To remove the BFD for static route with specific VRF, use no form of this command.

**Format**

```
ip route vrf <vrf-name> static bfd <next-hop-ip-addr> <src-ip-addr>
no ip route vrf <vrf-name> static bfd <nexthopip> <srcip>
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;vrf-name&gt;</td>
<td>VRF Name in which the static route is configured</td>
</tr>
<tr>
<td>&lt;nexthopip&gt;</td>
<td>IP address of the next hop router.</td>
</tr>
<tr>
<td>&lt;srcip&gt;</td>
<td>Local IP address of static route for BFD.</td>
</tr>
</tbody>
</table>

**Default**  None

**Mode**  Global Config

**6.2.2.12. ip mtu**

This command sets the IP Maximum Transmission Unit (MTU) on a routing interface or range of interfaces. The IP MTU is the size of the largest IP packet that can be transmitted on the interface without fragmentation. Forwarded packets are dropped if they exceed the IP MTU of the outgoing interface.

Packets originated on the router, such as OSPF packets, may be fragmented by the IP stack.

OSPF advertises the IP MTU in the Database Description packets it sends to its neighbors during database exchange. If two OSPF neighbors advertise different IP MTUs, they will not form an adjacency. (unless OSPF has been instructed to ignore differences in IP MTU with the ip ospf mtu-ignore command.)

**Format**

```
ip mtu <68-9394>
no ip mtu
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;68-9394&gt;</td>
<td>The IP MTU on a routing interface. The range is 68 bytes to the &lt;Interface MTU value-18&gt; bytes.</td>
</tr>
</tbody>
</table>

**Default**  The default value is 1500.

**Mode**  Interface Config
6.2.2.13.  **ip unnumbered gratuitous-arp accept**

This command enables the configuration of static interface routes to the unnumbered peer dynamically on receiving gratuitous ARP.

**Format**

```
ip unnumbered gratuitous-arp accept
no ip unnumbered gratuitous-arp accept
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>no</strong></td>
<td>Disable interface route configuration on receiving gratuitous ARP.</td>
</tr>
</tbody>
</table>

**Default** Interface route installation for receiving gratuitous ARP is enabled by default.

**Mode** Interface Config

6.2.2.14.  **ip unnumbered loopback**

This command identifies unnumbered interfaces and specifies the numbered interface providing the borrowed address.

**Format**

```
ip unnumbered loopback <0-63>
no ip unnumbered
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;0-63&gt;</code></td>
<td>The loopback interface number. The loopback interface provides the borrowed address and cannot be unnumbered.</td>
</tr>
<tr>
<td><strong>no</strong></td>
<td>Removes the unnumbered configuration.</td>
</tr>
</tbody>
</table>

**Default** Interface are numbered by default.

**Mode** Interface Config

6.2.2.15.  **encapsulation**

This command configures the link layer encapsulation type for the packet.

**Format**

```
encapsulation {ethernet | snap}
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ethernet</strong></td>
<td>The link layer encapsulation type is ethernet.</td>
</tr>
</tbody>
</table>
snap  The link layer encapsulation type is SNAP.

**Default**  The default value is ethernet.

**Mode**  Interface Config

**Restrictions**  Routed frames are always Ethernet encapsulated when a frame is routed to a VLAN.

### 6.2.2.16. fpti

Use this command to enable FPTI mode either globally (in Global Config mode) or for a specific interface (in Interface Config mode).

**Format**  

```
 fpti
 no fpti
```

**Default**  Enabled

**Mode**  

- Global Config
- Interface Config
6.3. Open Shortest Path First (OSPF) Commands

6.3.1. Show commands

6.3.1.1. show ip ospf

This command displays information relevant to the OSPF router.

Format  
```
show ip ospf [vrf <vrf-name>]
```

Default  None

Mode  Privileged Exec

Display Message

⚠ Some of the information below displays only if you enable OSPF and configure certain features.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router ID</td>
<td>A 32-bit integer in dotted decimal format identifying the router, about which information is displayed. This is a configured value.</td>
</tr>
<tr>
<td>OSPF Admin Mode</td>
<td>Shows whether the administrative mode of OSPF in the router is enabled or disabled. This is a configured value.</td>
</tr>
<tr>
<td>RFC 1583 Compatibility</td>
<td>Indicates whether 1583 compatibility is enabled or disabled. This is a configured value.</td>
</tr>
<tr>
<td>External LSDB Limit</td>
<td>The maximum number of non-default AS-external-LSA (link state advertisement) entries that can be stored in the link-state database.</td>
</tr>
<tr>
<td>Exit Overflow Interval</td>
<td>The number of seconds that, after entering overflow state, a router will attempt to leave overflow state.</td>
</tr>
<tr>
<td>SPF Delay Time</td>
<td>The number of seconds between two subsequent changes of LSAs, during which time the routing table calculation is delayed.</td>
</tr>
<tr>
<td>SPF Hold Time</td>
<td>The number of seconds between two consecutive spf calculations.</td>
</tr>
<tr>
<td>Flood Pacing Interval</td>
<td>The average time, in milliseconds, between LS Update packet transmissions on an interface. This is the value configured with the timers pacing flood command.</td>
</tr>
<tr>
<td>LSA Refresh Group Pacing Time</td>
<td>The size of the LSA refresh group window, in seconds. This is the value configured with the timers pacing lsa-group command.</td>
</tr>
<tr>
<td>Opaque Capability</td>
<td>Shows whether the router is capable of sending Opaque LSAs. This is a configured value.</td>
</tr>
<tr>
<td>Autocost Ref BW</td>
<td>Shows the value of auto-cost reference bandwidth configured on the router.</td>
</tr>
<tr>
<td><strong>Default Passive Setting</strong></td>
<td>Shows whether the interfaces are passive by default.</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td><strong>Prefix Suppression</strong></td>
<td>Whether the prefix-suppression is enabled or disabled.</td>
</tr>
<tr>
<td><strong>Maximum Paths</strong></td>
<td>The maximum number of paths that OSPF can report for a given destination.</td>
</tr>
<tr>
<td><strong>Maximum Routes</strong></td>
<td>The number of maximum IPv4 routes in a VRF.</td>
</tr>
<tr>
<td><strong>Default Metric</strong></td>
<td>Default value for redistributed routes.</td>
</tr>
<tr>
<td><strong>Stub Router Configuration</strong></td>
<td>One of Always, Startup, or None.</td>
</tr>
<tr>
<td><strong>Stub Router Startup Time</strong></td>
<td>Configured value in seconds. This row is only listed if OSPF is configured to be a stub router at startup.</td>
</tr>
<tr>
<td><strong>Summary LSA Metric Override</strong></td>
<td>One of Enabled (met), Disabled, where met is the metric to be sent in summary LSAs when in stub router mode.</td>
</tr>
<tr>
<td><strong>BFD Enabled</strong></td>
<td>Displays the BFD status.</td>
</tr>
<tr>
<td><strong>Default Route Advertise</strong></td>
<td>Indicates whether the default routes received from other source protocols are advertised or not.</td>
</tr>
<tr>
<td><strong>Always</strong></td>
<td>Shows whether default routes are always advertised.</td>
</tr>
<tr>
<td><strong>Metric</strong></td>
<td>The metric of the routes being redistributed. If the metric is not configured, this field is blank.</td>
</tr>
<tr>
<td><strong>Metric Type</strong></td>
<td>Shows whether the routes are External Type 1 or External Type 2.</td>
</tr>
<tr>
<td><strong>Redistributing</strong></td>
<td>This field is a heading and appears only if you configure the system to take routes learned from a non-OSPF source and advertise them to its peers.</td>
</tr>
<tr>
<td><strong>Source</strong></td>
<td>Show source protocol/routes that are being redistributed. Possible values are static, connected, or BGP.</td>
</tr>
<tr>
<td><strong>Tag</strong></td>
<td>The decimal value attached to each external route.</td>
</tr>
<tr>
<td><strong>Subnets</strong></td>
<td>For redistributing routes into OSPF, the scope of redistribution for the specified protocol.</td>
</tr>
<tr>
<td><strong>Distribute-List</strong></td>
<td>The access list used to filter redistributed routes.</td>
</tr>
<tr>
<td><strong>Number of Active Areas</strong></td>
<td>The number of OSPF areas to which the router is attached on interfaces that are up.</td>
</tr>
<tr>
<td><strong>ABR Status</strong></td>
<td>Shows whether the router is an OSPF Area Border Router.</td>
</tr>
<tr>
<td><strong>ASBR Status</strong></td>
<td>Reflects whether the ASBR mode is enabled or disabled. Enable implies that the router is an autonomous system border router. The router automatically becomes an ASBR when it is configured to redistribute routes learnt from other protocols. The possible values for the ASBR status is enabled (if the router is enabled) or disabled.</td>
</tr>
</tbody>
</table>
configured to redistribute routes learned by other protocols) or disabled (if the router is not configured for the same).

<table>
<thead>
<tr>
<th><strong>Stub Router Status</strong></th>
<th>When OSPF runs out of resources to store the entire link state database, or any other state information, OSPF goes into stub router mode. As a stub router, OSPF re-originates its own router LSAs, setting the cost of all non-stub interfaces to infinity. To restore OSPF to normal operation, disable and re-enable OSPF. One of Active, Inactive.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Stub Router Reason</strong></td>
<td>One of Configured, Startup, or Resource Limitation. This row is only listed if stub router is active.</td>
</tr>
<tr>
<td><strong>Stub Router Startup Time Remaining</strong></td>
<td>The remaining time, in seconds, until OSPF exists stub router mode. This row is only listed if OSPF is in startup stub router mode.</td>
</tr>
<tr>
<td><strong>Stub Router Duration</strong></td>
<td>The time elapsed since the router last entered the stub router mode. The row is only listed if stub router is active and the router entered the stub mode because of a resource limitation. The duration is displayed in DD:HH:MM:SS format.</td>
</tr>
<tr>
<td><strong>External LSDB Overflow</strong></td>
<td>When the number of non-default external LSAs exceeds the configured limit, External LSDB Limit, OSPF goes into LSDB overflow state. In this state, OSPF withdraws all of its self-originated non-default external LSAs. After the Exit Overflow Interval, OSPF leaves the overflow state, if the number of external LSAs has been reduced.</td>
</tr>
<tr>
<td><strong>External LSA Count</strong></td>
<td>The number of external (LS type 5) link-state advertisements in the link-state database.</td>
</tr>
<tr>
<td><strong>External LSA Checksum</strong></td>
<td>The sum of the LS checksums of external link-state advertisements contained in the link-state database.</td>
</tr>
<tr>
<td><strong>AS_OPAQUE LSA Count</strong></td>
<td>Shows the number of AS Opaque LSAs in the link-state database.</td>
</tr>
<tr>
<td><strong>AS_OPAQUE LSA Checksum</strong></td>
<td>Shows the sum of the LS Checksums of AS Opaque LSAs contained in the link-state database.</td>
</tr>
<tr>
<td><strong>New LSAs Originated</strong></td>
<td>The number of new link-state advertisements that have been originated.</td>
</tr>
<tr>
<td><strong>LSAs Received</strong></td>
<td>The number of link-state advertisements received determined to be new instantiations.</td>
</tr>
<tr>
<td><strong>LSA Count</strong></td>
<td>The total number of link state advertisements currently in the link state database.</td>
</tr>
<tr>
<td><strong>Maximum Number of LSAs</strong></td>
<td>The maximum number of LSAs that OSPF can store.</td>
</tr>
<tr>
<td><strong>LSA High Water Mark</strong></td>
<td>The maximum size of the link state database since the system started.</td>
</tr>
<tr>
<td><strong>AS Scope LSA Flood List Length</strong></td>
<td>Length of global flood list for LSAs with AS scope.</td>
</tr>
<tr>
<td><strong>Retransmit List Entries</strong></td>
<td>The total number of LSAs waiting to be acknowledged by all neighbors. An LSA may be pending acknowledgment from more than one neighbor.</td>
</tr>
</tbody>
</table>
6.3.1.2. show ip ospf abr

This command displays the internal OSPF routing table entries to Area Border Routers (ABR). This command takes no options.

Format  show ip ospf abr [vrf <vrf-name>]

Default  None

Mode  Privileged EXEC
       User EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>The type of the route to the destination. It can be either:</td>
</tr>
<tr>
<td>intra</td>
<td>Intra-area route</td>
</tr>
<tr>
<td>inter</td>
<td>Inter-area route</td>
</tr>
<tr>
<td>Router ID</td>
<td>Router ID of the destination.</td>
</tr>
<tr>
<td>Cost</td>
<td>Cost of using this route.</td>
</tr>
<tr>
<td>Area ID</td>
<td>The area ID of the area from which this route is learned.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>Next hop toward the destination.</td>
</tr>
<tr>
<td>Next Hop Intf</td>
<td>The outgoing router interface to use when forwarding traffic to the next hop.</td>
</tr>
</tbody>
</table>
6.3.1.3. show ip ospf area

This command displays information about the area. The <areaid> identifies the OSPF area that is being displayed.

Format  show ip ospf area <areaid> [vrf <vrf-name>]

Default  None

Mode  Privileged EXEC
      User EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AreaID</td>
<td>The area id of the requested OSPF area.</td>
</tr>
<tr>
<td>External Routing</td>
<td>A number representing the external routing capabilities for this area.</td>
</tr>
<tr>
<td>SPF Runs</td>
<td>The number of times that the intra-area route table has been calculated using this area's link-state database.</td>
</tr>
<tr>
<td>Area Border Router Count</td>
<td>The total number of area border routers reachable within this area.</td>
</tr>
<tr>
<td>Area LSA Count</td>
<td>Total number of link-state advertisements in this area's link-state database, excluding AS External LSA’s.</td>
</tr>
<tr>
<td>Area LSA Checksum</td>
<td>A number representing the Area LSA Checksum for the specified AreaID excluding the external (LS type 5) link-state advertisements.</td>
</tr>
<tr>
<td>Flood List Length</td>
<td>The length of the area's LSA flood list.</td>
</tr>
<tr>
<td>Import Summary LSAs</td>
<td>Shows whether summary LSAs are imported.</td>
</tr>
<tr>
<td>Stub Area Metric Value</td>
<td>The metric value of the stub area.</td>
</tr>
</tbody>
</table>

The following OSPF NSSA specific information displays only if the area is configured as an NSSA:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Import Summary LSAs</td>
<td>Shows whether to import summary LSAs into the NSSA.</td>
</tr>
<tr>
<td>Redistribute into NSSA</td>
<td>Shows whether to redistribute information into the NSSA.</td>
</tr>
<tr>
<td>Default Information</td>
<td>Shows whether to advertise a default route into the NSSA.</td>
</tr>
<tr>
<td>Originate</td>
<td></td>
</tr>
<tr>
<td>Default Metric</td>
<td>The metric value for the default route advertised into the NSSA.</td>
</tr>
</tbody>
</table>
6.3.1.4. show ip ospf asbr

This command displays the internal OSPF routing table entries to Autonomous System Boundary Routers (ASBR). This command takes no options.

**Format**
show ip ospf asbr [vrf <vrf-name>]

**Default**
None

**Mode**
Privileged EXEC
User EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Type</strong></td>
<td>The type of the route to the destination. It can be one of the following values:</td>
</tr>
<tr>
<td></td>
<td>intra — Intra-area route</td>
</tr>
<tr>
<td></td>
<td>inter — Inter-area route</td>
</tr>
<tr>
<td><strong>Router ID</strong></td>
<td>Router ID of the destination.</td>
</tr>
<tr>
<td><strong>Cost</strong></td>
<td>Cost of using this route.</td>
</tr>
<tr>
<td><strong>Area ID</strong></td>
<td>The area ID of the area from which this route is learned.</td>
</tr>
<tr>
<td><strong>Next Hop</strong></td>
<td>Next hop toward the destination.</td>
</tr>
<tr>
<td><strong>Next Hop Intf</strong></td>
<td>The outgoing router interface to use when forwarding traffic to the next hop.</td>
</tr>
</tbody>
</table>

### Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf-name</td>
<td>Specify the virtual router for which to display information</td>
</tr>
<tr>
<td>adv-router</td>
<td>Display the LSAs that are restricted by the advertising router. To specify a router, enter the IP address of the router.</td>
</tr>
<tr>
<td>asbr-summary</td>
<td>Use asbr-summary to show the autonomous system boundary router (ASBR) summary LSAs.</td>
</tr>
<tr>
<td>external</td>
<td>Use external to display the external LSAs.</td>
</tr>
<tr>
<td>network</td>
<td>Use network to display the network LSAs.</td>
</tr>
<tr>
<td>nssa-external</td>
<td>Use nssa-external to display NSSA external LSAs.</td>
</tr>
<tr>
<td>opaque-area</td>
<td>Use opaque-area to display area opaque LSAs.</td>
</tr>
<tr>
<td>opaque-as</td>
<td>Use opaque-as to display AS opaque LSAs.</td>
</tr>
<tr>
<td>opaque-link</td>
<td>Use opaque-link to display link opaque LSAs.</td>
</tr>
<tr>
<td>router</td>
<td>Use router to display router LSAs.</td>
</tr>
<tr>
<td>summary</td>
<td>Use summary to show the LSA database summary information.</td>
</tr>
<tr>
<td>lsid</td>
<td>Use &lt;lsid&gt; to specify the link state ID (LSID). The value of &lt;lsid&gt; can be an IP address or an integer in the range of 0-4294967295.</td>
</tr>
<tr>
<td>adv-router</td>
<td>Use adv-router to show the LSAs that are restricted by the advertising router.</td>
</tr>
<tr>
<td>self-originate</td>
<td>Use self-originate to display the LSAs in that are self originated.</td>
</tr>
</tbody>
</table>

### Default

None

### Mode

- Privileged EXEC
- User EXEC

### Display Message

The information below is only displayed if OSPF is enabled.

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Links Id</td>
<td>A number that uniquely identifies an LSA that a router originates from all other self originated LSAs of the same LS type.</td>
</tr>
</tbody>
</table>
6.3.1.6. show ip ospf database database-summary

Use this command to display the number of each type of LSA in the database for each area and for the router. The command also displays the total number of LSAs in the database.

**Format**

```
show ip ospf database database-summary
```

**Default**

None

**Mode**

Privileged EXEC

User EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>Total number of router LSAs in the OSPF link state database.</td>
</tr>
<tr>
<td>Network</td>
<td>Total number of network LSAs in the OSPF link state database.</td>
</tr>
<tr>
<td>Summary Net</td>
<td>Total number of summary network LSAs in the database.</td>
</tr>
<tr>
<td>Summary ASBR</td>
<td>Number of summary ASBR LSAs in the database.</td>
</tr>
<tr>
<td>Type-7 Ext</td>
<td>Total number of Type-7 external LSAs in the database.</td>
</tr>
<tr>
<td>Opaque Link</td>
<td>Number of opaque link LSAs in the database.</td>
</tr>
<tr>
<td>Opaque Area</td>
<td>Number of opaque area LSAs in the database.</td>
</tr>
<tr>
<td>Type-5 Ext</td>
<td>Total number of Type-5 external LSAs in the database.</td>
</tr>
<tr>
<td>Self-Originated Type-5 Ext</td>
<td>Total number of self originated Type-5 external LSAs in the database.</td>
</tr>
<tr>
<td>Subtotal</td>
<td>Number of entries for the identified area.</td>
</tr>
<tr>
<td>Opaque AS</td>
<td>Number of opaque AS LSAs in the database.</td>
</tr>
</tbody>
</table>
6.3.1.7. show ip ospf interface

This command displays the OSPF information for the specific interface.

Format
show ip ospf interface {<slot/port> | loopback <loopback-id> | vlan <vlan-id>}

Default
None

Mode
Privileged EXEC
User EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>The IP address for the specified interface.</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>A mask of the network and host portion of the IP address for the OSPF interface.</td>
</tr>
<tr>
<td>Secondary IP Address(es)</td>
<td>The secondary IP addresses if any are configured on the interface.</td>
</tr>
<tr>
<td>OSPF Admin Mode</td>
<td>States whether OSPF is enabled or disabled on a router interface.</td>
</tr>
<tr>
<td>OSPF Area ID</td>
<td>The OSPF Area ID for the specified interface.</td>
</tr>
<tr>
<td>OSPF Network Type</td>
<td>The type of network on this interface that the OSPF is running on.</td>
</tr>
<tr>
<td>Router Priority</td>
<td>A number representing the OSPF Priority for the specified interface.</td>
</tr>
<tr>
<td>Retransmit Interval</td>
<td>A number representing the OSPF Retransmit Interval for the specified interface.</td>
</tr>
<tr>
<td>Hello Interval</td>
<td>A number representing the OSPF Hello Interval for the specified interface.</td>
</tr>
<tr>
<td>Dead Interval</td>
<td>A number representing the OSPF Dead Interval for the specified interface.</td>
</tr>
<tr>
<td>LSA Ack Interval</td>
<td>A number representing the OSPF LSA Acknowledgment Interval for the specified interface.</td>
</tr>
<tr>
<td>Transit Delay</td>
<td>A number representing the OSPF Transit Delay for the specified interface.</td>
</tr>
<tr>
<td>Authentication Type</td>
<td>The OSPF Authentication Type for the specified interface are: none, simple, and encrypt.</td>
</tr>
<tr>
<td>Metric Cost</td>
<td>The cost of the OSPF interface.</td>
</tr>
<tr>
<td>Prefix Suppression</td>
<td>Displays whether prefix suppression is enabled, disabled, or not configured on the interface.</td>
</tr>
<tr>
<td>Passive Status</td>
<td>Shows whether the interface is passive or not.</td>
</tr>
</tbody>
</table>
The information below is displayed only if OSPF is enabled.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>The OSPF Interface States are: down, loopback, waiting, point-to-point, designated router, and backup designated router.</td>
</tr>
<tr>
<td>Designated Router</td>
<td>The router ID representing the designated router.</td>
</tr>
<tr>
<td>Backup Designated Router</td>
<td>The router ID representing the backup designated router.</td>
</tr>
<tr>
<td>Number of Link Events</td>
<td>The number of link events.</td>
</tr>
<tr>
<td>Local Link LSAs</td>
<td>The number of Link Local Opaque LSAs in the link-state database.</td>
</tr>
<tr>
<td>Local Link LSA Checksum</td>
<td>The sum of LS Checksums of Link Local Opaque LSAs in the link-state database.</td>
</tr>
<tr>
<td>Prefix Suppression</td>
<td>Displays whether prefix-suppression is enabled, disabled, or unconfigured on the given interface.</td>
</tr>
</tbody>
</table>

### 6.3.1.8. show ip ospf interface brief

This command displays brief information for the IFO object or virtual interface tables.

**Format**  
show ip ospf interface brief [vrf <vrf-name>]

**Default**  
None

**Mode**  
Privileged EXEC  
User EXEC

**Display Messages**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Valid slot and port number separated by a forward slash.</td>
</tr>
<tr>
<td>OSPF Admin Mode</td>
<td>States whether OSPF is enabled or disabled on a router interface.</td>
</tr>
<tr>
<td>OSPF Area ID</td>
<td>The OSPF Area ID for the specified interface.</td>
</tr>
</tbody>
</table>
### 6.3.1.9. show ip ospf interface stats

This command displays the statistics for a specific interface. The information below will only be displayed if OSPF is enabled.

**Format**

```
show ip ospf interface stats {<slot/port> | loopback <loopback-id> | vlan <vlan-id>}
```

**Default**

None

**Mode**

- Privileged EXEC
- User EXEC

**Display Messages**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPF Area ID</td>
<td>The area id of this OSPF interface.</td>
</tr>
<tr>
<td>Area Border Router Count</td>
<td>The total number of area border routers reachable within this area. This is initially zero, and is calculated in each SPF pass.</td>
</tr>
<tr>
<td>AS Border Router Count</td>
<td>The total number of Autonomous System border routers reachable within this area.</td>
</tr>
<tr>
<td>Area LSA Count</td>
<td>The total number of link-state advertisements in this area's link-state database, excluding AS External LSAs.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address associated with this OSPF interface.</td>
</tr>
<tr>
<td>OSPF Interface Events</td>
<td>The number of times the specified OSPF interface has changed its state, or an error has occurred.</td>
</tr>
<tr>
<td>Virtual Events</td>
<td>The number of state changes or errors that occurred on this virtual link.</td>
</tr>
<tr>
<td>Neighbor Events</td>
<td>The number of times this neighbor relationship has changed state, or an error has occurred.</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Sent Packets</td>
<td>The number of OSPF packets transmitted on the interface.</td>
</tr>
<tr>
<td>Received Packets</td>
<td>The number of valid OSPF packets received on the interface.</td>
</tr>
<tr>
<td>Discards</td>
<td>The number of received OSPF packets discarded because of an error in the packet or an error in processing the packet.</td>
</tr>
<tr>
<td>Bad Version</td>
<td>The number of received OSPF packets whose version field in the OSPF header does not match the version of the OSPF process handling the packet.</td>
</tr>
<tr>
<td>Source Not On Local Subnet</td>
<td>The number of received packets discarded because the source IP address is not within a subnet configured on a local interface.</td>
</tr>
<tr>
<td>Virtual Link Not Found</td>
<td>The number of received OSPF packets discarded where the ingress interface is in a non-backbone area and the OSPF header identifies the packet as belonging to the backbone, but OSPF does not have a virtual link to the packet’s sender.</td>
</tr>
<tr>
<td>Area Mismatch</td>
<td>The number of OSPF packets discarded because the area ID in the OSPF header is not the area ID configured on the ingress interface.</td>
</tr>
<tr>
<td>Invalid Destination Address</td>
<td>The number of OSPF packets discarded because the packet’s destination IP address is not the address of the ingress interface and is not the AllDrRouters or AllSpfRouters multicast addresses.</td>
</tr>
<tr>
<td>Wrong Authentication Type</td>
<td>The number of packets discarded because the authentication type specified in the OSPF header does not match the authentication type configured on the ingress interface.</td>
</tr>
<tr>
<td>Authentication Failure</td>
<td>The number of OSPF packets dropped because the sender is not an existing neighbor or the sender’s IP address does not match the previously recorded IP address for that neighbor.</td>
</tr>
<tr>
<td>No Neighbor at Source Address</td>
<td>The number of OSPF packets dropped because the sender is not an existing neighbor or the sender’s address does not match the previously recorded IP address for that neighbor.</td>
</tr>
<tr>
<td>Invalid OSPF Packet Type</td>
<td>The number of OSPF packets discarded because the packet type field in the OSPF header is not a known type.</td>
</tr>
<tr>
<td>Hellos Ignored</td>
<td>The number of received Hello packets that were ignored by this router from the new neighbors after the limit has been reached for the number of neighbors on an interface or on the system as a whole.</td>
</tr>
</tbody>
</table>

**6.3.1.10. show ip ospf neighbor**

This command displays information about OSPF neighbors. If you do not specify a neighbor IP address, the output displays summary information in a table. If you specify an interface or tunnel, only the information for that interface or tunnel displays. The `<ip-address>` is the IP address of the neighbor, and when you specify this,
detailed information about the neighbor displays. The information below only displays if OSPF is enabled and the interface has a neighbor.

**Format**

```
show ip ospf neighbor [vrf <vrf-name>] [interface {<slot/port> | vlan <vlan-id>}] [<ip-address>]
```

**Default**

None

**Mode**

Privileged EXEC

User EXEC

**Display Message**

If you do not specify an IP address, a table with the following columns displays for all neighbors. If you specify an interface, only the information for that interface displays:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router ID</td>
<td>The 4-digit dotted-decimal number of the neighbor router.</td>
</tr>
<tr>
<td>Priority</td>
<td>The OSPF priority for the specified interface. The priority of an interface is a priority integer from 0 to 255. A value of '0' indicates that the router is not eligible to become the designated router on this network.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address of the neighbor.</td>
</tr>
<tr>
<td>Interface</td>
<td>The interface of the local router in slot/port format.</td>
</tr>
</tbody>
</table>

The state of the neighboring routers. Possible values are:

- **Down** - initial state of the neighbor conversation - no recent information has been received from the neighbor.
- **Attempt** - no recent information has been received from the neighbor but a more concerted effort should be made to contact the neighbor.
- **Init** - an Hello packet has recently been seen from the neighbor, but bidirectional communication has not yet been established.
- **2 way** - communication between the two routers is bidirectional.
- **Exchange start** - the first step in creating an adjacency between the two neighboring routers, the goal is to decide which router is the master and to decide upon the initial DD sequence number.
- **Exchange** - the router is describing its entire link state database by sending Database Description packets to the neighbor.
- **Loading** - Link State Request packets are sent to the neighbor asking for the more recent LSAs that have been discovered (but not yet received) in the Exchange state.
- **Full** - the neighboring routers are fully adjacent and they will now appear in router-LSAs and network-LSAs.
If you specify an IP address for the neighbor router, the following fields display:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Valid slot and port number separated by a forward slash.</td>
</tr>
<tr>
<td>Neighbor IP Address</td>
<td>The IP address of the neighbor router.</td>
</tr>
<tr>
<td>Interface Index</td>
<td>The interface ID of the neighbor router.</td>
</tr>
<tr>
<td>Area ID</td>
<td>The area ID of the OSPF area associated with the interface.</td>
</tr>
<tr>
<td>Options</td>
<td>An integer value that indicates the optional OSPF capabilities supported by the neighbor. The neighbor's optional OSPF capabilities are also listed in its Hello packets. This enables received Hello Packets to be rejected (i.e., neighbor relationships will not even start to form) if there is a mismatch in certain crucial OSPF capabilities.</td>
</tr>
<tr>
<td>Router Priority</td>
<td>The OSPF priority for the specified interface. The priority of an interface is a priority integer from 0 to 255. A value of '0' indicates that the router is not eligible to become the designated router on this network.</td>
</tr>
<tr>
<td>Dead Timer Due</td>
<td>The amount of time, in seconds, to wait before the router assumes the neighbor is unreachable.</td>
</tr>
<tr>
<td>Up Time</td>
<td>Neighbor uptime; how long since the adjacency last reached the Full state.</td>
</tr>
<tr>
<td>State</td>
<td>The state of the neighboring routers.</td>
</tr>
<tr>
<td>Events</td>
<td>The number of times this neighbor relationship has changed state, or an error has occurred.</td>
</tr>
<tr>
<td>Retransmitted LSAs</td>
<td>The number of LSAs retransmitted to this neighbor.</td>
</tr>
<tr>
<td>Retransmission Queue Length</td>
<td>An integer representing the current length of the retransmission queue of the specified neighbor router ID of the specified interface.</td>
</tr>
</tbody>
</table>

6.3.1.11. **show ip ospf range**

This command displays information about the area ranges for the specified <areaid>. The <areaid> identifies the OSPF area whose ranges are being displayed.

**Format**

```
show ip ospf range <areaid> [vrf <vrf-name>]
```  

**Default**

None
6.3.1.12. show ip ospf statistics

This command displays information about recent Shortest Path First (SPF) calculations. The SPF is the OSPF routing table calculation. The output lists the number of times the SPF has run for each OSPF area. A table follows this information. For each of the 15 most recent SPF runs, the table lists how long ago the SPF ran, how long the SPF took, and the reasons why the SPF was scheduled.

**Format**

```
show ip ospf statistics [vrf <vrf-name>]
```

**Default** None

**Mode** Privileged EXEC

User EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta T</td>
<td>The time since the SPF ran last time. The time is in the format hh:mm:ss, giving the hours, minutes, and seconds.</td>
</tr>
<tr>
<td>Intra</td>
<td>The time taken to compute the intra-area routes, in milliseconds.</td>
</tr>
<tr>
<td>Summ</td>
<td>The time taken to compute the inter-area routes, in milliseconds.</td>
</tr>
<tr>
<td>Ext</td>
<td>The time taken to compute the external routes, in milliseconds.</td>
</tr>
<tr>
<td>SPF Total</td>
<td>The total time to compute the routes, in milliseconds. The total may exceed the sum of the Intra, Summ, and Ext times.</td>
</tr>
</tbody>
</table>
### 6.3.1.13. `show ip ospf stub table`

This command displays the OSPF stub table. The information below will only be displayed if OSPF is initialized on the switch.

**Format**

```
show ip ospf stub table [vrf <vrf-name>]
```

**Default**

None

**Mode**

- Privileged EXEC
- User EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area ID</td>
<td>A 32-bit identifier for the created stub area.</td>
</tr>
<tr>
<td>Type of Service</td>
<td>The type of service associated with the stub metric. only supports Normal TOS.</td>
</tr>
<tr>
<td>Metric Val</td>
<td>The metric value is applied based on the TOS. It defaults to the least metric of the type of service among the interfaces to other areas. The OSPF cost for a route is a function of the metric value.</td>
</tr>
<tr>
<td>Import Summary LSA</td>
<td>Controls the import of summary LSAs into stub areas.</td>
</tr>
</tbody>
</table>

### 6.3.1.14. `show ip ospf traffic`

This command displays the OSPFv2 packets, the LSA statistics, and the OSPFv2 message queue statistics. Packet statistics count packets and LSAs since OSPFv2 counters were cleared last time (using the command `clear ip ospf counters`).

**Format**

```
show ip ospf traffic [vrf <vrf-name>]
```
6.3.1.15. **show ip ospf virtual-link**

This command displays the OSPF Virtual Interface information for a specific area and neighbor. The <areaid> parameter identifies the area and the <neighbor> parameter identifies the neighbor’s Router ID.

**Format**

```
show ip ospf virtual-link [vrf <vrf-name>] <areaid> <neighbor>
```

**Default**

None

**Mode**

- Privileged EXEC
- User EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Area ID</strong></td>
<td>The area ID of the requested OSPF area.</td>
</tr>
<tr>
<td><strong>Neighbor Router ID</strong></td>
<td>The input neighbor Router ID .</td>
</tr>
<tr>
<td><strong>Hello Interval</strong></td>
<td>The configured hello interval for the OSPF virtual interface.</td>
</tr>
<tr>
<td><strong>Dead Interval</strong></td>
<td>The configured dead interval for the OSPF virtual interface.</td>
</tr>
</tbody>
</table>
6.3.1.16.  **show ip ospf virtual-link brief**

This command displays the OSPF Virtual Interface information for all areas in the system.

<table>
<thead>
<tr>
<th><strong>Format</strong></th>
<th>show ip ospf virtual-link [vrf &lt;vrf-name&gt;] brief</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Default</strong></td>
<td>None</td>
</tr>
<tr>
<td><strong>Mode</strong></td>
<td>Privileged EXEC</td>
</tr>
<tr>
<td></td>
<td>User EXEC</td>
</tr>
</tbody>
</table>

**Display Message**

<table>
<thead>
<tr>
<th><strong>Fields</strong></th>
<th><strong>Definition</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Area ID</td>
<td>The area ID of the requested OSPF area.</td>
</tr>
<tr>
<td>Neighbor</td>
<td>The neighbor interface of the OSPF virtual interface.</td>
</tr>
<tr>
<td>Hello Interval</td>
<td>The configured hello interval for the OSPF virtual interface.</td>
</tr>
<tr>
<td>Dead Interval</td>
<td>The configured dead interval for the OSPF virtual interface.</td>
</tr>
<tr>
<td>Retransmit Interval</td>
<td>The configured retransmit interval for the OSPF virtual interface.</td>
</tr>
<tr>
<td>Transit Delay</td>
<td>The configured transit delay for the OSPF virtual interface.</td>
</tr>
</tbody>
</table>

6.3.1.17.  **show ip ospf lsa-group**

This command displays the number of self-originated LSAs within each LSA group.

<table>
<thead>
<tr>
<th><strong>Format</strong></th>
<th>show ip ospf lsa-group [vrf vrf-name]</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Default</strong></td>
<td>None</td>
</tr>
</tbody>
</table>
Mode

Privileged EXEC
User EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total self-originated LSAs</td>
<td>The number of LSAs originated from self.</td>
</tr>
<tr>
<td>Average LSAs per group</td>
<td>The average number of self-originated LSAs per group.</td>
</tr>
<tr>
<td>Pacing group limit</td>
<td>The maximum number of self-originated LSAs in one LSA group. If the number of LSAs in a group exceeds this limit, OSPF redistributes LSAs throughout the refresh interval to achieve better balance.</td>
</tr>
<tr>
<td>Number of self-originated LSAs within each LSA group</td>
<td>The detail number of self-originated LSAs.</td>
</tr>
<tr>
<td>Group Start Age</td>
<td>The start time of LSA Group aged.</td>
</tr>
<tr>
<td>Group End Age</td>
<td>The end time of LSA Group aged.</td>
</tr>
<tr>
<td>Count</td>
<td>The number of LSA Group aged.</td>
</tr>
</tbody>
</table>

6.3.2. Configuration commands

6.3.2.1. router ospf

Use this command to enter Router OSPF mode.

Format router ospf [vrf]

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;vrf-name&gt;</td>
<td>The virtual router on which to enable OSPF routing</td>
</tr>
</tbody>
</table>

Default None

Mode Global Config

6.3.2.2. enable

Use enable command resets the default administrative mode of OSPF in the router (active). no enable command sets the administrative mode of OSPF in the router to inactive.

Format enable
no enable
6.3.2.3. network area

Use `network area` command to enable OSPFv2 on an interface and set its area ID if the IP address of an interface is covered by this network command. Use `no network area` command to disable the OSPFv2 on a interface if the IP address of an interface was earlier covered by this network command.

**Format**

```
network <ip-address> <wildcard-mask> area <area-id>
no network <ip-address> <wildcard-mask> area <area-id>
```

**Default**

Disabled

**Mode**

Router OSPF Config

6.3.2.4. ip ospf area

Use `ip ospf area` command to enable OSPFv2 and set the area ID of an interface. The `<area-id>` is an IP address formatted as a 4-digit dotted-decimal number or a decimal value in the range of `<0-4294967295>`. This command supersedes the effects of the `network area` command. It can also be used to configure the advertiseability of the secondary addresses on this interface into the OSPFv2 domain. Use `no ip ospf area` command to disable OSPF on an interface.

**Format**

```
ip ospf area <area-id> [secondaries none]
no ip ospf area [secondaries none]
```

**Default**

Disable

**Mode**

Interface Config

6.3.2.5. 1583 compatibility

1583 compatibility mode is enabled by default. If all OSPF routers in the routing domain are capable of operating according to RFC 2328, OSPF 1583 compatibility mode should be disabled. `1583compatibility` command enables OSPF 1583 compatibility. `no 1583compatibility` command disables OSPF 1583 compatibility.

**Format**

```
1583compatibility
no 1583compatibility
```

**Default**

Enable

**Mode**

Router OSPF Config
6.3.2.6. area default-cost

This command configures the default cost for the stub area. You must specify the area ID and an integer value between 1-16777214.

Format area <areaid> default-cost <1-16777214>

Default None

Mode Router OSPF Config

6.3.2.7. area nssa

area nssa command configures the specified areaid to function as an NSSA. no area nssa command disables nssa from the specified area id.

Format area <areaid> nssa
    no area <areaid> nssa

Default None

Mode Router OSPF Config

6.3.2.8. area nssa default-into-originate

area nssa default-info-originate command configures the metric value and type for the default route advertised into the NSSA. The optional metric parameter specifies the metric of the default route and is to be in a range of 1-16777214. If no metric is specified, the default value is ****. The metric type can be comparable (nssa-external 1) or non-comparable (nssa-external 2). This command disables the default route advertised into the NSSA. no area nssa default-info-originate command disables the default route advertised into the NSSA.

Format area <areaid> nssa default-info-originate [<metric>] [{comparable | noncomparable}]
    no area <areaid> nssa default-info-originate [<metric>] [{comparable | noncomparable}]

Default None

Mode Router OSPF Config

6.3.2.9. area nssa no-redistribute

area nssa no-redistribute command configures the NSSA Area Border router (ABR) so that learned external routes will not be redistributed to the NSSA. no area nssa no-redistribute command disables the NSSA ABR so that learned external routes are redistributed to the NSSA.
6.3.2.10. **area nssa no-summary**

The `area nssa no-summary` command configures the NSSA so that summary LSAs are not advertised into the NSSA. The `no area nssa no-summary` command disables nssa from the summary LSAs.

**Format**

```
area <areaid> nssa no-summary
no area <areaid> nssa no-summary
```

**Default** None

**Mode** Router OSPF Config

6.3.2.11. **area nssa translator-role**

The `area nssa translator-role` command configures the translator role of the NSSA. A value of `always` causes the router to assume the role of the translator the instant it becomes a border router and a value of `candidate` causes the router to participate in the translator election process when it attains border router status. The `no area nssa translator-role` command disables the nssa translator role from the specified area id.

**Format**

```
area <areaid> nssa translator-role {always | candidate}
no area <areaid> nssa translator-role {always | candidate}
```

**Default** None

**Mode** Router OSPF Config

6.3.2.12. **area nssa translator-stab-intv**

The `area nssa translator-stab-intv` command configures the translator `<stabilityinterval>` of the NSSA. The `<stabilityinterval>` is the period of time that an elected translator continues to perform its duties after it determines that its translator status has been deposed by another router. The `no area nssa translator-stab-intv` command disables the nssa translator’s `<stabilityinterval>` from the specified area id. The `<stabilityinterval>` range is from 0 to 3600.

**Format**

```
area <areaid> nssa translator-stab-intv <stabilityinterval>
no area <areaid> nssa translator-stab-intv <stabilityinterval>
```

**Default** None
6.3.2.13. area range

area range command configures a summary prefix that an area border router (ABR) advertises for a specified area.

Format: area <areaid> range <ipaddr> <subnetmask> {summarylink | nssaexternallink} [advertise [cost <0-16777215>] | not-advertise | [cost <0-16777215>]]

no area <areaid> range <ipaddr> <subnetmask> {summarylink | nssaexternallink} [advertise | not-advertise | cost]

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>areaid</td>
<td>The areaid identifier for the area whose networks are to be summarized.</td>
</tr>
<tr>
<td>ipaddr subnetmask</td>
<td>The summary prefix to be advised when the ABR computes a route to one or more networks within this prefix in this area.</td>
</tr>
<tr>
<td>summarylink</td>
<td>When this keyword is configured, the area range is used when summarizing prefixes advertised in type 3 summary LSAs.</td>
</tr>
<tr>
<td>nssaexternallink</td>
<td>When this keyword is configured, the area range is used when translating type 7 LSAs to type 5 LSAs.</td>
</tr>
<tr>
<td>advertise</td>
<td>When this keyword is configured, the summary prefix is advertised when the area range is active. This is the default action.</td>
</tr>
<tr>
<td>not-advertise</td>
<td>When this keyword is configured, neither the summary prefix nor the contained prefixes are advertised when the area range is active. When this not-advertise option is given, any static cost previously configured is removed from the system configuration.</td>
</tr>
<tr>
<td>cost</td>
<td>When this cost is configured, OSPF sets the metric field in the summary LSA to the configured value rather than setting the metric to the largest cost among the networks covered by the area range. If the cost is set to 16777215 for type 3 summarization, a type 3 summary LSA is not advertised but contained network are suppressed. This behavior is equivalent to specifying the not-advertise option. If the range is configured for type 7 to type 5 translation, a type 5 LSA is sent if the metric is set to 16777215; however, other routers will not compute a route from a type 5 LSA with this metric.</td>
</tr>
</tbody>
</table>

Default: None
6.3.2.14. area stub

The area stub command creates a stub area for the specified area ID. A stub area is characterized by the fact that AS External LSAs are not propagated into the area. Removing AS External LSAs and Summary LSAs can significantly reduce the link state database of routers within the stub area. The no area stub command deletes a stub area for the specified area ID.

Format
area <areaid> stub
  no area <areaid> stub

Default None
Mode Router OSPF Config

6.3.2.15. area stub no-summary

The area stub no-summary command configures the Summary LSA mode for the stub area identified by <areaid>. Use this command to prevent LSA Summaries from being sent. The no area stub no-summary command configures the default Summary LSA mode for the stub area identified by <areaid>.

Format
area <areaid> stub no-summary
  no area <areaid> stub no-summary

Default Disable
Mode Router OSPF Config

6.3.2.16. area virtual-link

The area virtual-link command creates the OSPF virtual interface for the specified <areaid> and <neighbor>. The <neighbor> parameter is the Router ID of the neighbor. The no area virtual-link command deletes the OSPF virtual interface from the given interface, identified by <areaid> and <neighbor>. The <neighbor> parameter is the Router ID of the neighbor.

Format
area <areaid> virtual-link <neighbor>
  no area <areaid> virtual-link <neighbor>

Default None
Mode Router OSPF Config

6.3.2.17. area virtual-link authentication

The area virtual-link authentication command configures the authentication type and key for the OSPF virtual interface identified by <areaid> and <neighbor> parameters. The <neighbor> parameter is the Router ID of the
neighbor. The value for <type> is either none, simple, or encrypt. The [key] is composed of standard displayable, non-control keystrokes from a standard 101/102-key keyboard. The authentication key must be 8 bytes or less if the authentication type is simple. If the type is encrypt, the key can be configured with plain-text up to 16 characters or configured in encrypted form with option 7. Unauthenticated interfaces do not need an authentication key. If the type is encrypt, a key id in the range of 0 and 255 must be specified. The default value for authentication type is none. Neither the default password key nor the default key id is configured.

The **no area virtual-link authentication** command configures the default authentication type for the OSPF virtual interface identified by <areaid> and <neighbor> parameters. The <neighbor> parameter is the Router ID of the neighbor.

**Format**

```
area <areaid> virtual-link <neighbor> authentication {none | {simple <key>} | {encrypt [7 <keyid>]})
```

```
no area <areaid> virtual-link <neighbor> authentication
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>encrypt</td>
<td>7 specifies the key in encrypted form.</td>
</tr>
<tr>
<td></td>
<td>The key must be in hexadecimal digits with a length of 32 characters.</td>
</tr>
</tbody>
</table>

**Default** None

**Mode** Router OSPF Config

### 6.3.2.18. area virtual-link dead-interval

**area virtual-link dead-interval** command configures the dead interval for the OSPF virtual interface on the virtual interface identified by <areaid> and <neighbor>. The <neighbor> parameter is the Router ID of the neighbor. The range for seconds is 1 to 65535. **no area virtual-link dead-interval** command configures the default dead interval for the OSPF virtual interface on the virtual interface identified by <areaid> and <neighbor>. The <neighbor> parameter is the Router ID of the neighbor.

**Format**

```
area <areaid> virtual-link <neighbor> dead-interval <seconds>
```

```
no area <areaid> virtual-link <neighbor> dead-interval
```

**Default** 40

**Mode** Router OSPF Config

### 6.3.2.19. area virtual-link hello-interval

**area virtual-link hello-interval** command configures the hello interval for the OSPF virtual interface on the virtual interface identified by <areaid> and <neighbor>. The <neighbor> parameter is the Router ID of the neighbor. The range for seconds is 1 to 65535. **no area virtual-link hello-interval** command configures the default hello interval for the OSPF virtual interface on the virtual interface identified by <areaid> and <neighbor>. The <neighbor> parameter is the Router ID of the neighbor.

**Format**

```
area <areaid> virtual-link <neighbor> hello-interval <seconds>
```
no area <areaid> virtual-link <neighbor> hello-interval

Default 10
Mode Router OSPF Config

6.3.2.20. area virtual-link retransmit-interval

area virtual-link retransmit-interval command configures the retransmit interval for the OSPF virtual interface on the virtual interface identified by <areaid> and <neighbor>. The <neighbor> parameter is the Router ID of the neighbor. The range for seconds is 0 to 3600. no area virtual-link retransmit-interval command configures the default retransmit interval for the OSPF virtual interface on the virtual interface identified by <areaid> and <neighbor>. The <neighbor> parameter is the Router ID of the neighbor.

Format  area <areaid> virtual-link <neighbor> retransmit-interval <seconds>
        no area <areaid> virtual-link <neighbor> retransmit-interval

Default 5
Mode Router OSPF Config

6.3.2.21. area virtual-link transmit-delay

area virtual-link transmit-delay command configures the transmit delay for the OSPF virtual interface on the virtual interface identified by <areaid> and <neighbor>. The <neighbor> parameter is the Router ID of the neighbor. The range for seconds is 0 to 3600 (1 hour). no area virtual-link transmit-delay command resets the default transmit delay for the OSPF virtual interface to the default value.

Format  area <areaid> virtual-link <neighbor> transmit-delay <seconds>
        no area <areaid> virtual-link <neighbor> transmit-delay

Default 1
Mode Router OSPF Config

6.3.2.22. auto-cost reference-bandwidth

By default, OSPF computes the link cost of each interface from the interface bandwidth. Faster links have lower metrics, making them more attractive in route selection. The configuration parameters in the auto-cost reference bandwidth and bandwidth commands give you control over the default link cost. You can configure for OSPF an interface bandwidth that is independent of the actual link speed. A second configuration parameter allows you to control the ratio of interface bandwidth to link cost. The link cost is computed as the ratio of a reference bandwidth to the interface bandwidth (ref_bw /interface bandwidth), where interface bandwidth is defined by the bandwidth command. Because the default reference bandwidth is 100 Mbps, OSPF uses the same default link cost for all interfaces whose bandwidth is 100 Mbps or greater. Use the auto-cost command to change the reference bandwidth, specifying the reference bandwidth in megabits per second (Mbps). The
reference bandwidth range is 1-4294967 Mbps. The different reference bandwidth can be independently configured for OSPFv2 and OSPFv3.

Use the no auto-cost command to set the reference bandwidth to the default value.

Format auto-cost reference-bandwidth <1 to 4294967>
   no auto-cost reference-bandwidth
Default 100Mbps
Mode Router OSPF Config

6.3.2.23. bfd

This command configures BFD for all interfaces.

To reset BFD for interfaces to default, use the no form of this command.

Format bfd
   no bfd
Default Disable
Mode Router OSPFv2 Config

6.3.2.24. capability opaque

Use capability opaque command to enable Opaque Capability on the Router. The information contained in Opaque LSAs may be used directly by OSPF or indirectly by an application wishing to distribute information throughout the OSPF domain. Supports the storing and flooding of Opaque LSAs of different scopes. Use no capability opaque command to disable opaque capability on the router.

Format capability opaque
   no capability opaque
Default Disable
Mode Router OSPF Config

6.3.2.25. clear ip ospf

Use this command to disable and re-enable OSPF.

Format clear ip ospf [vrf <vrf-name>]

NETGEAR M4500 Series Switches CLI Command Reference Manual 694
6.3.2.26. **clear ip ospf configuration**

Use this command to reset the OSPF configuration to factory defaults.

**Format**
clear ip ospf configuration [vrf <vrf-name>]

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;vrf-name&gt;</td>
<td>The virtual router on which the OSPF is reset.</td>
</tr>
</tbody>
</table>

**Default** None

**Mode** Privileged Exec

6.3.2.27. **clear ip ospf counters**

Use this command to reset global and interface statistics.

**Format**
clear ip ospf counters [vrf <vrf-name>]

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;vrf-name&gt;</td>
<td>The virtual router on which the statistics of OSPF is reset</td>
</tr>
</tbody>
</table>

**Default** None

**Mode** Privileged Exec

6.3.2.28. **clear ip ospf neighbor**

Use this command to drop the adjacency with all OSPF neighbors. On each neighbor’s interface, send a one-way hello. Adjacencies may then be re-established. To drop all adjacencies with a specific router ID, specify the neighbor’s Router ID using the optional parameter [ipaddr].

**Format**
clear ip ospf neighbor [[vrf <vrf-name>] | <ipaddr>]

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;vrf-name&gt;</td>
<td>The virtual router on which the OSPF is disabled and re-enabled.</td>
</tr>
</tbody>
</table>

**Default** None

**Mode** Privileged Exec
### clear ip ospf neighbor interface

To drop adjacency with all neighbors on a specific interface, use the optional parameter [slot/port]. To drop adjacency with a specific router ID on a specific interface, use the optional parameter [ipaddr].

**Format**
```
clear ip ospf neighbor [vrf <vrf-name> | interface {<slot/port> | vlan <vlan-id>} | <ipaddr>]
```

**Fields**
<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;vrf-name&gt;</td>
<td>The virtual router on which the adjacency with OSPF neighbors are dropped.</td>
</tr>
</tbody>
</table>

**Default**  None

**Mode**  Privileged Exec

### clear ip ospf redistribution

Use this command to flush all self-originated external LSAs. Reapply the redistribution configuration and re-originate prefixes as necessary.

**Format**
```
clear ip ospf redistribution [vrf <vrf-name>]
```

**Fields**
<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;vrf-name&gt;</td>
<td>The virtual router on which the adjacency with OSPF neighbors are dropped.</td>
</tr>
</tbody>
</table>

**Default**  None

**Mode**  Privileged Exec
6.3.2.31. clear ip ospf stub-router

Use this command to exit the stub router mode.

**Format**  clear ip ospf stub-router [vrf <vrf-name>]

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;vrf-name&gt;</td>
<td>The virtual router on which the OSPF exits stub router mode.</td>
</tr>
</tbody>
</table>

**Default**  None

**Mode**  Privileged Exec

6.3.2.32. default-information originate

default-information originate command is used to control the advertisement of default routes.

**no default-information originate** command is used to control the advertisement of default routes.

**Format**  default-information originate [always] [metric <1-16777214>] [metric-type {1 | 2}]

**Format**  no default-information originate [metric] [metric-type]

**Default**  metric—unspecified

**Mode**  Router OSPF Config

6.3.2.33. default-metric

default-metric command is used to set a default for the metric of distributed routes.

**no default-metric** command is used to set a default for the metric of distributed routes.

**Format**  default-metric <1-16777214>

**Format**  no default-metric

**Default**  None

**Mode**  Router OSPF Config
6.3.2.34. distance ospf

distance ospf command sets the route preference value of OSPF in the router. Lower route preference values are preferred when determining the best route. The type of OSPF route can be intra, inter, or external. All the external type routes are given the same preference value. The range of <preference> value is 1 to 255. no distance ospf command sets the default route preference value of OSPF routes in the router. The type of OSPF can be intra, inter, or external. All the external type routes are given the same preference value.

Format
distance ospf {intra-area <1-255> | inter-area <1-255> | external <1-255>}
no distance ospf {intra-area | inter-area | external}

Default 110
Mode Router OSPF Config

6.3.2.35. distribute-list out

Use distribute-list out command to specify the access list to filter routes received from the source protocol.

no distribute-list out command to specify the access list to filter routes received from the source protocol.

Format
distribute-list <1-199> out {bgp | static | connected}
no distribute-list <1-199> out {bgp | static | connected}

Default None
Mode Router OSPF Config

6.3.2.36. exit-overflow-interval

exit-overflow-interval command configures the exit overflow interval for OSPF. It describes the number of seconds after entering overflow state that a router will wait before attempting to leave the overflow state. This allows the router to again originate non-default AS-external-LSAs. When set to 0, the router will not leave overflow state until restarted. The range for seconds is 0 to 2147483647 seconds. no exit-overflow-interval command configures the default exit overflow interval for OSPF.

Format exit-overflow-interval <seconds>
no exit-overflow-interval

Default 0
Mode Router OSPF Config
6.3.2.37.  external-lsdb-limit

The **external-lsdb-limit** command configures the external LSDB limit for OSPF. If the value is `-1`, then there is no limit. When the number of non-default AS-external-LSAs in a router's link-state database reaches the external LSDB limit, the router enters overflow state. The router never holds more than the external LSDB limit non-default AS-external-LSAs in its database. The external LSDB limit MUST be set identically in all routers attached to the OSPF backbone and/or any regular OSPF area. The range for limit is `-1` to `2147483647`. The **no external-lsdb-limit** command configures the default external LSDB limit for OSPF.

**Format**
```
external-lsdb-limit <limit>
no external-lsdb-limit
```

**Fields**
<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;limit&gt;</code></td>
</tr>
</tbody>
</table>

**Default** `-1`

**Mode** Router OSPF Config

6.3.2.38.  ip ospf authentication

The **ip ospf authentication** command sets the OSPF authentication type and key for the specified interface. The value of `<type>` is either none, simple or encrypt. The `<key>` is composed of standard displayable, non-control keystrokes from a standard 101/102-key keyboard. The authentication key must be 8 bytes or less if the authentication type is simple. If the type is encrypt, the key can be configured with plain-text up to 16 characters or configured in encrypted form with option 7. If the type is encrypt, a `<keyid>` in the range of 0 and 255 must be specified. Unauthenticated interfaces do not need an authentication key or authentication key ID. A default value for this command does not exist.

The **no ip ospf authentication** command sets the default OSPF authentication type for the specified interface.

**Format**
```
ip ospf authentication {none | {simple <key>} | {encrypt [7 <keyid>]}}
no ip ospf authentication
```

**Fields**
<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>encrypt</td>
</tr>
</tbody>
</table>

**Default** None

**Mode** Interface Config
### 6.3.2.39. ip ospf cost

The `ip ospf cost` command configures the cost on an OSPF interface. The `<cost>` parameter has a range of 1 to 65535. The `no ip ospf cost` command configures the default cost on an OSPF interface.

**Format**

```plaintext
ip ospf cost <1–65535>
no ip ospf cost
```

**Default**

10

**Mode**

Interface Config

### 6.3.2.40. ip ospf dead-interval

The `ip ospf dead-interval` command sets the OSPF dead interval for the specified interface. The value for `<seconds>` is a valid positive integer, which represents the length of time in seconds that a router’s Hello packets have not been seen before its neighbor routers declare that the router is down. The value for the length of time must be the same for all routers attached to a common network. This value should be some multiple of the Hello Interval (i.e. 4). Valid values range from 1 to 65535. The `no ip ospf dead-interval` command sets the default OSPF dead interval for the specified interface.

**Format**

```plaintext
ip ospf dead-interval <seconds>
no ip ospf dead-interval
```

**Default**

40

**Mode**

Interface Config

### 6.3.2.41. ip ospf hello-interval

The `ip ospf hello-interval` command sets the OSPF hello interval for the specified interface. The value for `seconds` is a valid positive integer, which represents the length of time in seconds. The value for the length of time must be the same for all routers attached to a network. Valid values range from 1 to 65535. The `no ip ospf hello-interval` command sets the default OSPF hello interval for the specified interface.

**Format**

```plaintext
ip ospf hello-interval <seconds>
no ip ospf hello-interval
```

**Default**

10

**Mode**

Interface Config

### 6.3.2.42. ip ospf network

The `ip ospf network` command to configure OSPF to treat an interface as a point-to-point rather than broadcast interface. The broadcast option sets the OSPF network type to broadcast. The point-to-point option sets the OSPF network type to point-to-point. OSPF treats interfaces as broadcast interfaces by default. (Loopback...
interfaces have a special loopback network type, which cannot be changed.) When there are only two routers on the network, OSPF can operate more efficiently by treating the network as a point-to-point network. For point-to-point networks, OSPF does not elect a designated router or generate a network link state advertisement (LSA). Both endpoints of the link must be configured to operate in point-to-point mode.

```
no ip ospf network command to return the OSPF network type to the default.
```

**Format**
```
ip ospf network {broadcast | point-to-point}
 no ip ospf network
```

**Default**
Broadcast

**Mode**
Interface Config

### 6.3.2.43. ip ospf prefix-suppression

```
ip ospf prefix-suppression command suppresses the advertisement of the IPv4 prefixes that are associated with an interface, except for those associated with secondary IPv4 addresses. This command takes precedence over the global configuration. If this configuration is not specified, the global prefix-suppression configuration applies. Prefix-suppression can be disabled at the interface level by using the disable option. The disable option is useful to exclude specific interfaces from performing prefix-suppression when the feature is enabled globally.
```

```
no ip ospf prefix-suppression command removes prefix-suppression configurations at the interface level. When no ip ospf prefix-suppression is issued, global prefix-suppression configuration applies to the interface.
```

**Format**
```
 ip ospf prefix-suppression [disable]
 no ip ospf prefix-suppression
```

**Default**
Prefix-suppression is not configured

**Mode**
Interface Config

### 6.3.2.44. ip ospf priority

```
ip ospf priority command sets the OSPF priority for the specified router interface. The priority of the interface is a priority integer from 0 to 255. A value of 0 indicates that the router is not eligible to become the designated router on this network. no ip ospf priority command sets the default OSPF priority for the specified router interface.
```

```
 ip ospf priority <0-255>
 no ip ospf priority
```

**Default**
1, which is the highest router priority

**Mode**
Interface Config
6.3.2.45.  ip ospf retransmit-interval

The `ip ospf retransmit` command sets the OSPF retransmit interval for the specified interface. The retransmit interval is specified in seconds. The value for `<seconds>` is the number of seconds between link-state advertisement retransmissions for adjacencies belonging to this router interface. This value is also used when retransmitting database description and link-state request packets. Valid values range from 0 to 3600 (1 hour). The `no ip ospf retransmit` command sets the default OSPF retransmit interval for the specified interface.

Format

```
ip ospf retransmit-interval <0-3600>
no ip ospf retransmit-interval
```

Default 5

Mode Interface Config

6.3.2.46.  ip ospf transmit-delay

The `ip ospf transmit-delay` command sets the OSPF Transit Delay for the specified interface. The transmit delay is specified in seconds. In addition, it sets the estimated number of seconds it takes to transmit a link state update packet over this interface. Valid values for `<seconds>` range from 1 to 3600 (1 hour). The `no ip ospf transmit-delay` command sets the default OSPF Transit Delay for the specified interface.

Format

```
ip ospf transmit-delay <1-3600>
no ip ospf transmit-delay
```

Default 1

Mode Interface Config

6.3.2.47.  ip ospf mtu-ignore

The `ip ospf mtu-ignore` command disables OSPF maximum transmission unit (MTU) mismatch detection. OSPF Database Description packets specify the size of the largest IP packet that can be sent without fragmentation on the interface. When a router receives a Database Description packet, it examines the MTU advertised by the neighbor. By default, if the MTU is larger than the router can accept, the Database Description packet is rejected and the OSPF adjacency is not established. The `no ip ospf mtu-ignore` command enables the OSPF MTU mismatch detection.

Format

```
ip ospf mtu-ignore
no ip ospf mtu-ignore
```

Default Enabled

Mode Interface Config
6.3.2.48.  ip ospf bfd

This command enables BFD for OSPFv2 on the specified interface.
To disable BFD for OSPFv2 on the specified interface, use the no form of this command.

Format  
ip ospf bfd
        no ip ospf bfd

Default  Disabled
Mode  Interface Config

6.3.2.49.  router-id

command sets a 4-digit dotted-decimal number uniquely identifying the router ospf id. The <ipaddress> is a configured value.

Format  
router-id <ipaddress>

Default  None
Mode  Router OSPF Config

6.3.2.50.  redistribute

command configures OSPF protocol to allow redistribution of routes from the specified source protocol/routers. no redistribute command configures OSPF protocol to prohibit redistribution of routes from the specified source protocol/routers.

Format  
redistribute {bgp | static | connected} [metric <0-16777214>] [metric-type {1 | 2}] [tag <0-4294967295>] [subnets]
        no redistribute {bgp | static | connected} [metric] [metric-type] [tag] [subnets]

Default  metric—unspecified
        type—2
        tag—0
Mode  Router OSPF Config

6.3.2.51.  maximum-paths

command sets the number of paths that OSPF can report for a given destination where maxpaths is platform dependent. no maximum-paths command resets the number of paths that OSPF can report for a given destination back to its default value. The <maxpaths> range is 1 to 48.
Format  maximum-paths <maxpaths>
          no maximum-paths

Default  4

Mode  Router OSPF Config

6.3.2.52.  passive-interface default

The `passive-interface default` command to enable global passive mode by default for all interfaces. It overrides any interface level passive mode. OSPF will not form adjacencies over a passive interface. The `no passive-interface default` command to disable the global passive mode by default for all interfaces. Any interface previously configured to be passive reverts to non-passive mode.

Format  passive-interface default
          no passive-interface default

Default  Disabled

Mode  Router OSPF Config

6.3.2.53.  passive-interface

The `passive-interface` command to set the interface or tunnel as passive. It overrides the global passive mode that is currently effective on the interface or tunnel. The `no passive-interface` command to set the interface or tunnel as non-passive. It overrides the global passive mode that is currently effective on the interface or tunnel.

Format  passive-interface {<slot/port> | vlan <vlan-id>}
          no passive-interface {<slot/port> | vlan <vlan-id>}

Default  Disabled

Mode  Router OSPF Config

6.3.2.54.  timers spf

Use this command to configure the SPF delay time and hold time. The valid range for both parameters is 0-65535 seconds.

Format  timers spf <delay-time> <hold-time>

Default  delay-time—5
          hold-time—10

Mode  Router OSPF Config
6.3.2.55. **max-metric**

Use `max-metric` command to configure OSPF to enable stub router mode. Use `no max-metric` command to disable stub router mode.

If you configure the summary LSA metric to 16,777,215, other routers will skip the summary LSA when they compute routes.

**Format**

```
max-metric router-lsa [on-startup <seconds> [summary-lsa [<metric>]]] | summary-lsa [<metric> [on-startup <seconds>]]
```

```
o max-metric router-lsa [on-startup] [summary-lsa]
```

**Fields**

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>on-startup</strong></td>
</tr>
<tr>
<td><strong>seconds</strong></td>
</tr>
<tr>
<td><strong>summary-lsa</strong></td>
</tr>
<tr>
<td><strong>metric</strong></td>
</tr>
</tbody>
</table>

**Default** None

**Mode** Router OSPF Config Mode

6.3.2.56. **log-adjacency-changes**

`log-adjacency-changes` command logs OSPFv2 neighbor state changes. `no log-adjacency-changes` command disables logging OSPFv2 neighbor state changes.

**Format**

```
log-adjacency-changes [detail]
```

```
o log-adjacency-change
```

**Fields**

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>detail</strong></td>
</tr>
</tbody>
</table>

**Default** Disabled

**Mode** Router OSPF Config Mode
6.3.2.57.  **prefix-suppression**

Use `max-metric` command to suppress the advertisement of all the IPv4 prefixes except for prefixes that are associated with secondary IPv4 addresses, loopbacks, and passive interfaces from the OSPFv2 router advertisements.

To suppress a loopback or passive interface, use the command `ip ospf prefix-suppression` in interface config mode. Prefixes associated with secondary IPv4 addresses can never be suppressed.

`no prefix-suppression` command disables prefix-suppression. No prefixes are suppressed from being advertised.

**Format**

```
prefix-suppression
no prefix-suppression
```

**Default**  Disabled

**Mode**  Router OSPF Config Mode

6.3.2.58.  **nsf helper**

Use this command to enable helper neighbor functionality for the OSPF graceful restart on an interface. Use the no form of the command to disable helper neighbor functionality for the OSPF graceful restart.

**Format**

```
nsf [ietf] [helper]
no nsf [ietf] [helper]
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ietf</td>
<td>This keyword is accepted but not required.</td>
</tr>
</tbody>
</table>

**Default**  Disabled

**Mode**  Router OSPF Config Mode

6.3.2.59.  **nsf helper strict-lsa-checking**

Use this command to require that an OSPF helper neighbor exit helper mode whenever a topology change occurs. Use the no form of the command to allow OSPF to continue as a helpful neighbor in spite of topology changes.

**Format**

```
nsf [ietf] [helper] [strict-lsa-checking] | [helper] [strict-lsa-checking]
no nsf [ietf] [helper] [strict-lsa-checking] | [helper] [strict-lsa-checking]
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ietf</td>
<td>This keyword is accepted but not required.</td>
</tr>
</tbody>
</table>
**strict-lsa-checking**

Specify that an OSPF helper exits helper mode whenever a topology change occurs. OSPF continues as a helpful neighbor in spite of topology changes if this option is not set.

**Default**  Enabled  
**Mode**  Router OSPF Config Mode

### 6.3.2.60. bandwidth

By default, OSPF computes the link cost of an interface as the ratio of the reference bandwidth to the interface bandwidth. Reference bandwidth is specified with the `auto-cost` command. For the purpose of the OSPF link cost calculation, use the `bandwidth` command to specify the interface bandwidth. The bandwidth is specified in kilobits per second. If no bandwidth is configured, the bandwidth defaults to the actual interface bandwidth for port-based routing interfaces and to 10 Mbps for VLAN routing interfaces. This command does not affect the actual speed of an interface. You can use this command to configure a single interface or a range of interfaces.

**Format**  

```
bandwidth <1-10000000>
no bandwidth
```

**Default**  actual interface bandwidth  
**Mode**  Interface Config
6.4. BOOTP/DHCP Relay Commands

6.4.1. Show commands

6.4.1.1. show bootpdhcprelay

This command displays the BootP/DHCP Relay information.

Format: show bootpdhcprelay [vrf <vrf-name>]

Default: None

Mode: Privileged EXEC
User EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Hop Count</td>
<td>Is the maximum allowable relay agent hops.</td>
</tr>
<tr>
<td>Minimum Wait Time (Seconds)</td>
<td>Is the minimum wait time.</td>
</tr>
<tr>
<td>Admin Mode</td>
<td>Represents whether relaying of requests is enabled or disabled.</td>
</tr>
<tr>
<td>Circuit ID Option Mode</td>
<td>Is the DHCP circuit ID option which may be enabled or disabled.</td>
</tr>
</tbody>
</table>

6.4.2. Configuration commands

6.4.2.1. bootpdhcprelay cidoptmode

This command enables the circuit ID option mode for BootP/DHCP Relay on the system.
To disable the circuit ID option mode for BootP/DHCP Relay on the system, use the no form of this command.

Format: bootpdhcprelay cidoptmode
no bootpdhcprelay cidoptmode

Default: Disabled

Mode: Global Config
### 6.4.2.2. `bootpdhcprelay maxhopcount`

This command configures the maximum allowable relay agent hops for BootP/DHCP Relay on the system. To reset the maximum allowable relay agent hops for BootP/DHCP Relay on the system to 4, use the `no` form of this command.

**Format**

```
bootpdhcprelay maxhopcount <hops>
no bootpdhcprelay maxhopcount
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hops</td>
<td>The range of maximum hop count is 1 to 16.</td>
</tr>
</tbody>
</table>

**Default**

4

**Mode**

Global Config

### 6.4.2.3. `bootpdhcprelay minwaittime`

This command configures the minimum wait time in seconds for BootP/DHCP Relay on the system. When the BOOTP relay agent receives a BOOTREQUEST message, it may use the seconds-since-client-began-booting field of the request as a factor in deciding whether to relay the request or not. To reset the minimum wait time in seconds for BootP/DHCP Relay on the system to 0, use the `no` form of this command.

**Format**

```
bootpdhcprelay minwaittime <minwaittime>
no bootpdhcprelay minwaittime
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>minwaittime</td>
<td>The range of minimum wait time is 0 to 100.</td>
</tr>
</tbody>
</table>

**Default**

0

**Mode**

Global Config
6.5. IP Helper Commands

6.5.1. Show commands

6.5.1.1. show ip helper-address

Use this command to display the IP helper address configuration.

**Format**  
show ip helper-address [vrf <vrf-name>] [[<slot/port> | vlan <1 - 4093>]]

**Default**  
None

**Mode**  
Privileged EXEC  
User EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The relay configuration is applied to packets that arrive on this interface. This field is set to ‘any’ for global IP helper entries.</td>
</tr>
<tr>
<td>UDP Port</td>
<td>The relay configuration is applied to packets whose destination UDP port is this port.</td>
</tr>
<tr>
<td>Discard</td>
<td>Indicate discard the UDP packets or not.</td>
</tr>
<tr>
<td>Hit Count</td>
<td>The number of times the IP helper entry has been used to relay or discard a packet.</td>
</tr>
<tr>
<td>Server Address</td>
<td>The IPv4 address of the server to which packets are relayed.</td>
</tr>
</tbody>
</table>

6.5.1.2. show ip helper statistics

Use this command to display the number of UDP packets processed and relayed.

**Format**  
show ip helper statistics [vrf <vrf-name>]

**Default**  
None

**Mode**  
Privileged EXEC  
User EXEC

**Display Message**

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP client messages</td>
<td>The number of valid messages received form a DHCP client.</td>
</tr>
<tr>
<td>received</td>
<td></td>
</tr>
</tbody>
</table>
6.5.2. Configuration commands

6.5.2.1. ip helper-address (Global Config)

Use this command to configure the relay of certain UDP broadcast packets received on any interface. This command can be invoked multiple times, either to specify multiple server addresses for a given UDP port number or to specify multiple UDP port numbers handled by a specific server.

To delete the address, use the no form of this command.

**Format**

```
ip helper-address <ipaddr> [<udp-port> | dhcp | domain | isakmp | mobile-ip | nameserver | netbios-dgm | netbios-ns | ntp | pim-auto-rp | rip | tacacs | tftp | time]
no ip helper-address [<ipaddr> [<udp-port> | dhcp | domain | isakmp | mobile-ip | nameserver | netbios-dgm | netbios-ns | ntp | pim-auto-rp | rip | tacacs | tftp | time]]```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipaddr</td>
<td>The IPv4 unicast or directed broadcast address to which relayed UDP broadcast packets are sent. The server address cannot be an IP address configured on any interface of the local router.</td>
</tr>
<tr>
<td>udp-port</td>
<td>A destination UDP port number from 1 to 65535.</td>
</tr>
</tbody>
</table>
Use this command to configure the relay of certain UDP broadcast packets received on a specific interface or range of interfaces. This command can be invoked multiple times on a routing interface, either to specify multiple server addresses for a given port number or to specify multiple port numbers handled by a specific server.

To delete the address, use the `no` form of this command.

Format

```plaintext
ip helper-address <ipaddr> [ <udp-port> | dhcp | domain | isakmp | mobile-ip | nameserver | netbios-dgm | netbios-ns | ntp | pim-auto-rp | rip | tacacs | tftp | time ]
```

```plaintext
no ip helper-address [<ipaddr> [ <udp-port> | dhcp | domain | isakmp | mobile-ip | nameserver | netbios-dgm | netbios-ns | ntp | pim-auto-rp | rip | tacacs | tftp | time ]]
```

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipaddr</td>
<td>The IPv4 unicast or directed broadcast address to which relayed UDP broadcast packets are sent. The server address cannot be in a subnet on the interface where the relay entry is configured, and cannot be an IP address configured on any interface of the local router.</td>
</tr>
<tr>
<td>udp-port</td>
<td>A destination UDP port number from 0 to 65535.</td>
</tr>
<tr>
<td>port-name</td>
<td>The destination UDP port may be optionally specified by its name. Whether a port is specified by its number or its name has no effect on behavior. The names recognized are as follows:</td>
</tr>
</tbody>
</table>

6.5.2.2. ip helper-address (Interface Config)

Use this command to configure the relay of certain UDP broadcast packets received on a specific interface or range of interfaces. This command can be invoked multiple times on a routing interface, either to specify multiple server addresses for a given port number or to specify multiple port numbers handled by a specific server.

To delete the address, use the `no` form of this command.

Format

```plaintext
ip helper-address <ipaddr> [ <udp-port> | dhcp | domain | isakmp | mobile-ip | nameserver | netbios-dgm | netbios-ns | ntp | pim-auto-rp | rip | tacacs | tftp | time ]
```

```plaintext
no ip helper-address [<ipaddr> [ <udp-port> | dhcp | domain | isakmp | mobile-ip | nameserver | netbios-dgm | netbios-ns | ntp | pim-auto-rp | rip | tacacs | tftp | time ]]
```

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipaddr</td>
<td>The IPv4 unicast or directed broadcast address to which relayed UDP broadcast packets are sent. The server address cannot be in a subnet on the interface where the relay entry is configured, and cannot be an IP address configured on any interface of the local router.</td>
</tr>
<tr>
<td>udp-port</td>
<td>A destination UDP port number from 0 to 65535.</td>
</tr>
<tr>
<td>port-name</td>
<td>The destination UDP port may be optionally specified by its name. Whether a port is specified by its number or its name has no effect on behavior. The names recognized are as follows:</td>
</tr>
</tbody>
</table>
Default None
Mode Interface Config

6.5.2.3. ip helper-address discard

Use this command to configure the discard of certain UDP broadcast packets received on a specific interface or range of interfaces. This command can be invoked multiple times on a routing interface for a given port number or to specify multiple port numbers handled by a specific server.

To delete the address, use the `no` form of this command.

Format
ip helper-address discard [udp-port | dhcp | domain | isakmp | mobile-ip | nameserver | netbios-dgm | netbios-ns | ntp | pim-auto-rp | rip | tacacs | tftp | time]

 no ip helper-address discard [udp-port | dhcp | domain | isakmp | mobile-ip | nameserver | netbios-dgm | netbios-ns | ntp | pim-auto-rp | rip | tacacs | tftp | time]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>udp-port</td>
<td>A destination UDP port number from 1 to 65535. The destination UDP port may be optionally specified by its name. Whether a port is specified by its number or its name has no effect on behavior. The names recognized are as follows:</td>
</tr>
</tbody>
</table>

- dhcp (port 67)
- domain (port 53)
- isakmp (port 500)
- mobile-ip (port 434)
- nameserver (port 42)
- netbios-dgm (port 138)
- netbios-ns (port 137)
- ntp (port 123)
- pim-auto-rp (port 496)
- rip (port 520)
| port-name | The destination UDP port may be optionally specified by its name. Whether a port is specified by its number or its name has no effect on behavior. The names recognized are as follows: |
6.5.2.4. ip helper enable

This command enables the relay of UDP packets.
To disable the replay of UDP packets, use the no form of this command.

Format
ip helper enable
no ip helper enable

Default Disabled
Mode Global Config

6.5.2.5. clear ip helper statistics

Use this command to clear the statistics data of UDP packets processed and relayed by IP helper.

Format
clear ip helper statistics [vrf <vrf-name>]

Default None
Mode Privileged Exec
User Exec
6.6. Router Discovery Protocol Commands

6.6.1. Show commands

6.6.1.1. show ip irdp

This command displays the router discovery information for all interfaces, or a specified interface.

Format
show ip irdp {<slot/port> | all | vlan <vlan-id>}

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Show router discovery information for all interfaces.</td>
</tr>
</tbody>
</table>

Default
None

Mode
Privileged Exec
User Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
</table>
| **Interface** | The relay configuration is applied to packets that arrive on this interface.
 This field is set to ‘any’ for global IP helper entries. |
| **UDP Port** | The relay configuration is applied to packets whose destination UDP port is this port. |
| **Discard** | Indicate discard the UDP packets or not. |
| **Hit Count** | The number of times the IP helper entry has been used to relay or discard a packet. |
| **Server Address** | The IPv4 address of the server to which packets are relayed. |
6.7. VLAN Routing Commands

6.7.1. Configuration commands

6.7.1.1. interface vlan

This command creates a VLAN routing interface.
To delete a VLAN routing interface, use the no form of this command.

Format

```
interface vlan <vlan-id>
no interface vlan <vlan-id>
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><vlan-id></td>
<td>The VLAN ID used for this interface. The range of VLAN ID is from 1 to 4093.</td>
</tr>
</tbody>
</table>

Default

None

Mode

Global Config

6.8.1. Show commands

6.8.1.1. show ip vrrp

This command displays whether VRRP functionality is enabled or disabled. It also displays some global parameters which are required for monitoring.

Format
show ip vrrp

Default
None

Mode
Privileged Exec
User Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin Mode</td>
<td>Displays the administrative mode for VRRP functionality on the switch.</td>
</tr>
<tr>
<td>Active-Active Mode</td>
<td>Displays the Active-Active mode for VRRP functionality on the switch.</td>
</tr>
<tr>
<td>Router Checksum Errors</td>
<td>Represents the total number of VRRP packets received with an invalid VRRP checksum value.</td>
</tr>
<tr>
<td>Router Version Errors</td>
<td>Represents the total number of VRRP packets received with Unknown or unsupported version number.</td>
</tr>
<tr>
<td>Router VRID Errors</td>
<td>Represents the total number of VRRP packets received with invalid VRID for this virtual router.</td>
</tr>
</tbody>
</table>

6.8.1.2. show ip vrrp brief

This command displays information about each virtual router configured on the switch.

Format
show ip vrrp brief

Default
None

Mode
Privileged Exec
User Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Valid slot and port number separated by forward slashes.</td>
</tr>
</tbody>
</table>
6.8.1.3. show ip vrrp interface

This command displays all configuration information of a virtual router configured on a specific interface. Note that the information will be displayed only when the IP address of the specific interface is configured.

Format
show ip vrrp interface {<slot/port> | vlan <vlan-id>} [<vrid>]

Fields
<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><slot/port></td>
</tr>
<tr>
<td><vrid></td>
</tr>
<tr>
<td><vlan-id></td>
</tr>
</tbody>
</table>

Default None

Mode
Privileged Exec
User Exec

Display Message

Fields
<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRID</td>
</tr>
<tr>
<td>Primary IP Address</td>
</tr>
<tr>
<td>VMAC address</td>
</tr>
<tr>
<td>Authentication type</td>
</tr>
<tr>
<td>Priority</td>
</tr>
<tr>
<td>Configured Priority</td>
</tr>
<tr>
<td>Advertisement interval</td>
</tr>
<tr>
<td>Pre-Empt Mode</td>
</tr>
<tr>
<td>Administrative Mode</td>
</tr>
</tbody>
</table>
6.8.1.4. `show ip vrrp interface stats`

This command displays the statistical information about each virtual router configured on the switch.

Format

```
show ip vrrp interface stats {<slot/port> | vlan <vlan-id>} [<vrid>]
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><slot/port></code></td>
<td>Valid slot and port number separated by forward slashes.</td>
</tr>
<tr>
<td><code><vrid></code></td>
<td>Virtual router ID.</td>
</tr>
<tr>
<td><code><vlan-id></code></td>
<td>VLAN ID. The range of VLAN ID is 1 to 4093.</td>
</tr>
</tbody>
</table>

Default

None

Mode

Privileged Exec
User Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRID</td>
<td>Represents the router ID of the virtual router.</td>
</tr>
<tr>
<td>Uptime</td>
<td>Is the time that the virtual router has been up, in days, hours, minutes and seconds.</td>
</tr>
<tr>
<td>Protocol</td>
<td>Represents the protocol configured on the interface.</td>
</tr>
<tr>
<td>State Transitioned to Master</td>
<td>Represents the total number of times virtual router state has changed to MASTER.</td>
</tr>
<tr>
<td>Advertisement Received</td>
<td>Represents the total number of VRRP advertisements received by this virtual router.</td>
</tr>
<tr>
<td>Advertisement Interval Errors</td>
<td>Represents the total number of VRRP advertisements received for which advertisement interval is different than the configured value for this virtual router.</td>
</tr>
<tr>
<td>Authentication Failure</td>
<td>Represents the total number of VRRP packets received that don't pass the authentication check.</td>
</tr>
</tbody>
</table>
6.8.1.5. clear ip vrrp interface stat

This command clears IPv4 multicast route entries.

Format
```
clear ip vrrp interface stat {<slot/port> <vrid> | vlan <1-4093> {<vrid>}}
```

Default None

Mode Privileged Exec

Configuration commands

6.8.2. Configuration commands

6.8.2.1. ip vrrp

This command enables the administrative mode of VRRP in the router.
To disable the administrative mode of VRRP in the router, use the **no** form of this command.

Format
```
ip vrrp
no ip vrrp
```
6.8.2.2. ip vrrp master-backup

This command disables the active active mode of VRRP in the router.

To enable the active active mode of VRRP in the router, use the no form of this command.

Format ip vrrp master-backup
 no ip vrrp master-backup

Default Disabled
Mode Global Config

6.8.2.3. ip vrrp <vrid>

This command sets the virtual router ID on an interface for Virtual Router configuration in the router.

To remove all VRRP configuration details of the virtual router configured on a specific interface, use the no form of this command.

Format ip vrrp <1-255>
 no ip vrrp <1-255>

Fields Definition
<1-255> The range of virtual router ID is 1 to 255.

Default None
Mode Interface Config

6.8.2.4. ip vrrp ip

This command sets the primary or secondary IP address of the device within a VRRPv2 group.

If the secondary option is not specified, the specified IP address is set as the primary. Also the removing of the primary virtual IP is not allowed. The primary virtual IP of a virtual router can only be modified. The secondary virtual IP can be removed using the no form of the this command.

To remove the secondary address, use the no form of this command.

Format ip vrrp <1-255> ip <addr> [secondary]
no ip vrrp <1-255> ip <addr> [secondary]

6.8.2.5. ip vrrp mode

This command enables the virtual router configured on the specified interface. Enabling the status field starts a virtual router. Disabling the status field stops a virtual router. To disable the virtual router configured on the specified interface, use the no form of this command.

Format

ip vrrp <1-255> mode
no ip vrrp <1-255> mode

6.8.2.6. ip vrrp accept-mode

Use this command to allow the VRRP Master to accept ping packets sent to one of the virtual router's IP addresses. To prevent the VRRP Master from accepting ping packets sent to one of the virtual router's IP addresses, use the no form of this command.

Format

ip vrrp <1-255> accept-mode
no ip vrrp <1-255> accept-mode
6.8.2.7. `ip vrrp authentication`

This command sets the authorization details value for the virtual router configured on a specified interface.

To set the default authorization detailed value for the virtual router configured on a specified interface, use the `no` form of this command.

Format
```
ip vrrp <1-255> authentication <key>
```
```
no ip vrrp <1-255> authentication
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><1-255></code></td>
<td>The range of virtual router ID is 1 to 255.</td>
</tr>
<tr>
<td><code><key></code></td>
<td>A text password used for authentication.</td>
</tr>
</tbody>
</table>

Default
No authentication

Mode
Interface Config

6.8.2.8. `ip vrrp preempt`

This command sets the preemption mode value for the virtual router configured on a specified interface.

To set the default preemption mode value for the virtual router configured on a specified interface, use the `no` form of this command.

Format
```
ip vrrp <1-255> preempt
```
```
no ip vrrp <1-255> preempt
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><1-255></code></td>
<td>The range of virtual router ID is 1 to 255.</td>
</tr>
<tr>
<td><code><key></code></td>
<td>A text password used for authentication.</td>
</tr>
</tbody>
</table>

Default
Enabled

Mode
Interface Config

6.8.2.9. `ip vrrp priority`

This command sets the priority value for the virtual router configured on a specified interface.

The router with the highest priority is elected master. If a router is configured with the address used as the address of the virtual router, the router is called the "address owner". The priority of the address owner is always 255 so that the address owner is always master. If the master has a priority less than 255 (it is not the
address owner) and you configure the priority of another router in the group higher than the master's priority, the router will take over as master only if preempt mode is enabled.

To set the default priority value for the virtual router configured on a specified interface, use the no form of this command.

Format

```
ip vrrp <1-255> priority <1-254>
nop vrrp <1-255> priority
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><1-255></td>
<td>The range of virtual router ID is 1 to 255.</td>
</tr>
<tr>
<td><1-254></td>
<td>The range of priority is 1 to 254.</td>
</tr>
</tbody>
</table>

Default
The default priority value is 100 unless the router is the address owner, in which case its priority is automatically set to 255.

Mode
Interface Config

6.8.2.10. **ip vrrp timers advertise**

This command sets the advertisement value for a virtual router in seconds.

To set the default advertisement value for a virtual router, use the no form of this command.

Format

```
ip vrrp <1-255> timers advertise <1-255>
nop vrrp <1-255> timers advertise
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><1-255></td>
<td>The range of virtual router ID is 1 to 255.</td>
</tr>
<tr>
<td><1-255></td>
<td>The range of advertisement interval is from 1 to 255 seconds.</td>
</tr>
</tbody>
</table>

Default
1 second

Mode
Interface Config

6.8.2.11. **ip vrrp track interface**

This command alters the priority of the VRRP router based on the availability of its interfaces. This command is useful for tracking interfaces that are not configured for VRRP. Only IP interfaces are tracked. A tracked interface is up if the IP on that interface is up. Otherwise, the tracked interface is down.
When the tracked interface is down or the interface has been removed from the router, the priority of the VRRP router will be decremented by the value specified in the decrement argument. When the interface is up for IP protocol, the priority will be incremented by the decrement value.

A VRRP configured interface can track more than one interface. When a tracked interface goes down, then the priority of the router will be decreased by 10 (the default priority decrement) for each downed interface. The default priority decrement is changed using the decrement argument. The default priority of the virtual router is 100, and the default decrement priority is 10. By default, no interfaces are tracked. If you specify just the interface to be tracked, without giving the optional priority, then the default priority will be set. The default priority decrement is 10.

To remove the interface from the tracked list or to restore the priority decrement to its default, use the no form of this command.

Format

```
ip vrrp <1-255> track interface {<slot/port> | vlan <vlan-id>} [decrement <1-254>]
no ip vrrp <1-255> track interface {<slot/port> | vlan <vlan-id>} [decrement]
```

Fields

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><1-255></td>
</tr>
<tr>
<td><vlan-id></td>
</tr>
<tr>
<td><1-254></td>
</tr>
</tbody>
</table>

Default

Decrement: 10

Mode

Interface Config

6.8.2.12. ip vrrp track ip route

This command tracks the route reachability. When the tracked route is deleted, the priority of the VRRP router will be decremented by the value specified in the decrement argument. When the tracked route is added, the priority will be incremented by the same.

A VRRP configured interface can track more than one route. When a tracked route goes down, then the priority of the router will be decreased by 10 (the default priority decrement) for each downed route. By default no routes are tracked. If you specify just the route to be tracked, without giving the optional priority, then the default priority will be set. The default priority decrement is 10. The default priority decrement is changed using the decrement argument.

To remove the route from the tracked list or to restore the priority decrement to its default, use the no form of this command. When removing a tracked IP route from the tracked list, the priority should be incremented by the decrement value if the route is not reachable.

Format

```
ip vrrp <1-255> track ip route <ip-address/prefix-length> [decrement <1-254>]
no ip vrrp <1-255> track ip route <ip-address/prefix-length> [decrement]
```

Fields

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><1-255></td>
</tr>
</tbody>
</table>
Default: Decrement: 10
Mode: Interface Config

< 1-254 >

The range of decrement is 1 to 254.
6.9. Policy Based Routing (PBR) Commands

6.9.1. Show commands

6.9.1.1. show ip policy

This command lists the route map associated with each interface.

Format
show ip policy

Default
None

Mode
Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The interface.</td>
</tr>
<tr>
<td>Route-map</td>
<td>The route map.</td>
</tr>
</tbody>
</table>

6.9.1.2. show ip prefix-list

This command displays configuration and status for a prefix list.

Format
show ip prefix-list [[detail | summary] <listname> | <listname> [<prefix/length> [longer | first-match] | seq <1-4294967294>]]

Default
None

Mode
Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>detail</td>
<td>summary</td>
</tr>
<tr>
<td>listname</td>
<td>(Optional) The name of a specific prefix list.</td>
</tr>
<tr>
<td>prefix/length</td>
<td>(Optional) The network number and length (in bits) of the network mask.</td>
</tr>
<tr>
<td>Seq</td>
<td>(Optional) Applies the sequence number to the prefix list entry.</td>
</tr>
<tr>
<td>sequence-number</td>
<td>(Optional) The sequence number of the prefix list entry.</td>
</tr>
<tr>
<td>longer</td>
<td>(Optional) Displays all entries of a prefix list that are more specific than the given network/length</td>
</tr>
</tbody>
</table>
6.9.1.3. show ipv6 prefix-list

This command displays configuration and status for a selected prefix list.

Format show ipv6 prefix-list [[detail | summary] <listname> | <listname> [ipv6-prefix/length] [longer | first-match] | seq <1-4294967294>]

Default None

Mode Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>detail</td>
<td>summary</td>
</tr>
<tr>
<td>listname</td>
<td>(Optional) The name of a specific prefix list.</td>
</tr>
<tr>
<td>ipv6-prefix/length</td>
<td>(Optional) The network number and length (in bits) of the network mask.</td>
</tr>
<tr>
<td>seq</td>
<td>(Optional) Applies the sequence number to the prefix list entry.</td>
</tr>
<tr>
<td>sequence-number</td>
<td>(Optional) The sequence number of the prefix list entry.</td>
</tr>
<tr>
<td>longer</td>
<td>(Optional) Displays all entries of a prefix list that are more specific than the given network/length</td>
</tr>
<tr>
<td>first-match</td>
<td>(Optional) Displays the entry of a prefix list that matches the given network/length.</td>
</tr>
</tbody>
</table>

6.9.1.4. show route-map

To display a route map, use the show route-map command in Privileged EXEC mode.

Format show route-map [route-map]

Fields

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>routename</td>
<td>(Optional) Name of a specific route map.</td>
</tr>
</tbody>
</table>

Default None

Mode Privileged Exec
6.9.2. Configuration commands

6.9.2.1. ip policy route-map

Use this command to identify a route map to use for policy-based routing on an interface specified by <route-map-name>. Policy-based routing is configured on the interface that receives the packets, not on the interface from which the packets are sent.

When a route-map applied on the interface is changed, that is, if new statements are added to route-map or match/set terms are added/removed from route-map statement, and also if route-map that is applied on an interface is removed, route-map needs to be removed from interface and added back again in order to have changed route-map configuration to be effective.

In order to disable policy based routing from an interface, use no form of this command.

Format
ip policy route-map <routemap>

no ip policy route-map <routemap>

Fields
Definition

<table>
<thead>
<tr>
<th>List</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>routename</td>
<td>(Optional) Name of a specific route map.</td>
</tr>
</tbody>
</table>

Default
None

Mode
Interface Config

6.9.2.2. ip prefix-list

To create a prefix list or add a prefix list entry, use the ip prefix-list command in Global Configuration mode.

Prefix lists allow matching of route prefixes with those specified in the prefix list. Each prefix list includes of a sequence of prefix list entries ordered by their sequence numbers. A router sequentially examines each prefix list entry to determine if the route's prefix matches that of the entry. An empty or nonexistent prefix list permits all prefixes. An implicit deny is assume if a given prefix does not match any entries of a prefix list. Once a match or deny occurs the router does not go through the rest of the list.

A prefix list may be used within a route map to match a route's prefix using the command "match ip address"

Up to 128 prefix lists may be configured. The maximum number of statements allowed in prefix list is 64.

To delete a prefix list or a statement in a prefix list, use the no form of this command. The command no ip prefix-list list-name deletes the entire prefix list. To remove an individual statement from a prefix list, you must specify the statement exactly, with all its options.

Format
ip prefix-list <list-name> [[seq <seq number>] {permit | deny} prefix/length [ge <length>] [le <length>] | renumber [seq <renumber-interval>] [first-statement-number]]

no ip prefix-list <list-name> [seq <seq number>] {permit | deny} prefix/length [ge <length>] [le <length>]

Fields
Definition

<table>
<thead>
<tr>
<th>List</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>list-name</td>
<td>The text name of the prefix list. Up to 32 characters.</td>
</tr>
</tbody>
</table>
Default

No prefix lists are configured by default. When neither the ge nor the le option is configured, the destination prefix must match the network/length exactly. If the ge option is configured without the le option, any prefix with a network mask greater than or equal to the ge value is considered a match. Similarly, if the le option is configured without the ge option, a prefix with a network mask less than or equal to the le value is considered a match.

Mode

Global Config

6.9.2.3. ip prefix-list description

To apply a text description to a prefix list, use the ip prefix-list description command in Global Configuration mode.

To remove the text description, use the no form of this command.

Format

ip prefix-list <list-name> description <text>

no ip prefix-list <list-name> description

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>list-name</td>
<td>The text name of the prefix list. Up to 32 characters.</td>
</tr>
<tr>
<td>description</td>
<td>Text description of the prefix list. Up to 80 characters.</td>
</tr>
</tbody>
</table>
Default No description is configured by default.

Mode Global Config

6.9.2.4. ipv6 prefix-list

To create a IPv6 prefix list or add a prefix list entry, use the `ipv6 prefix-list` command in Global Configuration mode. An IPv6 prefix list can contain only IPv6 addresses.

Prefix lists allow matching of route prefixes with those specified in the prefix list. Each prefix list includes of a sequence of prefix list entries ordered by their sequence numbers. A router sequentially examines each prefix list entry to determine if the route's prefix matches that of the entry. For IPv6 routes, only IPv6 prefix lists are matched. An empty or nonexistent prefix list permits all prefixes. An implicit deny is assume if a given prefix does not match any entries of a prefix list. Once a match or deny occurs the router does not go through the rest of the list.

An IPv6 prefix list may be used within a route map to match a route's prefix using the command "match ipv6 address". A route map may contain both IPv4 and IPv6 prefix lists. If a route being matched is an IPv6 route, only the IPv6 prefix lists are matched.

Up to 128 prefix lists may be configured. The maximum number of statements allowed in prefix list is 64. These numbers indicate only IPv6 prefix lists. IPv4 prefix lists may be configured in appropriate numbers independently.

To delete a IPv6 prefix list or a statement in a prefix list, use the `no` form of this command. The command `no ipv6 prefix-list list-name` deletes the entire prefix list. To remove an individual statement from a prefix list, you must specify the statement exactly, with all its options.

Format

```
ipv6 prefix-list <list-name> {{[seq <seq number>] [permit | deny] ipv6-prefix/prefix-length [ge <length>] [le <length>] | description <text> | renumber [renumber-interval] [<first-statement-number>]]}
```

```
no ipv6 prefix-list <list-name> {{[seq <seq number>] [permit | deny] ipv6-prefix/prefix-length [ge <length>] [le <length>] | description}
```

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>list-name</td>
<td>The text name of the prefix list. Up to 32 characters.</td>
</tr>
<tr>
<td>seq number</td>
<td>(Optional) The sequence number for this prefix list statement. Prefix list statements are sorted from lowest sequence number to highest and applied in that order. If you do not specify a sequence number, the system will automatically select a sequence number five larger than the last sequence number in the list. Two statements may not be configured with the same sequence number. The value ranges from 1 to 4,294,967,294.</td>
</tr>
<tr>
<td>permit</td>
<td>Permit routes whose destination prefix matches the statement.</td>
</tr>
<tr>
<td>deny</td>
<td>Deny routes whose destination prefix matches the statement.</td>
</tr>
<tr>
<td>ipv6-prefix/prefix-length</td>
<td>Specifies the match criteria for routes being compared to the prefix list statement. The ipv6-prefix can be any valid IPv6 prefix where the address is specified in hexadecimal using 16-bit values between colons. The prefix-length is the length of the IPv6 prefix, given as a decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.</td>
</tr>
</tbody>
</table>
ge length (Optional) If this option is configured, specifies a prefix length greater than or equal to the ipv6-prefix/prefix-length. It is the lowest value of a range of the length.

le length (Optional) If this option is configured, specifies a prefix length less than or equal to the ipv6-prefix/prefix-length. It is the highest value of a range of the length.

<renumber-interval> (Optional) Provides the option to renumber the sequence numbers of the IPv6 prefix list statements with a given interval starting from a particular sequence number. The valid range for renumber-interval is 1 - 100, and the valid range for first-statement-number is 1 - 1000

Default No prefix lists are configured by default. When neither the ge nor the le option is configured, the destination prefix must match the network/length exactly. If the ge option is configured without the le option, any prefix with a network mask greater than or equal to the ge value is considered a match. Similarly, if the le option is configured without the ge option, a prefix with a network mask less than or equal to the le value is considered a match.

Mode Global Config

6.9.2.5. route-map

To create a route map and enter Route Map Configuration mode, use the route-map command in Global Configuration mode. One use of a route map is to limit the redistribution of routes to a specified range of route prefixes. The redistribution command specifies a route map which refers to a prefix list. The prefix list identifies the prefixes that may be redistributed. It accepts up to 64 route maps.

To delete a route map or one of its statements, use the no form of this command.

Format route-map <map-tag> [permit|deny] [sequence-number]

no route-map <map-tag> [sequence-number]

Fields Definition

map-tag Text name of the route map. Route maps with the same name are grouped together in order of their sequence numbers. A route map name may be up to 32 characters long.

permit (Optional) Permit routes that match all of the match conditions in the route map. Not support in the no form.

deny (Optional) Deny routes that match all of the match conditions in the route map. Not support in the no form.

sequence-number (Optional) An integer used to order the set of route maps with the same name. Route maps are ordered from lowest to greatest sequence number, with lower sequence numbers being considered first. If no sequence number is specified, three cases would happen:

- If there is no route map existed, a route map with sequence number 10 and permit action will be created.
- If there is already one route map in system, the existed route map will be edited.
6.9.2.6. match as-path

This route map match term matches BGP autonomous system paths against an AS path access list. If you enter a new \texttt{match as-path} term in a route map statement that already has a \texttt{match as-path} term, the AS path list numbers in the new term are added to the existing match term, up to the maximum number of lists in a term. A route is considered a match if it matches any one or more of the AS path access lists the match term refers to.

To delete the match as-path term that matches BGP autonomous system paths against an AS path access list, use the \texttt{no} form of this command.

\textbf{Format}

\begin{verbatim}
match as-path <as-path-list-number>
no match as-path
\end{verbatim}

\textbf{Fields}

\begin{table}[h]
\centering
\begin{tabular}{|l|l|}
\hline
\textbf{Fields} & \textbf{Definition} \\
\hline
as-path-list-number & An integer from 1 to 500 identifying the AS path access list to use as match criteria. \\
\hline
\end{tabular}
\end{table}

\textbf{Default} None

\textbf{Mode} Route Map Config

6.9.2.7. match community

To configure a route map to match based on a BGP community list, use the \texttt{match community} command in Route Map Configuration mode. If the community list returns a permit action, the route is considered a match. If the match statement refers to a community list that is not configured, no routes are considered to match the statement.

To delete a match term from a route map, use the \texttt{no} form of this command. The command \texttt{no match community} removes the match statement from the route map. (It does not simply remove the exact-match option.) The command \texttt{no match community} removes the match term and all its community lists.

\textbf{Format}

\begin{verbatim}
match community <community-list> [community-list...] [exact-match]
no match community <community-list> [community-list...] [exact-match]
\end{verbatim}

\textbf{Fields}

\begin{table}[h]
\centering
\begin{tabular}{|l|l|}
\hline
\textbf{Fields} & \textbf{Definition} \\
\hline
community-list & The name of a standard community list. Up to eight names may be included in a single match term. \\
\hline
\end{tabular}
\end{table}
Default: None
Mode: Route Map Config

6.9.2.8. match ip address prefix-list

To configure a route map to match based on a destination prefix, use the `match ip address` command in Route Map Configuration mode. If you specify multiple prefix lists in one statement, then a match occurs if a prefix matches any one of the prefix lists. If you configure a match ip address statement within a route map section that already has a match ip address statement, the new prefix lists are added to the existing set of prefix lists, and a match occurs if any prefix list in the combined set matches the prefix.

To delete a match statement from a route map, use the `no` form of this command.

Format

```
match ip address prefix-list <list-name> [list-name...]
no match ip address prefix-list <list-name> [list-name...]
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>list-name</td>
<td>The name of a prefix list used to identify the set of matching routes. Up to eight prefix lists may be specified.</td>
</tr>
</tbody>
</table>

Default: No match criteria are defined by default
Mode: Route Map Config

6.9.2.9. match ip address <acl-id | acl-name>

Use this command to configure a route map in order to match based on the match criteria configured in an IP access-list. Note that an IP ACL must be configured before it is linked to a route-map. Actions present in an IP ACL configuration are applied with other actions involved in route-map. If an IP ACL referenced by a route-map is removed or rules are added or deleted from that ACL, the configuration is rejected.

If there are a list of IP access-lists specified in this command and the packet matches at least one of these access-list match criteria, the corresponding set of actions in route-map are applied to packet.

If there are duplicate IP access-list numbers/names in this command, the duplicate configuration is ignored.

To delete a match statement from a route map, use the `no` form of this command.

Format

```
match ip address <acl-id | acl-name> [...acl-id | acl-name]
no match ip address <acl-id | acl-name> [...acl-id | acl-name]
```
6.9.2.10. **match ipv6 address**

To configure a route map to match based on a destination prefix, use the `match ipv6 address` command in Route Map Configuration mode. `prefix-list <prefix-list-name>` identifies the name of an IPv6 prefix list used to identify the set of matching routes. Up to eight prefix lists may be specified. If you specify multiple prefix lists in one statement, then a match occurs if a prefix matches any one of the prefix lists. If you configure a match ipv6 address statement within a route map section that already has a match ipv6 address statement, the new prefix lists are added to the existing set of prefix lists, and a match occurs if any prefix list in the combined set matches the prefix.

To delete a match statement from a route map, use the `no` form of this command.

Format
```
match ipv6 address prefix-list <list-name> [list-name...]
no match ipv6 address prefix-list <list-name> [list-name...]
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>list-name</td>
<td>The name of a prefix list used to identify the set of matching routes. Up to eight prefix lists may be specified.</td>
</tr>
</tbody>
</table>

Default No match criteria are defined by default

Mode Route Map Config

6.9.2.11. **match length**

Use this command to configure a route map to match based on the Layer 3 packet length between specified minimum and maximum values. `min` specifies the packet’s minimum Layer 3 length, inclusive, allowed for a match. `max` specifies the packet’s maximum Layer 3 length, inclusive, allowed for a match. Each route-map statement can contain one ‘match’ statement on packet length range.

To delete a match statement from a route map, use the `no` form of this command.

Format
```
match length <min> <max>
no match length
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>list-name</td>
<td>The name of a prefix list used to identify the set of matching routes. Up to eight prefix lists may be specified.</td>
</tr>
</tbody>
</table>

Default No match criteria are defined by default

Mode Route Map Config
Default
No match criteria are defined by default

Mode
Route Map Config

6.9.2.12. match mac-list

Use this command to configure a route map in order to match based on the match criteria configured in an MAC access-list.

A MAC ACL is configured before it is linked to a route-map. Actions present in MAC ACL configuration are applied with other actions involved in route-map. When a MAC ACL referenced by a route-map is removed, the route-map rule is also removed and the corresponding rule is not effective. When a MAC ACL referenced by a route-map is removed or rules are added or deleted from that ACL, the configuration is rejected.

To delete a match statement from a route map, use the no form of this command.

Format
match mac-list <mac-list-name> [mac-list-name]
no match mac-list <mac-list-name> [mac-list-name]

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac-list-name</td>
<td>The mac-list name that identifies MAC ACLs. MAC Access-list name can be up to 31 characters in length.</td>
</tr>
</tbody>
</table>

Default
No match criteria are defined by default

Mode
Route Map Config

6.9.2.13. set as-path

To prepend one or more AS numbers to the AS path in a BGP route, use the set as-path command in Route Map Configuration mode. This command is normally used to insert one or more instances of the local AS number at the beginning of the AS_PATH attribute of a BGP route. Doing so increases the AS path length of the route. The AS path length has a strong influence on BGP route selection. Changing the AS path length can influence route selection on the local router or on routers to which the route is advertised.

When prepending an inbound route, if the first segment in the AS_PATH of the received route is an AS_SEQUENCE, as-path-string is inserted at the beginning of the sequence. If the first segment is an AS_SET, as-path-string is added as a new segment with type AS_SEQUENCE at the beginning of the AS path. When prepending an outbound route to an external peer, as-path-string follows the local AS number, which is always the first ASN.

To remove a set command from a route map, use the no form of this command.

Format
set as-path prepend <as-path-string>
no set as-path prepend

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>as-path-string</td>
<td>A list of AS path numbers to insert at the beginning of the AS_PATH attribute of matching BGP routes. To prepend more than one AS number, separate the ASNs</td>
</tr>
</tbody>
</table>
To remove BGP communities from an inbound or outbound UPDATE message, use the `set comm-list delete` command in Route Map Configuration mode. A route map with this `set` command can be used to remove selected communities from inbound and outbound routes. When a community list is applied to a route for this purpose, each of the route's communities is submitted to the community list one at a time. Communities permitted by the list are removed from the route. Because communities are processed individually, a community list used to remove communities should not include the exact-match option on statements with multiple communities. Such statements can never match an individual community.

When a route map statement includes both `set community` and `set comm-list delete` terms, the `set comm-list delete` term is processed first, and then the `set community` term (meaning that, communities are first removed, and then communities are added).

To delete the set command from a route map, use the `no` form of this command.

Format
```
set comm-list <community-list-name> delete
no set comm-list
```

Fields

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>community-list-name</td>
<td>A standard community list name.</td>
</tr>
</tbody>
</table>

Default None

Mode Route Map Config

6.9.2.15. set community

To modify the communities attribute of matching routes, use the `set community` command in Route Map Configuration mode. The `set community` command can be used to assign communities to routes originated through BGP's network and redistribute commands, and to set communities on routes received from a specific neighbor or advertised to a specific neighbor. It can also be used to remove all communities from a route.

To remove a subset of the communities on a route, use the command "`set comm-list delete`".

To remove a set term from a route map, use the `no` form of this command.

Format
```
set community <community-number> {([additive] | [no-advertise] | [no-export]) | no-advertise | no-export | none}
no set community
```
If network administrator does not want to revert to normal forwarding but instead want to drop a packet that does not match the specified criteria, a set statement needs to be configured to route the packets to interface null 0 as the last entry in the route-map. `set interface null0` needs to be configured in a separate statement. It should not be added along with any other statement having other match/set terms.

A route-map statement that is used for PBR is configured as permit or deny. If the statement is marked as deny, traditional destination-based routing is performed on the packet meeting the match criteria. If the statement is marked as permit, and if the packet meets all the match criteria, then set commands in the route-map statement are applied. If no match is found in the route-map, the packet is not dropped; instead the packet is forwarded using the routing decision taken by performing destination-based routing.

To remove a set term from a route map, use the `no` form of this command.

Format

```
set interface null0
no set interface null0
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>null0</td>
<td>Specify the destination interface to be null interface.</td>
</tr>
</tbody>
</table>

Default None

Mode Route Map Config
6.9.2.17. set ip next-hop

Use this command to specify the adjacent next-hop router in the path toward the destination to which the packets should be forwarded. If more than one IP address is specified, the ECMP rule is used to route the packets.

This command affects all incoming packet types and is always used if configured. If configured next-hop is not present in the routing table, an ARP request is sent from the router.

In a route-map statement, 'set ip next-hop' and 'set ip default next-hop' terms are mutually exclusive. However, a 'set ip default next-hop' can be configured in a separate route-map statement.

To remove a set command from a route map, use the no form of this command.

Format

```
set ip next-hop <next-hop-address> [...next-hop-address]
```

```
no set ip next-hop <next-hop-address> [...next-hop-address]
```

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>next-hop-address</td>
<td>The IP address of the next hop to which packets are output. It must be the address of an adjacent router. A maximum of 16 next-hop IP addresses can be specified in this 'set' clause.</td>
</tr>
</tbody>
</table>

Default

None

Mode

Route Map Config

6.9.2.18. set ip default next-hop

Use this command to set a list of default next-hop IP addresses. If more than one IP address is specified, the ECMP rule is used.

A packet is routed to the next hop specified by this command only if there is no explicit route for the packet's destination address in the routing table. A default route in the routing table is not considered an explicit route for an unknown destination address.

In a route-map statement, 'set ip next-hop' and 'set ip default next-hop' terms are mutually exclusive. However, a 'set ip next-hop' can be configured in a separate route-map statement.

To remove a set command from a route map, use the no form of this command.

Format

```
set ip default next-hop <next-hop-address> [...next-hop-address]
```

```
no set ip default next-hop <next-hop-address> [...next-hop-address]
```

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>next-hop-address</td>
<td>The IP address of the next hop to which packets are output. It must be the address of an adjacent router. A maximum of 16 next-hop IP addresses can be specified in this 'set' clause.</td>
</tr>
</tbody>
</table>

Default

None

Mode

Route Map Config
6.9.2.19. set ip precedence

Use this command to set the three IP precedence bits in the IP packet header. With three bits, you have eight possible values for the IP precedence; values 0 through 7 are defined. This command is used when implementing QoS and can be used by other QoS services, such as weighted fair queuing (WFQ) and weighted random early detection (WRED).

To reset the three IP precedence bits in the IP packet header to the default, use the no form of this command.

Format
set ip precedence 0-7
no set ip precedence

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Sets the routine precedence.</td>
</tr>
<tr>
<td>1</td>
<td>Sets the priority precedence.</td>
</tr>
<tr>
<td>2</td>
<td>Sets the immediate precedence.</td>
</tr>
<tr>
<td>3</td>
<td>Sets the Flash precedence.</td>
</tr>
<tr>
<td>4</td>
<td>Sets the Flash override precedence.</td>
</tr>
<tr>
<td>5</td>
<td>Sets the critical precedence.</td>
</tr>
<tr>
<td>6</td>
<td>Sets the internetwork control precedence.</td>
</tr>
<tr>
<td>7</td>
<td>Sets the network control precedence.</td>
</tr>
</tbody>
</table>

Default
None

Mode
Route Map Config

6.9.2.20. set ipv6 next-hop

Use this command to set the IPv6 next hop of a route. When used in a route map applied to UPDATE messages received from a neighbor, the command sets the next hop address for matching IPv6 routes received from the neighbor. When used in a route map applied to UPDATE messages sent to a neighbor, the command sets the next hop address for matching IPv6 routes sent to the neighbor. If the address is a link local address, the address is assumed to be on the interface where UPDATE is received or sent. If the command specifies a global IPv6 address, the address is not required to be on a local subnet.

To remove a set command from a route map, use the no form of this command.

Format
set ipv6 next-hop <next-hop-ipv6-address>
no set ipv6 next-hop
6.9.2.21. set local-preference

To set the local preference of specific BGP routes, use the `set local-preference` command in Route Map Configuration mode. The local preference is the first attribute used to compare BGP routes. Setting the local preference can influence which route BGP selects as the best route.

When used in conjunction with a 'match as-path' or 'match ip address' command, this command can be used to prefer routes that transit certain ASs or to make the local router a more preferred exit point to certain destinations.

To remove a set command from a route map, use the `no` form of this command.

Format
```
set local-preference <value>
no set local-preference
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>value</code></td>
<td>A local preference value, from 0 to 4,294,967,295 (any 32-bit integer).</td>
</tr>
</tbody>
</table>

Default None

Mode Route Map Config

6.9.2.22. set metric

To set the metric of a route, use the `set metric` command in Route Map Configuration mode. This command sets the Multi Exit Discriminator (MED) when used in a BGP context. When there are multiple peering points between two autonomous systems (AS), setting the MED on routes advertised by one router can influence the other AS to send traffic through a specific peer.

To remove a set command from a route map, use the `no` form of this command.

Format
```
set metric <value>
no set metric
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>value</code></td>
<td>A metric value, from 0 to 4,294,967,295 (any 32-bit integer).</td>
</tr>
</tbody>
</table>
6.9.2.23. clear ip prefix-list

To reset IP prefix-list counters, use the `clear ip prefix-list` command in Privileged EXEC mode. This command is used to clear prefix-list hit counters. The hit count is a value indicating the number of matches to a specific prefix list entry.

Format

`clear ip prefix-list [list-name] [prefix/length]`

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>list-name</td>
<td>(Optional) Name of the prefix list from which the hit count is to be cleared.</td>
</tr>
<tr>
<td>prefix/length</td>
<td>(Optional) Network number and length (in bits) of the network mask. If this option is specified, hit counters are only cleared for the matching statement.</td>
</tr>
</tbody>
</table>

Default None

Mode Privileged Exec

6.9.2.24. clear ipv6 prefix-list

To reset IPv6 prefix-list counters, use the `clear ipv6 prefix-list` command in Privileged EXEC mode. This command is used to clear IPv6 prefix-list hit counters. The hit count is a value indicating the number of matches to a specific prefix list entry.

Format

`clear ipv6 prefix-list [list-name] [ipv6-prefix/prefix-length]`

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>list-name</td>
<td>(Optional) Name of the prefix list from which the hit count is to be cleared.</td>
</tr>
<tr>
<td>ipv6-prefix/prefix-length</td>
<td>(Optional) IPv6 prefix number and length (in bits) of the network mask. If this option is specified, hit counters are only cleared for the matching statement.</td>
</tr>
</tbody>
</table>

Default None

Mode Privileged Exec
6.10. Border Gateway Protocol (BGP) Commands

6.10.1. Show commands

6.10.1.1. show ip bgp

This command displays information relevant to the BGP router.

Format
show ip bgp

Default
None

Mode
Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP table version</td>
<td>The BGP Table Version is the main number used. This number is the same as the Generation ID of any BGP prefix for a specific address family and is used to track changes to the BGP route table. Each time phase 2 of the BGP decision process runs to select new BGP routes, this number is incremented.</td>
</tr>
<tr>
<td>Local Route ID</td>
<td>A 32-bit integer in dotted decimal format identifying the router, about which information is displayed. This is a configured value.</td>
</tr>
<tr>
<td>Status Codes</td>
<td>Status of the table entry. The status is displayed at the beginning of each line in the table. It can be one of the following values:</td>
</tr>
<tr>
<td></td>
<td>• s — The table entry is suppressed.</td>
</tr>
<tr>
<td></td>
<td>• * — The table entry is valid.</td>
</tr>
<tr>
<td></td>
<td>• > — The table entry is the best entry to use for that network.</td>
</tr>
<tr>
<td></td>
<td>• i — The table entry was learned via an internal BGP (iBGP) session.</td>
</tr>
<tr>
<td></td>
<td>• S — The table entry is stale route.</td>
</tr>
<tr>
<td>Origin codes</td>
<td>Origin of the entry. The origin code is placed at the end of each line in the table. It can be one of the following values:</td>
</tr>
<tr>
<td></td>
<td>• i — Entry originated from an Interior Gateway Protocol (IGP) and was advertised with a network router configuration command.</td>
</tr>
<tr>
<td></td>
<td>• e — Entry originated from an Exterior Gateway Protocol (EGP).</td>
</tr>
<tr>
<td></td>
<td>• ? — Origin of the path is not clear. Usually, this is a router that is redistributed into BGP from an IGP.</td>
</tr>
<tr>
<td>Network</td>
<td>Destination prefix.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>The route’s BGP next hop.</td>
</tr>
</tbody>
</table>
6.10.1.2. `show ip bgp <prefix/length>`

This command displays the BGP routing table entries which are filtered the display output with a prefix/length.

Format
`show ip bgp [vrf <vrf-name>] <prefix/length> [longer-prefixes | shorter-prefixes [length]]`

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf-name</td>
<td>Display BGP route table within a VRF instance.</td>
</tr>
<tr>
<td>prefix/length</td>
<td>The destination IP prefix and prefix length entered to filter the output to display only a particular host or network in the BGP routing table.</td>
</tr>
<tr>
<td>longer-prefixes</td>
<td>Display the specified prefix and any longer prefixes within the same range.</td>
</tr>
<tr>
<td>shorter-prefixes [length]</td>
<td>Used with the <code>prefix/length</code> option to show routes whose prefix length is shorter than prefix length, and optionally longer than a specified <code>length</code>. This option may not be given if the <code>longer-prefixes</code> option is given.</td>
</tr>
</tbody>
</table>

Default
None

Mode
Privileged Exec
User Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix/Prefix Length</td>
<td>The destination IP prefix and prefix length entered to filter the output to display only a particular host or network in the BGP routing table.</td>
</tr>
<tr>
<td>Generation ID</td>
<td>Incremented each time phase 2 of the decision process runs and whenever an aggregate address changes. Used to track changes to the BGP route table.</td>
</tr>
<tr>
<td>Advertised to Update Groups</td>
<td>The outbound update groups that this route is advertised to.</td>
</tr>
<tr>
<td>Best Path</td>
<td>Shows best path information as following.</td>
</tr>
<tr>
<td>Non-Best Paths</td>
<td>Shows non-best path information as following.</td>
</tr>
</tbody>
</table>
This command displays information about the aggregate-address. If a VRF instance is specified, the aggregate addresses configured in that VRF instance are displayed.

Format

```
show ip bgp [vrf vrf-name] aggregate-address
```

Default

None

Mode

- Privileged Exec
- User Exec
6.10.1.4. **show ip bgp community**

This command display routes that belong to specified BGP communities. If a VRF instance is specified, the routes belonging to the community within that VRF instance are displayed.

Format

```
show ip bgp [vrf vrf-name] community [<community-number>] [exact-match] [no-advertise] [no-export]
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf-name</td>
<td>Display routes belonging to communities within a VRF instance.</td>
</tr>
<tr>
<td>< community-number ></td>
<td>Valid value is a community number in the range from 1 to 4294967295, or AA:NN (autonomous system-community number/2-byte number).</td>
</tr>
<tr>
<td>exact-match</td>
<td>Destination IP prefix and prefix length.</td>
</tr>
<tr>
<td>no-advertise</td>
<td>Display only routes that are not advertised to any peer.</td>
</tr>
<tr>
<td>no-export</td>
<td>Display only routes that are not exported outside of the local AS.</td>
</tr>
</tbody>
</table>

Default

None

Mode

Privileged Exec
User Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP table version</td>
<td>The BGP Table Version is the main number used. This number is the same as the Generation ID of any BGP prefix for a specific address family and is used to track changes to the BGP route table.</td>
</tr>
</tbody>
</table>
6.10.1.5. show ip bgp community-list

This command displays routes that are permitted by the Border Gateway Protocol (BGP) community list.

Format

```
show ip bgp community-list <community-list-name> [exact-match]
```

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>community-list-name</td>
<td>Community list name. The community list name can be standard or expanded.</td>
</tr>
<tr>
<td>exact-match</td>
<td>Displays only routes that are an exact match for the set of communities in the matching community list statement.</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
</tbody>
</table>

Default None

Mode Privileged Exec
User Exec

Display Messages

Fields	**Definition**
BGP table version | The BGP Table Version is the main number used. This number is the same as the Generation ID of any BGP prefix for a specific address family and is used to track changes to the BGP route table.

Local Route ID | A 32-bit integer in dotted decimal format identifying the router, about which information is displayed. This is a configured value.

Status Codes | Status of the table entry. The status is displayed at the beginning of each line in the table. It can be one of the following values:

- s — The table entry is suppressed.
- * — The table entry is valid.
- > — The table entry is the best entry to use for that network.
- i — The table entry was learned via an internal BGP (iBGP) session.

Origin codes | Origin of the entry. The origin code is placed at the end of each line in the table. It can be one of the following values:

- i — Entry originated from an Interior Gateway Protocol (IGP) and was advertised with a network router configuration command.
- e — Entry originated from an Exterior Gateway Protocol (EGP).
- ? — Origin of the path is not clear. Usually, this is a router that is redistributed into BGP from an IGP.

Network | Destination IP address.

Next Hop | IP address of the next system that is used when forwarding a packet to the destination network. An entry of 0.0.0.0 indicates that the router has some non-BGP routes to this network.

Metric | The value of the interautonomous system metric. Value of the MED attribute, if included.

LocPref | Local preference value as set with the set local-preference route-map configuration command or received from the peer. The default value is 100.
6.10.1.6. show ip bgp filter-list

Use this command to display routes that conform to a specified filter list.

Format show ip bgp filter-list as-path-list

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>as-path-list</td>
<td>Filter the output to the set of routes that match a given AS Path list. It can be a number from 1 to 500.</td>
</tr>
</tbody>
</table>

Default None

Mode Privileged Exec
User Exec

Display Messages

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP table version</td>
<td>The BGP Table Version is the main number used. This number is the same as the Generation ID of any BGP prefix for a specific address family and is used to track changes to the BGP route table.</td>
</tr>
<tr>
<td>Local Route ID</td>
<td>A 32-bit integer in dotted decimal format identifying the router, about which information is displayed. This is a configured value.</td>
</tr>
</tbody>
</table>

Status Codes

Status of the table entry. The status is displayed at the beginning of each line in the table. It can be one of the following values:

- s — The table entry is suppressed.
- * — The table entry is valid.
- > — The table entry is the best entry to use for that network.
- i — The table entry was learned via an internal BGP (iBGP) session.
- S — The table entry stale route.

Origin codes

Origin of the entry. The origin code is placed at the end of each line in the table. It can be one of the following values:

- i — Entry originated from an Interior Gateway Protocol (IGP) and was advertised with a network router configuration command.
- e — Entry originated from an Exterior Gateway Protocol (EGP).
- ? — Origin of the path is not clear. Usually, this is a router that is redistributed into BGP from an IGP.

Network Destination IP address.
6.10.1.7. show ip bgp neighbors

This command displays information about Border Gateway Protocol (BGP) and TCP connections to neighbors. If a VRF instance is specified, the routes information for the neighbors within that VRF instance are displayed.

Format

show ip bgp [vrf vrf-name] neighbors [<ip-address> [advertised-routes | policy | received-routes | rejected-routes | routes] | policy]

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf-name</td>
<td>Display routes within a VRF instance.</td>
</tr>
<tr>
<td>ip-address</td>
<td>Displays information about the IPv4 neighbor. If this argument is omitted, information about all neighbors is displayed.</td>
</tr>
<tr>
<td>Policy</td>
<td>Display inbound and outbound policies for all neighbors or the specified neighbor.</td>
</tr>
<tr>
<td>Advertised-routes</td>
<td>Display routes advertised to a neighbor.</td>
</tr>
<tr>
<td>Received-routes</td>
<td>Display routes received from a neighbor.</td>
</tr>
<tr>
<td>Rejected-routes</td>
<td>Display routes rejected by inbound policy.</td>
</tr>
<tr>
<td>Routes</td>
<td>Display routes accepted by inbound policy.</td>
</tr>
</tbody>
</table>

Default

None

Mode

Privileged Exec
User Exec

Display Messages

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Address</td>
<td>The IP Address of the Peer's BGP interface.</td>
</tr>
<tr>
<td>Remote AS</td>
<td>Autonomous system number of the neighbor.</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>BFD Enabled to Detect Fast Failover</td>
<td>Specify if BFD has been enabled for BGP neighbors.</td>
</tr>
<tr>
<td>Peer ID</td>
<td>Router ID of the neighbor.</td>
</tr>
<tr>
<td>Peer Admin Status</td>
<td>States whether BGP is enabled or disabled of the neighbor.</td>
</tr>
<tr>
<td>Peer State</td>
<td>Finite state machine (FSM) stage of session negotiation.</td>
</tr>
<tr>
<td>Local Interface Address</td>
<td>The IPv4 address used as the source IP address in packets sent to this neighbor.</td>
</tr>
<tr>
<td>Local Port</td>
<td>The port number of the local port.</td>
</tr>
<tr>
<td>Remote Port</td>
<td>The port number of the remote port.</td>
</tr>
<tr>
<td>Connection Retry Interval</td>
<td>Time interval, in seconds, at which the device resend messages to this neighbor.</td>
</tr>
<tr>
<td>Neighbor Capabilities</td>
<td>BGP capabilities advertised and received from this neighbor.</td>
</tr>
<tr>
<td>IPv4 Unicast Support</td>
<td>Support IPv4 unicast packets or not. The valid value will be Both, Sent, Received or None.</td>
</tr>
<tr>
<td>VPNv4 Unicast Support</td>
<td>Support VPNv4 unicast packets or not. The valid value will be Both, Sent, Received or None.</td>
</tr>
<tr>
<td>IPv6 Unicast Support</td>
<td>Support IPv6 unicast packets or not. The valid value will be Both, Sent, Received or None.</td>
</tr>
<tr>
<td>BGP Graceful-Restart Mode</td>
<td>BGP Graceful-Restart mode. Enabled or Disabled.</td>
</tr>
<tr>
<td>BGP Graceful-Restart Restart-Time</td>
<td>BGP graceful restart helper restart timer.</td>
</tr>
<tr>
<td>Template Name</td>
<td>Name of a locally configured peer policy template.</td>
</tr>
<tr>
<td>Update Source</td>
<td>The configured value for the source IP address of packets sent to this neighbor. This field is only included in the output if the update source is configured.</td>
</tr>
<tr>
<td>Configured Hold Time</td>
<td>Configured time for this neighbor, in seconds, that BGP will maintain the session with this neighbor without receiving a messages.</td>
</tr>
<tr>
<td>Configured Keep Alive Time</td>
<td>Configured time interval for this neighbor, in seconds, at which keepalive messages are transmitted to this neighbor.</td>
</tr>
<tr>
<td>Negotiated Hold Time</td>
<td>Negotiated time with this neighbor, in seconds, that BGP will maintain the session with this neighbor without receiving a messages.</td>
</tr>
<tr>
<td>Negotiated Keep Alive Time</td>
<td>Negotiated time interval with this neighbor, in seconds, at which keepalive messages are transmitted to this neighbor.</td>
</tr>
<tr>
<td>MD5 Password</td>
<td>The TCP MD5 password, if one is configured, in plain text.</td>
</tr>
<tr>
<td>eBGP-MultiHop</td>
<td>Configured TTL value of the external BGP for this neighbor.</td>
</tr>
<tr>
<td>Last Error ()</td>
<td>Last error from received or sent for this neighbor.</td>
</tr>
<tr>
<td>Metric</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Last SubError</td>
<td>Last sub error for this neighbor.</td>
</tr>
<tr>
<td>Time Since Last Error</td>
<td>The time stamps in which the last error occurred.</td>
</tr>
<tr>
<td>Established Transitions</td>
<td>The number of connections established.</td>
</tr>
<tr>
<td>Flap Count</td>
<td>Total number of times the neighbor flaps.</td>
</tr>
<tr>
<td>Established Time</td>
<td>The time from the last connection established.</td>
</tr>
<tr>
<td>Time Since Last Update</td>
<td>The time from the last Update message received.</td>
</tr>
<tr>
<td>IPv4 Outbound Update Group</td>
<td>The corresponding index number of the IPv4 update group.</td>
</tr>
<tr>
<td>IPv6 Outbound Update Group</td>
<td>The corresponding index number of the IPv6 update group.</td>
</tr>
<tr>
<td>BFD Enabled to Detect Fast Fallover</td>
<td>Indicate if the BFD is enabled for this BGP neighbor.</td>
</tr>
<tr>
<td>Msgs Sent</td>
<td>Total number of transmitted messages.</td>
</tr>
<tr>
<td>Msgs Rcvd</td>
<td>Total number of received messages.</td>
</tr>
<tr>
<td>Open</td>
<td>Number of open messages sent and received.</td>
</tr>
<tr>
<td>Update</td>
<td>Number of update messages sent and received.</td>
</tr>
<tr>
<td>Keepalive</td>
<td>Number of keepalive messages sent and received.</td>
</tr>
<tr>
<td>Notification</td>
<td>Number of notification (error) messages sent and received.</td>
</tr>
<tr>
<td>Refresh</td>
<td>Number of route refresh request messages sent and received.</td>
</tr>
<tr>
<td>Total</td>
<td>Total number of messages sent and received.</td>
</tr>
<tr>
<td>Received UPDATE Queue Size</td>
<td>The statistics of received UPDATE queue (Size, High, Limit, Drops).</td>
</tr>
<tr>
<td>IPv4 Prefix Statistics</td>
<td>The statistics of the IPv4 prefix.</td>
</tr>
<tr>
<td>VPNv4 Prefix Statistics</td>
<td>The statistics of the VPNv4 prefix.</td>
</tr>
<tr>
<td>IPv6 Prefix Statistics</td>
<td>The statistics of the IPv6 prefix.</td>
</tr>
<tr>
<td>Prefixes Advertised</td>
<td>Number of prefixes advertised.</td>
</tr>
<tr>
<td>Prefixes Withdrawn</td>
<td>Number of prefixes withdrawn.</td>
</tr>
<tr>
<td>Prefixes Current</td>
<td>Number of prefixes current kept.</td>
</tr>
<tr>
<td>Prefixes Accepted</td>
<td>Number of prefixes accepted.</td>
</tr>
</tbody>
</table>
6.10.1.8. show ip bgp prefix-list

This command displays information about a prefix list or prefix list entries.

Format

```
show ip bgp prefix-list <prefix-list-name>
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>prefix-list-name</td>
<td>Filter the output to the set of routes that match a given prefix list..</td>
</tr>
</tbody>
</table>

Default None

Mode Privileged Exec

User Exec

Display Messages

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP table version</td>
<td>The BGP Table Version is the main number used. This number is the same as the Generation ID of any BGP prefix for a specific address family and is used to track changes to the BGP route table.</td>
</tr>
<tr>
<td>Local Route ID</td>
<td>A 32-bit integer in dotted decimal format identifying the router, about which information is displayed. This is a configured value.</td>
</tr>
</tbody>
</table>

Status Codes

Status of the table entry. The status is displayed at the beginning of each line in the table. It can be one of the following values:

- s — The table entry is suppressed.
- * — The table entry is valid.
- > — The table entry is the best entry to use for that network.
- i — The table entry was learned via an internal BGP (iBGP) session.
- S — The table entry stale route.

Origin codes

Origin of the entry. The origin code is placed at the end of each line in the table. It can be one of the following values:

- i — Entry originated from an Interior Gateway Protocol (IGP) and was advertised with a **network** router configuration command.
- e — Entry originated from an Exterior Gateway Protocol (EGP).
This command displays all global configuration related to IPv4 route reflection, including the cluster ID and whether client-to-client route reflection is enabled, and lists all the neighbors that are configured as route reflector clients. If a VRF instance is specified, the routes within that VRF instance are displayed.

If a route reflector client is configured with an outbound route map, the output warns that the set statements in the route map are ignored when reflecting routes to this client.

Format
`show ip bgp [vrf vrf-name] route-reflection`

Default
None

Mode
Privileged Exec
User Exec

Display Messages

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster ID</td>
<td>The cluster ID used by this router. The value configured with the <code>bgp cluster-id</code> command is displayed. If no cluster-ID is configured, the local router ID is shown and tagged as default.</td>
</tr>
<tr>
<td>Client-to-client Reflection</td>
<td>Display Enabled when this router reflectors routes received from it clients to its other clients; otherwise display Disabled.</td>
</tr>
<tr>
<td>Clients</td>
<td>A list of this router’s internal peers that have been configured as router reflector clients.</td>
</tr>
<tr>
<td>Non-client Internal Peer</td>
<td>A list of this router’s internal peers that are not configured as route reflector clients. Routes from non-client peers are reflected to clients and vice-versa.</td>
</tr>
</tbody>
</table>
6.10.1.10. show ip bgp summary

This command displays the status of all Border Gateway Protocol (BGP) connections. If a VRF instance is specified, the configuration and status for the routes within that VRF instance are displayed.

Format

```
show ip bgp [vrf vrf-name] summary
```

Default

None

Mode

Privileged Exec

User Exec

Display Messages

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4 Routing</td>
<td>Whether IPv4 routing is globally enabled.</td>
</tr>
<tr>
<td>BGP Admin Mode</td>
<td>Shows whether the administrative mode of BGP in the router is enabled or disabled.</td>
</tr>
<tr>
<td>BGP Operational Mode</td>
<td>Shows whether the BGP is operated in enabled or disabled.</td>
</tr>
<tr>
<td>BGP Router ID</td>
<td>Router ID for the current BGP.</td>
</tr>
<tr>
<td>Local AS Number</td>
<td>Autonomous system number of the current BGP.</td>
</tr>
<tr>
<td>Number of Network Entries</td>
<td>Number of unique prefix entries in the BGP database.</td>
</tr>
<tr>
<td>Number of AS Paths</td>
<td>Number of path entries in the BGP database.</td>
</tr>
<tr>
<td>Dynamic Neighbors</td>
<td>The limit number of BGP dynamic neighbors</td>
</tr>
<tr>
<td>Current/High/Limit</td>
<td></td>
</tr>
<tr>
<td>Neighbor</td>
<td>IP address of the neighbor.</td>
</tr>
<tr>
<td>ASN</td>
<td>Autonomous system number of the neighbor.</td>
</tr>
<tr>
<td>MsgRcvd</td>
<td>Number of messages received from the neighbor.</td>
</tr>
<tr>
<td>MsgSent</td>
<td>Number of messages sent to the neighbor.</td>
</tr>
<tr>
<td>State</td>
<td>The area ID of the OSPF area associated with the interface.</td>
</tr>
<tr>
<td>Up/Down Time</td>
<td>The length of time that the BGP session has been in the Established state, or the current status if not in the Established state.</td>
</tr>
<tr>
<td>Pfx Rcvd</td>
<td>The number of prefixes that have been received from a neighbor.</td>
</tr>
</tbody>
</table>
6.10.1.11. **show ip bgp template**

This command displays peer policy template configurations.

Format
show ip bgp template [<template-name>]

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>template-name</td>
<td>Displays the configurations in a specific template.</td>
</tr>
</tbody>
</table>

Default None

Mode
Privileged Exec
User Exec

Display Messages

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>template-name</td>
<td>Name of the peer template.</td>
</tr>
<tr>
<td>AF</td>
<td>Address Family (IPv4 or IPv6).</td>
</tr>
<tr>
<td>Configuration</td>
<td>The configuration information of the peer template.</td>
</tr>
</tbody>
</table>

6.10.1.12. **show ip bgp traffic**

This command displays global BGP message counters. If a VRF instance is specified, the counters within that VRF instance are displayed.

Format
show ip bgp [vrf vrf-name] traffic

Default None

Mode
Privileged Exec
User Exec

Display Messages

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Since Counters Cleared</td>
<td>How long ago the SPF ran. The time is in the format hh:mm:ss, giving the hours, minutes, and seconds since the SPF run.</td>
</tr>
<tr>
<td>BGP Message Statistics</td>
<td>The statistics of BGP messages sent/received.</td>
</tr>
<tr>
<td>Recd</td>
<td>Total number of received messages.</td>
</tr>
<tr>
<td>Sent</td>
<td>Total number of transmitted messages.</td>
</tr>
</tbody>
</table>
6.10.1.13. show ip bgp update-group

This command displays information about the Border Gateway Protocol (BGP) update groups. If a VRF instance is specified, the status of the update groups for that VRF instance are displayed.

Format
show ip bgp [vrf vrf-name] update-group [index-group | peeripaddr]

Fields
Definition

<p>| index-group | Update group type with its corresponding index number. The range of update-group index numbers is from 1 to 4294967295. |</p>
<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peeripadd</td>
<td>IPv4 or IPv6 address of a single neighbor who is a member of an update group.</td>
</tr>
<tr>
<td>Default</td>
<td>None</td>
</tr>
<tr>
<td>Mode</td>
<td>Privileged Exec</td>
</tr>
<tr>
<td></td>
<td>User Exec</td>
</tr>
<tr>
<td>Display Messages</td>
<td></td>
</tr>
<tr>
<td>Fields</td>
<td>Definition</td>
</tr>
<tr>
<td>Update Group</td>
<td>Update-group number.</td>
</tr>
<tr>
<td>Peer Type</td>
<td>Update-group type (internal or external).</td>
</tr>
<tr>
<td>Minimum Advertisement Interval</td>
<td>Minimum time, in seconds, between update advertisements.</td>
</tr>
<tr>
<td>Send Community</td>
<td>If the BGP communities are included in route advertisements to members of the group.</td>
</tr>
<tr>
<td>Send Extended Community</td>
<td>If the BGP extended communities are included in route advertisements to members of the group.</td>
</tr>
<tr>
<td>Remove Private ASNs</td>
<td>If BGP removes private ASNs from paths advertised to members of this update group.</td>
</tr>
<tr>
<td></td>
<td>Replace if BGP replaces private ASNs with the local ASN.</td>
</tr>
<tr>
<td></td>
<td>Remove if private ASNs are simply removed.</td>
</tr>
<tr>
<td></td>
<td>Otherwise No.</td>
</tr>
<tr>
<td>Route Reflector Client</td>
<td>If peers in this update group are route reflector clients.</td>
</tr>
<tr>
<td>Neighbor AS Path Access List Out</td>
<td>Neighbor AS Path list out. All members of the group use the same.</td>
</tr>
<tr>
<td>Neighbor Prefix List Out</td>
<td>Neighbor prefix list out. All members of the group use the same.</td>
</tr>
<tr>
<td>Neighbor Route Map Out</td>
<td>Neighbor route map out. All members of the group use the same.</td>
</tr>
<tr>
<td>Members Added</td>
<td>Number of members added to the group.</td>
</tr>
<tr>
<td>Members Removed</td>
<td>Number of members removed from the group.</td>
</tr>
<tr>
<td>Update Version</td>
<td>Number of times phase 3 of the decision process has run for the group.</td>
</tr>
<tr>
<td>Number of UPDATES Sent</td>
<td>Number of UPDATE packets sent to this group.</td>
</tr>
<tr>
<td>Time Since Last UPDATE</td>
<td>Number of seconds since last UPDATE sent to group.</td>
</tr>
<tr>
<td>Current Prefixes</td>
<td>Number of prefixes currently advertised to the group.</td>
</tr>
<tr>
<td>Current Paths</td>
<td>Number of paths in update group’s Adj-RIB-Out.</td>
</tr>
</tbody>
</table>
6.10.1.14. **show bgp ipv6**

This command displays IPv6 routes in the BGP routing table.

<table>
<thead>
<tr>
<th>Format</th>
<th>show bgp ipv6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>None</td>
</tr>
</tbody>
</table>
| Mode | Privileged Exec
User Exec |

Display Messages

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP table version</td>
<td>The BGP Table Version is the main number used. This number is the same as the Generation ID of any BGP prefix for a specific address family and is used to track changes to the BGP route table. Each time phase 2 of the BGP decision process runs to select new BGP routes, this number is incremented.</td>
</tr>
<tr>
<td>Local Route ID</td>
<td>A 32-bit integer in dotted decimal format identifying the router, about which information is displayed. This is a configured value.</td>
</tr>
<tr>
<td>Status Codes</td>
<td>Status of the table entry. The status is displayed at the beginning of each line in the table. It can be one of the following values:</td>
</tr>
</tbody>
</table>
6.10.1.15. **show bgp ipv6 <ipv6-prefix/prefix-length>**

This command displays the BGP routing table entries which are filtered the display output with a ipv6-prefix/prefix-length.

Format
```
show bgp ipv6 <ipv6-prefix/prefix-length> [longer-prefixes | shorter-prefixes [length]]
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6-prefix/length</td>
<td>The destination IPv6 prefix and prefix length entered to filter the output to display only a particular host or network in the BGP routing table.</td>
</tr>
<tr>
<td>longer-prefixes</td>
<td>Display the specified prefix and any longer prefixes within the same range.</td>
</tr>
<tr>
<td>shorter-prefixes [length]</td>
<td>Used with the <code>ipv6-prefix/prefix-length</code> option to show routes whose prefix length is shorter than prefix length, and optionally longer than a specified length. This option may not be given if the <code>longer-prefixes</code> option is given.</td>
</tr>
</tbody>
</table>

Default
None

Mode
Privileged Exec
Display Messages

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6-prefix/length</td>
<td>The destination IPv6 prefix and prefix length entered to filter the output to display only a particular host or network in the BGP routing table.</td>
</tr>
<tr>
<td>Generation ID</td>
<td>Incremented each time phase 2 of the decision process runs and whenever an aggregate address changes. Used to track changes to the BGP route table.</td>
</tr>
<tr>
<td>Advertised to Update Groups</td>
<td>The outbound update groups that this route is advertised to.</td>
</tr>
<tr>
<td>Best Path</td>
<td>Shows best path information as following.</td>
</tr>
<tr>
<td>Non-Best Paths</td>
<td>Show non-best path information as following.</td>
</tr>
<tr>
<td>Local Preference</td>
<td>Local preference value as set with the set local-preference route-map configuration command or received from the peer. The default value is 100.</td>
</tr>
<tr>
<td>AS Path</td>
<td>An Autonomous System path is a list of all the autonomous systems that a specific route passes through to reach one destination.</td>
</tr>
<tr>
<td>Origin</td>
<td>Indicates the origin of the entry. It can be IGP, EGP, and Incomplete. Value of the ORIGIN attribute.</td>
</tr>
<tr>
<td>Metric</td>
<td>The value of the interautonomous system metric. Value of the MED attribute, if included.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of peer (internal or external).</td>
</tr>
<tr>
<td>IGP Cost</td>
<td>The cost of Interior Gateway Protocol (IGP) to the BGP NEXT HOP.</td>
</tr>
<tr>
<td>Peer (Peer ID)</td>
<td>The IP Address of the Peer's BGP interface (The Router ID of the Peer's BGP).</td>
</tr>
<tr>
<td>BGP Next Hop</td>
<td>IP address of the next system that is used when forwarding a packet to the destination network.</td>
</tr>
<tr>
<td>Atomic Aggregate</td>
<td>Include atomic-aggregate routes or not.</td>
</tr>
<tr>
<td>Aggregator (AS, Router ID)</td>
<td>The information (AS number and router ID) of the speaker that aggregated the routes.</td>
</tr>
<tr>
<td>Communities</td>
<td>Valid value is a BGP community number in the range from 1 to 4294967200, or AA:NN (autonomous system-community number/2-byte number), no-peer, no-export, no-export-subconfed, or no-advertise.</td>
</tr>
<tr>
<td>Originator</td>
<td>The value of the ORIGINATOR attribute, if the attribute is attached to the path.</td>
</tr>
<tr>
<td>Cluster list</td>
<td>The value of the CLUSTER LIST attribute, if the attribute is attached to the path.</td>
</tr>
</tbody>
</table>
6.10.1.16. show bgp ipv6 aggregate-address

This command displays information about the aggregate-address.

Format show bgp ipv6 aggregate-address

Default None

Mode Privileged Exec
 User Exec

Display Messages

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregation of routes with</td>
<td>The aggregate-different-meds is enabled.</td>
</tr>
<tr>
<td>different MED values is</td>
<td></td>
</tr>
<tr>
<td>allowed</td>
<td></td>
</tr>
<tr>
<td>Prefix/len</td>
<td>Destination IPv6 prefix and prefix length.</td>
</tr>
<tr>
<td>AS Set</td>
<td>Indicates whether an empty AS path is advertised</td>
</tr>
<tr>
<td></td>
<td>with the aggregate address (N) or an AS SET is</td>
</tr>
<tr>
<td></td>
<td>advertised with the set of AS numbers for the</td>
</tr>
<tr>
<td></td>
<td>paths contributing to the aggregate (Y).</td>
</tr>
<tr>
<td>Summary Only</td>
<td>Indicates whether the individual networks are</td>
</tr>
<tr>
<td></td>
<td>suppressed (Y) or advertised (N).</td>
</tr>
<tr>
<td>Active</td>
<td>Indicates whether the aggregate address is</td>
</tr>
<tr>
<td></td>
<td>currently begin advertised.</td>
</tr>
</tbody>
</table>

6.10.1.17. show bgp ipv6 community

This command display routes that belong to specified BGP communities.

Format show bgp ipv6 community [<community-number>] [exact-match] [no-advertise] [no-export] [no-export-subconfed]

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>< community-number ></td>
<td>Valid value is a community number in the range from 1 to 4294967295, or AA:NN</td>
</tr>
<tr>
<td></td>
<td>(autonomous system-community number/2-byte number).</td>
</tr>
<tr>
<td>exact-match</td>
<td>Display only routes that are members of those communities specified in the</td>
</tr>
<tr>
<td></td>
<td>command.</td>
</tr>
<tr>
<td>no-advertise</td>
<td>Display only routes that are not advertised to any peer.</td>
</tr>
<tr>
<td>no-export</td>
<td>Display only routes that are not exported outside of the local AS.</td>
</tr>
<tr>
<td>no-export-subconfed</td>
<td>Display only routes that are not sent outside of the local AS or subconfeds.</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>Default</td>
<td>None</td>
</tr>
<tr>
<td>Mode</td>
<td>Privileged Exec
 User Exec</td>
</tr>
</tbody>
</table>

Display Messages

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP table version</td>
<td>The BGP Table Version is the main number used. This number is the same as the Generation ID of any BGP prefix for a specific address family and is used to track changes to the BGP route table.</td>
</tr>
<tr>
<td>Local Route ID</td>
<td>A 32-bit integer in dotted decimal format identifying the router, about which information is displayed. This is a configured value.</td>
</tr>
<tr>
<td>Status Codes</td>
<td>Status of the table entry. The status is displayed at the beginning of each line in the table. It can be one of the following values:</td>
</tr>
<tr>
<td></td>
<td>- s — The table entry is suppressed.</td>
</tr>
<tr>
<td></td>
<td>- * — The table entry is valid.</td>
</tr>
<tr>
<td></td>
<td>- > — The table entry is the best entry to use for that network.</td>
</tr>
<tr>
<td></td>
<td>- i — The table entry was learned via an internal BGP (iBGP) session.</td>
</tr>
<tr>
<td>Origin codes</td>
<td>Origin of the entry. The origin code is placed at the end of each line in the table. It can be one of the following values:</td>
</tr>
<tr>
<td></td>
<td>- i — Entry originated from an Interior Gateway Protocol (IGP) and was advertised with a network router configuration command.</td>
</tr>
<tr>
<td></td>
<td>- e — Entry originated from an Exterior Gateway Protocol (EGP).</td>
</tr>
<tr>
<td></td>
<td>- ? — Origin of the path is not clear. Usually, this is a router that is redistributed into BGP from an IGP.</td>
</tr>
<tr>
<td>Network</td>
<td>Destination IP address.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>IPv6 address of the next system that is used when forwarding a packet to the destination network.</td>
</tr>
<tr>
<td>Metric</td>
<td>The value of the interautonomous system metric. Value of the MED attribute, if included.</td>
</tr>
<tr>
<td>LocPref</td>
<td>Local preference value as set with the set local-preference route-map configuration command or received from the peer. The default value is 100.</td>
</tr>
<tr>
<td>Path</td>
<td>Autonomous system paths to the destination network. There can be one entry in this field for each autonomous system in the path.</td>
</tr>
</tbody>
</table>
6.10.1.18. show bgp ipv6 community-list

This command display IPv6 routes that are permitted by the Border Gateway Protocol (BGP) community list.

Format
show bgp ipv6 community-list <community-list-name> [exact-match]

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>community-list-name</td>
<td>Community list name. The community list name can be standard or expanded.</td>
</tr>
<tr>
<td>exact-match</td>
<td>Displays only routes that are an exact match for the set of communities in the matching community list statement.</td>
</tr>
</tbody>
</table>

Default
None

Mode
Privileged Exec
User Exec

Display Messages

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP table version</td>
<td>The BGP Table Version is the main number used. This number is the same as the Generation ID of any BGP prefix for a specific address family and is used to track changes to the BGP route table.</td>
</tr>
<tr>
<td>Local Route ID</td>
<td>A 32-bit integer in dotted decimal format identifying the router, about which information is displayed. This is a configured value.</td>
</tr>
<tr>
<td>Status Codes</td>
<td>Status of the table entry. The status is displayed at the beginning of each line in the table. It can be one of the following values:</td>
</tr>
<tr>
<td></td>
<td>• s — The table entry is suppressed.</td>
</tr>
<tr>
<td></td>
<td>• * — The table entry is valid.</td>
</tr>
<tr>
<td></td>
<td>• > — The table entry is the best entry to use for that network.</td>
</tr>
<tr>
<td></td>
<td>• i — The table entry was learned via an internal BGP (iBGP) session.</td>
</tr>
<tr>
<td>Origin codes</td>
<td>Origin of the entry. The origin code is placed at the end of each line in the table. It can be one of the following values:</td>
</tr>
<tr>
<td></td>
<td>• i — Entry originated from an Interior Gateway Protocol (IGP) and was advertised with a network router configuration command.</td>
</tr>
<tr>
<td></td>
<td>• e — Entry originated from an Exterior Gateway Protocol (EGP).</td>
</tr>
<tr>
<td></td>
<td>• ? — Origin of the path is not clear. Usually, this is a router that is redistributed into BGP from an IGP.</td>
</tr>
<tr>
<td>Network</td>
<td>Destination IP address.</td>
</tr>
</tbody>
</table>

6.10.1.19. show ip bgp vpnv4

This command displays BGP VPNv4 routes.

Format

```
show ip bgp vpnv4 {<prefix/length> | all | rd <as-number>:<value> | <ip-address>:<value> [<prefix/length>] | vrf <vrfname> [<prefix/length>]}
```

Default

None

Mode

- Privileged Exec
- User Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP table version</td>
<td>The BGP Table Version is the main number used. This number is the same as</td>
</tr>
<tr>
<td></td>
<td>the Generation ID of any BGP prefix for a specific address family and is</td>
</tr>
<tr>
<td></td>
<td>used to track changes to the BGP route table. Each time phase 2 of the</td>
</tr>
<tr>
<td></td>
<td>BGP decision process runs to select new BGP routes, this number is</td>
</tr>
<tr>
<td></td>
<td>incremented.</td>
</tr>
<tr>
<td>Local Route ID</td>
<td>A 32-bit integer in dotted decimal format identifying the router, about</td>
</tr>
<tr>
<td></td>
<td>which information is displayed. This is a configured value.</td>
</tr>
<tr>
<td>Status Codes</td>
<td>Status of the table entry. The status is displayed at the beginning of</td>
</tr>
<tr>
<td></td>
<td>each line in the table. It can be one of the following values:</td>
</tr>
<tr>
<td></td>
<td>• s — The table entry is suppressed.</td>
</tr>
<tr>
<td></td>
<td>• * — The table entry is valid.</td>
</tr>
<tr>
<td></td>
<td>• > — The table entry is the best entry to use for that network.</td>
</tr>
<tr>
<td></td>
<td>• i — The table entry was learned via an internal BGP (iBGP) session.</td>
</tr>
<tr>
<td></td>
<td>• S — The table entry is stale route</td>
</tr>
</tbody>
</table>
This command displays IPv4 BGP listen ranges as well as peers discovered.

Format

```
show ip bgp [vrf <vrf-name>] listen range [<prefix>/<prefix-length>]
```

Default

None

Mode

Privileged Exec
User Exec

Display Messages

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listen Range</td>
<td>The IP address range to listen BGP peers</td>
</tr>
<tr>
<td>Inherited Template</td>
<td>The peer template inherited</td>
</tr>
<tr>
<td>Member</td>
<td>The IP address of the BGP peer discovered</td>
</tr>
<tr>
<td>ASN</td>
<td>The AS number which the BGP peer belongs to</td>
</tr>
<tr>
<td>State</td>
<td>The neighboring state of the BGP peer discovered</td>
</tr>
</tbody>
</table>
6.10.1.21. show ip protocols bgp

This command displays setting of IPv4 BGP configuration. If the virtual router is specified, the summary of the configuration and status running in the specified virtual router is listed. If no virtual router is specified, the configuration and status for the default router are displayed.

Format
```
show ip protocol [vrf vrf-name] bgp
```

Default
None

Mode
Privileged Exec
User Exec

Display Messages

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing Protocol</td>
<td>Routing protocol of these setting. It’s always BGP in this case.</td>
</tr>
<tr>
<td>BGP Router ID</td>
<td>Setting of BGP router ID</td>
</tr>
<tr>
<td>Local AS Number</td>
<td>AS Number of this device.</td>
</tr>
<tr>
<td>BGP Admin Mode</td>
<td>Whether BGP protocol is enabled. (Enabled or Disabled).</td>
</tr>
<tr>
<td>BGP GR-Enabled Mode</td>
<td>Whether BGP Graceful Restart Enabled Mode is enabled. (Enabled or Disabled)</td>
</tr>
<tr>
<td>BGP GR-Aware Mode</td>
<td>Whether BGP Graceful Restart Aware Mode is enabled. (Enabled or Disabled)</td>
</tr>
<tr>
<td>BGP GR restart-time</td>
<td>Setting of BGP Graceful Restart Timer.</td>
</tr>
<tr>
<td>BGP GR stalepath-time</td>
<td>Setting of BGP Graceful Stale Path Timer.</td>
</tr>
<tr>
<td>Maximum Paths</td>
<td>The maximum number of next hops in an internal or external BGP route.</td>
</tr>
<tr>
<td>Always compare MED</td>
<td>Whether BGP is configured to compare the MEDs for routers received from peers in different ASs.</td>
</tr>
<tr>
<td>Maximum AS Path Length</td>
<td>Limit on the length of AS paths that BGP accepts from its neighbors.</td>
</tr>
<tr>
<td>Fast Internal Failover</td>
<td>Whether BGP immediately brings down an iBGP adjacency if the routing table manager reports that the peer address is no longer reachable.</td>
</tr>
<tr>
<td>Fast External Failover</td>
<td>Whether BGP immediately brings down a eBGP adjacency if the routing table manager reports that the peer address is no longer reachable.</td>
</tr>
<tr>
<td>Distance</td>
<td>The administrative distance for intra-area, inter-area, and external routes.</td>
</tr>
<tr>
<td>Prefix List In</td>
<td>The global prefix list used to filter inbound routers from all neighbors.</td>
</tr>
</tbody>
</table>
6.10.1.22. `show bgp ipv6 filter-list`
Use this command to display routes that conform to a specified filter list.

Format
`show bgp ipv6 filter-list <as-path-list>`

Fields | Definition
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>as-path-list</td>
<td>Filter the output to the set of routes that match a given AS Path list. It can be a number from 1 to 500.</td>
</tr>
</tbody>
</table>

Default None

Mode Privileged Exec
User Exec

Display Messages

Fields | Definition
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP table version</td>
<td>The BGP Table Version is the main number used. This number is the same as the Generation ID of any BGP prefix for a specific address family and is used to track changes to the BGP route table.</td>
</tr>
<tr>
<td>Local Route ID</td>
<td>A 32-bit integer in dotted decimal format identifying the router, about which information is displayed. This is a configured value.</td>
</tr>
</tbody>
</table>

Status Codes
Status of the table entry. The status is displayed at the beginning of each line in the table. It can be one of the following values:

- **s** — The table entry is suppressed.
- ***** — The table entry is valid.
- **>** — The table entry is the best entry to use for that network.
- **i** — The table entry was learned via an internal BGP (iBGP) session.
- **S** — The table entry stale route.

Origin codes
Origin of the entry. The origin code is placed at the end of each line in the table. It can be one of the following values:

- **i** — Entry originated from an Interior Gateway Protocol (IGP) and was advertised with a `network` router configuration command.
- **e** — Entry originated from an Exterior Gateway Protocol (EGP).
6.10.1.23. show bgp ipv6 neighbors

This command displays information about Border Gateway Protocol (BGP) and TCP connections to neighbors.

Format
show bgp ipv6 neighbors [<ip-address> [interface {<slot/port> | vlan <1-4093>}] [advertised-routes | policy | received-routes | rejected-routes | routes] | policy | autodetect interface <slot/port>[advertised-routes | policy | received-routes | rejected-routes | routes]]

Fields Definition

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>Displays information about the IPv6 neighbor. If this argument is omitted,</td>
</tr>
<tr>
<td></td>
<td>information about all neighbors is displayed.</td>
</tr>
<tr>
<td>Policy</td>
<td>Display inbound and outbound policies for all neighbors or the specified</td>
</tr>
<tr>
<td></td>
<td>neighbor.</td>
</tr>
<tr>
<td>advertised-routes</td>
<td>Display routes advertised to a neighbor.</td>
</tr>
<tr>
<td>received-routes</td>
<td>Display routes received from a neighbor.</td>
</tr>
<tr>
<td>rejected-routes</td>
<td>Display routes rejected by inbound policy.</td>
</tr>
<tr>
<td>Routes</td>
<td>Display routes accepted by inbound policy.</td>
</tr>
<tr>
<td>Autodetect</td>
<td>Display information about the autodetected IPv6 neighbor on the specified</td>
</tr>
<tr>
<td></td>
<td>interface-name.</td>
</tr>
</tbody>
</table>

Default None

Mode Privileged Exec
User Exec
Display Messages

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Address</td>
<td>The IP Address of the Peer's BGP interface.</td>
</tr>
<tr>
<td>Autodetect Status</td>
<td>Display only if the peer is configured as “autodetect”. The field shows one of the following statuses: “Peer is detected”, “Peer is not detected”, or “Multiple peers are detected”.</td>
</tr>
<tr>
<td>Remote AS</td>
<td>Autonomous system number of the neighbor.</td>
</tr>
<tr>
<td>Allow my ASN occurrences</td>
<td>The allow-ass-in count for a given peer.</td>
</tr>
<tr>
<td>Peer ID</td>
<td>Router ID of the neighbor.</td>
</tr>
<tr>
<td>Peer Admin Status</td>
<td>States whether BGP is enabled or disabled of the neighbor.</td>
</tr>
<tr>
<td>Peer State</td>
<td>Finite state machine (FSM) stage of session negotiation.</td>
</tr>
<tr>
<td>Local Interface Address</td>
<td>The IPv6 address used as the source IP address in packets sent to this neighbor.</td>
</tr>
<tr>
<td>Local Port</td>
<td>The port number of the local port.</td>
</tr>
<tr>
<td>Remote Port</td>
<td>The port number of the remote port.</td>
</tr>
<tr>
<td>Connection Retry Interval</td>
<td>Time interval, in seconds, at which the device resend messages to this neighbor.</td>
</tr>
<tr>
<td>Neighbor Capabilities</td>
<td>BGP capabilities advertised and received from this neighbor.</td>
</tr>
<tr>
<td>IPv4 Unicast Support</td>
<td>Support IPv4 unicast packets or not. The valid value will be Both, Sent, Received or None.</td>
</tr>
<tr>
<td>VPNv4 Unicast Support</td>
<td>Support VPNv4 unicast packets or not. The valid value will be Both, Sent, Received or None.</td>
</tr>
<tr>
<td>IPv6 Unicast Support</td>
<td>Support IPv6 unicast packets or not. The valid value will be Both, Sent, Received or None.</td>
</tr>
<tr>
<td>RFC 5549 Support</td>
<td>Support RFC5549 or not.</td>
</tr>
<tr>
<td>BGP Graceful-Restart Mode</td>
<td>BGP Graceful-Restart mode. Enabled or Disabled.</td>
</tr>
<tr>
<td>BGP Graceful-Restart Restart-Time</td>
<td>BGP graceful restart helper restart timer.</td>
</tr>
<tr>
<td>Template Name</td>
<td>Name of a locally configured peer policy template.</td>
</tr>
<tr>
<td>Update Source</td>
<td>The configured value for the source IP address of packets sent to this neighbor. This field is only included in the output if the update source is configured.</td>
</tr>
<tr>
<td>Configured Hold Time</td>
<td>Configured time for this neighbor, in seconds, that BGP will maintain the session with this neighbor without receiving a messages.</td>
</tr>
<tr>
<td>Configured Keep Alive Time</td>
<td>Configured time interval for this neighbor, in seconds, at which keepalive messages are transmitted to this neighbor.</td>
</tr>
<tr>
<td>Negotiated Hold Time</td>
<td>Negotiated time with this neighbor, in seconds, that BGP will maintain the session with this neighbor without receiving messages.</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Negotiated Keep Alive Time</td>
<td>Negotiated time interval with this neighbor, in seconds, at which keepalive messages are transmitted to this neighbor.</td>
</tr>
<tr>
<td>MD5 Password</td>
<td>The TCP MD5 password, if one is configured, in plain text.</td>
</tr>
<tr>
<td>eBGP-MultiHop</td>
<td>Configured TTL value of the external BGP for this neighbor.</td>
</tr>
<tr>
<td>Last Error ()</td>
<td>Last error from received or sent for this neighbor.</td>
</tr>
<tr>
<td>Last SubError</td>
<td>Last sub error for this neighbor.</td>
</tr>
<tr>
<td>Time Since Last Error</td>
<td>The time stamps in which the last error occurred.</td>
</tr>
<tr>
<td>Established Transitions</td>
<td>The number of connections established.</td>
</tr>
<tr>
<td>Flap Count</td>
<td>Total number of times the neighbor flaps.</td>
</tr>
<tr>
<td>Established Time</td>
<td>The time from the last connection established.</td>
</tr>
<tr>
<td>Time Since Last Update</td>
<td>The time from the last Update message received.</td>
</tr>
<tr>
<td>IPv4 Outbound Update Group</td>
<td>The corresponding index number of the IPv4 update group.</td>
</tr>
<tr>
<td>IPv6 Outbound Update Group</td>
<td>The corresponding index number of the IPv6 update group.</td>
</tr>
<tr>
<td>BFD Enabled to Detect Fast Fallover</td>
<td>Indicate if the BFD is enabled for this BGP neighbor.</td>
</tr>
<tr>
<td>Msgs Sent</td>
<td>Total number of transmitted messages.</td>
</tr>
<tr>
<td>Msgs Rcvd</td>
<td>Total number of received messages.</td>
</tr>
<tr>
<td>Open</td>
<td>Number of open messages sent and received.</td>
</tr>
<tr>
<td>Update</td>
<td>Number of update messages sent and received.</td>
</tr>
<tr>
<td>Keepalive</td>
<td>Number of keepalive messages sent and received.</td>
</tr>
<tr>
<td>Notification</td>
<td>Number of notification (error) messages sent and received.</td>
</tr>
<tr>
<td>Refresh</td>
<td>Number of route refresh request messages sent and received.</td>
</tr>
<tr>
<td>Total</td>
<td>Total number of messages sent and received.</td>
</tr>
<tr>
<td>Received UPDATE Queue Size</td>
<td>The statistics of received UPDATE queue (Size, High, Limit, Drops).</td>
</tr>
<tr>
<td>IPv4 Prefix Statistics</td>
<td>The statistics of the IPv4 prefix.</td>
</tr>
<tr>
<td>IPv6 Prefix Statistics</td>
<td>The statistics of the IPv6 prefix.</td>
</tr>
</tbody>
</table>
This command displays all global configuration related to IPv4 route reflection, including the cluster ID and whether client-to-client route reflection is enabled, and lists all the neighbors that are configured as route reflector clients.

If a route reflector client is configured with an outbound route map, the output warns that the set statements in the route map are ignored when reflecting routes to this client.

Format
show bgp ipv6 route-reflection

Default
None

Mode
Privileged Exec
User Exec

Display Messages

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster ID</td>
<td>The cluster ID used by this router. The value configured with the <code>bgp cluster-id</code> command is displayed. If no cluster-ID is configured, the local router ID is shown and tagged as default.</td>
</tr>
<tr>
<td>Client-to-client Reflection</td>
<td>Display Enabled when this router reflectors routes received from it clients to its other clients; otherwise display Disabled.</td>
</tr>
<tr>
<td>Clients</td>
<td>A list of this router’s internal peers that have been configured as router reflector clients.</td>
</tr>
<tr>
<td>Non-client Internal Peer</td>
<td>A list of this router’s internal peers that are not configured as route reflector clients. Routes from non-client peers are reflected to clients and vice-versa.</td>
</tr>
</tbody>
</table>
6.10.1.25. **show bgp ipv6 statistics**

This command displays the recent decision process history.

Format
show bgp ipv6 statistics

Default
None

Mode
Privileged Exec
User Exec

Display Messages

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta T</td>
<td>The time values since decision process ran. Hours:minutes:seconds if the elapsed time is less than 24 hours. Otherwise, days:hours.</td>
</tr>
<tr>
<td>Phase</td>
<td>In which decision process phase that ran.</td>
</tr>
<tr>
<td>Upd Grp</td>
<td>Outbound update group ID. Only set when decProcPhase is 3.</td>
</tr>
<tr>
<td>GenId</td>
<td>Generation ID of BGP routing table when decision process was run. The generation ID is incremented each time phase 2 of the decision process is run and when there is a change to the status of aggregate addresses.</td>
</tr>
<tr>
<td>Reason</td>
<td>Why decision process was triggered.</td>
</tr>
<tr>
<td>Peer</td>
<td>Phase 1 of the decision process can be triggered for a specific peer when a peer’s inbound routing policy changes or the peer is reset. When phase 1 is run for a single peer, the peer’s IP address is given.</td>
</tr>
</tbody>
</table>
| Duration | How long the decision process phase took, in millisecond.
| Adds | Number of routes added during decision process phase. |
| Mods | Number of routes modified during decision process phase. Always 0 in phase 1. |
| Dels | Number of routes deleted during decision process phase. Always 0 in phase 1. |

6.10.1.26. **show bgp ipv6 summary**

This command displays the status of all Border Gateway Protocol (BGP) connections.

Format
show bgp ipv6 summary

Default
None

Mode
Privileged Exec
User Exec

Display Messages
6.10.1.27. show bgp ipv6 update-group

This command displays information about the Border Gateway Protocol (BGP) update groups and their numbers.

Format show bgp ipv6 update-group [index-group | peerip add | autodetect interface <interface-name>]

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>index-group</td>
<td>Update group type with its corresponding index number. The range of update-</td>
</tr>
<tr>
<td></td>
<td>group index numbers is from 1 to 4294967295.</td>
</tr>
<tr>
<td>Peeripadd</td>
<td>IPv4 or IPv6 address of a single neighbor who is a member of an update group.</td>
</tr>
<tr>
<td>Autodetect</td>
<td>The routing interface on which the neighbor’s link local IPv6 address is auto</td>
</tr>
<tr>
<td></td>
<td>detected.</td>
</tr>
</tbody>
</table>

Default None

Mode Privileged Exec
User Exec
Display Messages

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update Group</td>
<td>Update-group number.</td>
</tr>
<tr>
<td>Peer Type</td>
<td>Update-group type (internal or external).</td>
</tr>
<tr>
<td>Minimum Advertisement Interval</td>
<td>Minimum time, in seconds, between update advertisements.</td>
</tr>
<tr>
<td>Send Community</td>
<td>If the BGP communities are included in route advertisements to members of the group.</td>
</tr>
<tr>
<td>Remove Private ASNs</td>
<td>If BGP removes private ASNs from paths advertised to members of this update group.</td>
</tr>
<tr>
<td></td>
<td>Replace if BGP replaces private ASNs with the local ASN.</td>
</tr>
<tr>
<td></td>
<td>Remove if private ASNs are simply removed.</td>
</tr>
<tr>
<td></td>
<td>Otherwise No.</td>
</tr>
<tr>
<td>Route Reflector Client</td>
<td>If peers in this update group are route reflector clients.</td>
</tr>
<tr>
<td>Neighbor AS Path Access List Out</td>
<td>Neighbor AS Path list out. All members of the group use the same.</td>
</tr>
<tr>
<td>Neighbor Prefix List Out</td>
<td>Neighbor prefix list out. All members of the group use the same.</td>
</tr>
<tr>
<td>Neighbor Route Map Out</td>
<td>Neighbor route map out. All members of the group use the same.</td>
</tr>
<tr>
<td>Members Added</td>
<td>Number of members added to the group.</td>
</tr>
<tr>
<td>Members Removed</td>
<td>Number of members removed from the group.</td>
</tr>
<tr>
<td>Update Version</td>
<td>Number of times phase 3 of the decision process has run for the group.</td>
</tr>
<tr>
<td>Number of UPDATES Sent</td>
<td>Number of UPDATE packets sent to this group.</td>
</tr>
<tr>
<td>Time Since Last UPDATE</td>
<td>Number of seconds since last UPDATE sent to group.</td>
</tr>
<tr>
<td>Current Prefixes</td>
<td>Number of prefixes currently advertised to the group.</td>
</tr>
<tr>
<td>Current Paths</td>
<td>Number of paths in update group's Adj-RIB-Out.</td>
</tr>
<tr>
<td>Prefixes Advertised</td>
<td>Number of prefixes advertised.</td>
</tr>
<tr>
<td>Prefixes Withdrawn</td>
<td>Number of prefixes withdrawn.</td>
</tr>
<tr>
<td>UPDATE Send Failures</td>
<td>Number of Tx of UPDATE message failed to one or more group members.</td>
</tr>
<tr>
<td>Current Members</td>
<td>The IPv4 address of all current members of the group.</td>
</tr>
</tbody>
</table>
6.10.1.28. show ipv6 protocols bgp

This command displays setting of IPv6 BGP configuration.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>The number of times decision process phase 3 had run before this history table entry.</td>
</tr>
<tr>
<td>Delta T</td>
<td>When update send occurred.</td>
</tr>
<tr>
<td>Duration</td>
<td>How long the update send process took.</td>
</tr>
<tr>
<td>UPD Built</td>
<td>Number of UPDATE messages constructed during this update send.</td>
</tr>
<tr>
<td>UPD Sent</td>
<td>Number of UPDATE messages transmitted during this update send. Generally each UPDATE built is sent once to each member of the update group.</td>
</tr>
<tr>
<td>Paths Sent</td>
<td>Number of prefixes advertised during this update send.</td>
</tr>
<tr>
<td>Pfxs Adv</td>
<td>Number of prefixes withdrawn during this update send.</td>
</tr>
<tr>
<td>Pfxs Wd</td>
<td>Number of paths advertised.</td>
</tr>
</tbody>
</table>

Routing Protocol | Routing protocol of these setting. It’s always BGP in this case.
BGP Router ID | Setting of BGP router ID
Local AS Number | AS Number of this device.
BGP Admin Mode | Whether BGP protocol is enabled. (Enabled or Disabled).
BGP GR-Enabled Mode | Whether BGP Graceful Restart Enabled Mode is enabled. (Enabled or Disabled)
BGP GR-Aware Mode | Whether BGP Graceful Restart Aware Mode is enabled. (Enabled or Disabled)
BGP GR restart-time | Setting of BGP Graceful Restart Timer.
BGP GR stalepath-time | Setting of BGP Graceful Stale Path Timer.
Maximum Paths | The maximum number of next hops in an internal or external BGP route. |
6.10.1.29. **show bgp ipv6 listen range**

This command displays IPv6 BGP listen ranges as well as peers discovered.

Format
show bgp ipv6 listen range [<ipv6-prefix>/<prefix-length>]

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>listen range</td>
<td>Display all listen subnet ranges that have been created.</td>
</tr>
<tr>
<td><ipv6-prefix>/<prefix-length></td>
<td>Display information about specified listen range.</td>
</tr>
</tbody>
</table>

Default
None

Mode
Privileged Exec
User Exec

Display Messages

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listen Range</td>
<td>The IP address range to listen BGP peers.</td>
</tr>
<tr>
<td>Inherited Template</td>
<td>The peer template inherited.</td>
</tr>
<tr>
<td>Member</td>
<td>The IP address of the BGP peer discovered.</td>
</tr>
<tr>
<td>ASN</td>
<td>The AS number which the BGP peer belongs to.</td>
</tr>
</tbody>
</table>
6.10.2. Configuration commands

6.10.2.1. router bgp

Use this command to enable BGP, enter the Border Gateway Protocol (BGP) router mode, and identify the AS number of the router. Only a single instance of BGP can be run and the router can only belong to a single AS. no router bgp command disables BGP and resets all BGP configuration to default values. Alternatively, you can use no enable command in BGP router configuration mode to disable BGP globally without clearing the BGP configuration.

| Format | router bgp <autonomous-system-number>
<p>| | no router bgp <autonomous-system-number> |</p>
<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>autonomous-system-number</td>
<td>Number of an autonomous system that identifies the router to other BGP routers and tags the routing information that is passed along. Number in the range from 1 to 4294967295.</td>
</tr>
</tbody>
</table>

Default: BGP inactive
Mode: Global Config

6.10.2.2. enable

Use enable command resets the default administrative mode of BGP in the router (active). no enable command sets the administrative mode of BGP in the router to inactive. When you disable BGP, BGP retains its configuration.

Format: enable
no enable

Default: Enabled
Mode: Router BGP Config Mode

6.10.2.3. aggregate-address

Use aggregate-address command to create an aggregate entry in a Border Gateway Protocol (BGP) database. Use no aggregate-address command to disable an aggregate entry in a Border Gateway Protocol (BGP) database.
To be considered a match for an aggregate address, a prefix must be more specific (i.e. have a longer prefix length) than the aggregate address. A prefix whose prefix length equals the length of the aggregate address is not considered a match.

BGP accepts up to 128 summary addresses for each address family.

Format

```
aggregate-address {<address> <mask> | <ipv6-prefix> <prefix-length>} [as-set] [summary-only]
no aggregate-address {<address> <mask> | <ipv6-prefix> <prefix-length>} [as-set] [summary-only]
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>Summary IPv4 address. The default route cannot be configured as an aggregate address.</td>
</tr>
<tr>
<td>Mask</td>
<td>Summary IPv4 mask. The mask cannot be a 32-bit mask (255.255.255.255). The combination of address and mask must be a valid unicast destination prefix.</td>
</tr>
<tr>
<td>ipv6-prefix</td>
<td>Summary IPv6 prefix. Not support under IPv4 VRF address family mode.</td>
</tr>
<tr>
<td>prefix-length</td>
<td>Summary IPv6 prefix length. The range is from 1 to 127. Not support under IPv4 VRF address family mode.</td>
</tr>
<tr>
<td>as-set</td>
<td>if this option is set, the aggregate is advertised with a non-empty AS_PATH. If the AS_PATH of all contained routes is the same, the AS_PATH of the aggregate is the AS_PATH of the contained route. Otherwise, if the contained routes have different AS_PATHs, the AS_PATH attribute includes an AS_SET with each of the AS numbers listed in the AS_PATHs of the aggregate routes.</td>
</tr>
<tr>
<td>summary-only</td>
<td>Filters all more-specific routes within the aggregate address and not being advertised to neighbors.</td>
</tr>
</tbody>
</table>

Default

None

Unless the options are specified, the aggregate is advertised with the ATOMIC_AGGREGATE attribute and an empty AS path, and the more specific routes are advertised along with the aggregate.

Mode

Router BGP Config Mode
IPv4 VRF Address Family

6.10.2.4. bgp aggregate-different-meds

Use `bgp aggregate-different-meds` command to allow aggregation of routes with different MED values. Use `no bgp aggregate-different-meds` command to disable this function.

When this command is issued, the path for an active aggregate address is advertised without a MED attribute. When this command is not issued, if multiple routes match an aggregate address, but have different MEDs, the aggregate takes the MED of the first matching route. Any other matching prefix with the same MED is included in the aggregate. Matching prefixes with different MEDs, are not considered to be part of the aggregate and continue to be advertised as individual routes.

Format

```
bgp aggregate-different-meds
no bgp aggregate-different-meds
```
All the routes aggregated by a given aggregate address must have the same MED value.

Mode
- Router BGP Config Mode
- IPv6 Address Family Config Mode
- IPv4 VRF Address Family

6.10.2.5. bgp always-compare-med

Use `bgp always-compare-med` command to compare MED values in paths received from peers in different ASs. Use `no bgp always-compare-med` command to disable this function.

Format
- bgp always-compare-med
- no bgp always-compare-med

Default
Disable
MED values are only compared for paths received from peers in the same AS.

Mode
- Router BGP Config Mode
- IPv6 Address Family Config Mode
- IPv4 VRF Address Family

6.10.2.6. bgp bestpath as-path ignore

This command ignores the AS PATH length in the best path calculation during the decision process. For IPv6 routes, configure this command under the IPv6 Address Family Config mode.

To revert to the default behavior, where AS PATH length is not ignored in the BGP best path calculation, use the no form of this command.

Format
- bgp bestpath as-path ignore
- no bgp bestpath as-path ignore

Default
Disable
AS PATH length is not ignored in the BGP best path calculation.

Mode
- Router BGP Config Mode
- IPv6 Address Family Config Mode
- IPv4 VRF Address Family
6.10.2.7. **bgp client-to-client reflection**

Use this command to reflect routes received from its client ot its other clients. To disable client-to-client reflection, use the no form of this command.

Format
```
bgp client-to-client reflection
no bgp client-to-client reflection
```

Default
Enabled when a router is configured as a route reflector.

Mode
- Router BGP Config Mode
- IPv6 Address Family Config Mode
- IPv4 VRF Address Family

6.10.2.8. **bgp cluster-id**

Use this command to specify the cluster ID of a route reflector. The same cluster ID is used for both IPv4 and IPv6 route reflection. To revert the cluster ID to its default, use the no form of this command.

Format
```
bgp cluster-id <cluster-id>
no bgp cluster-id
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>cluster-id</td>
<td>A non-zero 32-bit identifier that uniquely identifies a cluster of route reflectors and their clients. The cluster ID may be entered in dotted notation like IPv4 address or as an integer. The range is from 1 to 4294967295.</td>
</tr>
</tbody>
</table>

Default
Use BGP router ID as the cluster ID if a route reflector does not configure cluster ID.

Mode
- Router BGP Config Mode
- IPv4 VRF Address Family

6.10.2.9. **bgp default local-preference**

This command changes the default local preference value. To return the local preference value to the default setting, use the no form of this command.

Format
```
bgp default local-preference <number>
no bgp default local-preference
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>Local preference value from 0 to 4294967295.</td>
</tr>
</tbody>
</table>
6.10.2.10. bgp fast-external-failover

This command configures Border Gateway Protocol (BGP) routing process to immediately reset external BGP peering sessions if the link used to reach these peers goes down. **no bgp fast-external-failover** command disables this function.

Format

```
bgp fast-external-failover
no bgp fast-external-failover
```

Default Enabled

Mode Router BGP Config Mode
IPv4 VRF Address Family

6.10.2.11. bgp fast-internal-failover

This command configures Border Gateway Protocol (BGP) routing process to immediately reset internal BGP peering sessions if the link used to reach these peers goes down. **no bgp fast-internal-failover** command disables fast failover for internal peers.

Format

```
bgp fast-internal-failover
no bgp fast-internal-failover
```

Default Enabled

Mode Router BGP Config Mode
IPv4 VRF Address Family

6.10.2.12. bgp log-neighbor-changes

This command enables logging of BGP neighbor resets. To disable the logging of changes in BGP neighbor adjacencies, use the **no** form of this command.

Both backward and forward adjacency state changes are logged. Forward state changes, except for transitions to the Established state, are logged at the Informational severity level. Backward state changes and forward changes to Establish state are logged at the Notice severity level.

Format

```
bgp log-neighbor-changes
```
no bgp log-neighbor-changes

Default Disabled

Mode Router BGP Config Mode
IPv4 VRF Address Family

6.10.2.13. bgp router-id

This command configures a valid IPv4 unicast address uniquely identifying the router bgp id. The <router-id> is a configured value. There is no default BGP router ID. The system does not select a router ID automatically and must configure one manually.

Format bgp <router-id>
no bgp <router-id>

Fields Definition
router-id An IPv4 address for BGP to use as its router ID. Not required to be an address assigned to the router. Setting the router ID to 0.0.0.0 disables BGP. Changing the router ID disables and re-enables BGP, which causes all adjacencies to be reestablished.

Default None
Mode Router BGP Config Mode

6.10.2.14. bgp maxas-limit

This command specifies Border Gateway Protocol (BGP) a limit on the length of AS PATHs that BGP accepts from its neighbors. If BGP receives a path whose AS PATH attribute is longer than the configured limit, BGP sends a NOTIFICATION and resets the adjacency. To return the router to default operation, use the no form of this command.

Format bgp maxas-limit <number>
no bgp maxas-limit

Fields Definition
Number Maximum number of autonomous system numbers in the AS PATH attribute of the BGP Update message, ranging from 1 to 100.

Default 75
Mode Router BGP Config Mode
IPv4 VRF Address Family
6.10.2.15. bgp graceful-restart

The user is able to enable BGP graceful restart enabled mode by command bgp graceful-restart in BGP router configuration mode. To disable the BGP graceful restart enabled mode, use no form of this command.

Format
 bgp graceful-restart
 no bgp graceful-restart

Default Disable
Mode Router BGP Config Mode

6.10.2.16. bgp graceful-restart-helper

The user is able enable BGP graceful restart helper mode by command bgp graceful-restart-helper in BGP router configuration mode. To disable the BGP graceful restart helper mode, use no form of this command.

Format
 bgp graceful-restart-helper
 no bgp graceful-restart-helper

Default Disable
Mode Router BGP Config Mode

6.10.2.17. bgp graceful-restart restart-time <restart-time>

The user is able configure BGP graceful restart helper restart timer by command bgp graceful-restart restart-time in BGP router configuration mode. To reset BGP graceful restart helper restart timer to default value, use no form of this command.

Format
 bgp graceful-restart restart-time <restart-time>
 no bgp graceful-restart restart-time <restart-time>

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restart-time</td>
<td>The setting of the restart timer ranged from 1 to 3600. The timer is used by BGP GR aware node to decide whether restart operation of neighbor BGP GR enabled node is successful. The restart operation is considered failed if the BGP Aware node does not received BGP OPEN message from BGP enabled node after the timer expires.</td>
</tr>
</tbody>
</table>

Default 180 seconds
Mode
Router BGP Config Mode

6.10.2.18. bgp graceful-restart stalepath-time <stalepath-time>

The user is able configure BGP graceful restart helper stale path timer by command `bgp graceful-restart stalepath-time` in BGP router configuration mode. To reset BGP graceful restart helper restart timer to default value, use no form of this command.

Format

```
bgp graceful-restart stalepath-time <stalepath-time>
no bgp graceful-restart stalepath-time <stalepath-time>
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stalepath-time</td>
<td>The setting of the stale path timer ranged from 1 to 3600. The timer is used by BGP GR aware node to remove state routes learned from neighboring BGP GR enabled node after the timer expires.</td>
</tr>
</tbody>
</table>

Default
300 seconds

Mode
Router BGP Config Mode

6.10.2.19. bgp listen

The user is able to activate dynamic neighbors feature and specify the maximum number of IPv4/IPv6 neighbors that can be created, IPv4/IPv6 prefix for listening range, as well as the peer template inherited by command `bgp listen` in BGP router configuration mode. To de-activate dynamic neighbors feature, use no form of this command.

Format

```
bgp listen {limit <max-num>| range <prefix>/<prefix-length> [inherit peer <peer-template-name>] } 
no bgp listen {limit <max-num>| range <prefix>/<prefix-length> [inherit peer <peer-template-name>] } 
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Peers</td>
<td>Maximum number of dynamic members in this VRF with specific address family. Number from 1 to 100. Default is 20.</td>
</tr>
<tr>
<td>Prefix/Length</td>
<td>Specify the listen range IP prefix and prefix length to be created.</td>
</tr>
<tr>
<td>Template</td>
<td>Specify the name of a BGP peer template that is to be associated with the specified listen subnet range and inherited with dynamically created neighbors. The template will be inherited with dynamically created neighbors.</td>
</tr>
</tbody>
</table>

Default
No subnets are associated with a BGP listen subnet range, and the BGP dynamic neighbor feature is not activated.
Mode Router BGP Config Mode
IPv6 Address Family Mode

6.10.2.20. **exit**

This command is used to exit bgp configuration mode.

Format exit

Default None

Mode Router BGP Config Mode

6.10.2.21. **timers bgp**

This command is used to set the keepalive and holdtime timers. To return the router to default operation, use the no form of this command.

Format timers bgp <keepalive> <holdtime>

no timers bgp

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keepalive</td>
<td>The number of seconds this BGP speaker waits for a keepalive message before deciding that the connection is down. We recommend you configure the keepalive parameter as 1/3 of the holdtime parameter. The range is from 0 to 65535.</td>
</tr>
<tr>
<td>Holdtime</td>
<td>The number of seconds this BGP speaker waits for a keepalive, update, or notification message before deciding that the connection is down. We recommend you configure the holdtime parameter as 3 times the keepalive parameter. The range is from 0 to 65535.</td>
</tr>
</tbody>
</table>

Default

The default value of keepalive is 60 seconds.
The default value of holdtime is 180 seconds.

Mode Router BGP Config Mode
IPv4 VRF Address Family

6.10.2.22. **neighbor default-originate route-map**

This command is used to originate a default route to a specific neighbor. Use the option if-default-present to originate the default route only if the default route exists in the routing table. The global default-originate command is overridden by the default-originate setting for a neighbor if enabled.
A route map may be configured to set attributes on the default route sent to the neighbor. If the route map includes a `match ip-address` term, that term is ignored. If the route map includes `match community` or `match as-path` terms, the default route is not advertised. If there is no route map with the route map name given, the default route is not advertised.

To prevent BGP from originating a default route to a specific neighbor, use the no form of this command.

Format

```
neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect}
  interface <slot/port>} default-originate [if-default-present] [route-map <route-map-name>]
```

```
no neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect}
  interface <slot/port>} default-originate [if-default-present] [route-map]
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4-address</td>
<td>IPv4 address of the neighboring router.</td>
</tr>
<tr>
<td>ipv6-address</td>
<td>IPv6 address of the neighboring router.</td>
</tr>
<tr>
<td>Interface</td>
<td>If the neighbor’s IPv6 address is a link local address, the local interface must be specified as well.</td>
</tr>
<tr>
<td>autodetect</td>
<td>The routing interface on which the neighbor’s IPv6 link local address is auto detected.</td>
</tr>
<tr>
<td>route-map-name</td>
<td>A route map may be configured to set attributes on the default route advertised to the neighbor.</td>
</tr>
</tbody>
</table>

Default

No default route is originated by default.

Mode

Router BGP Config Mode
IPv6 Address Family Config Mode
IPv4 VRF Address Family

6.10.2.23. neighbor inherit peer

This command is used to inherit neighbor configuration parameters from a peer template. Neighbor session and policy parameters can be configured once in a peer template and inherited by multiple neighbors, eliminating the need to configure the same parameters for each neighbor. A neighbor can inherit directly from only one peer template.

To remove the inheritance, use the no form of this command.

Format

```
neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect}
  interface <slot/port>} inherit peer <templatename>
```

```
no neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect}
  interface <slot/port>} inherit peer
```
Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4-address</td>
<td>IPv4 address of the neighboring router.</td>
</tr>
<tr>
<td>ipv6-address</td>
<td>IPv6 address of the neighboring router. Not support under IPv4 VRF address family mode.</td>
</tr>
<tr>
<td>Interface</td>
<td>If the neighbor’s IPv6 address is a link local address, the local interface must be specified as well. Not support under IPv4 VRF address family mode.</td>
</tr>
<tr>
<td>autodetect interface</td>
<td>The routing interface on which the neighbor’s IPv6 link local address is auto detected.</td>
</tr>
<tr>
<td>Template name</td>
<td>Name of the peer template whose peer configuration parameters are to be inherited by this neighbor.</td>
</tr>
</tbody>
</table>

Default

None

Mode

- Router BGP Config Mode
- IPv4 VRF Address Family

6.10.2.24. neighbor local-as

This command is used to advertise the configured local AS number instead of the router’s own AS in the routes advertised to the neighbor. This command is only allowed on the external BGP neighbors. To remove the local AS, use the no form of this command.

Format

```
neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} local-as <as-number> no-prepend replace-as
```

```
no neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} local-as
```

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4-address</td>
<td>IPv4 address of the neighboring router.</td>
</tr>
<tr>
<td>ipv6-address</td>
<td>IPv6 address of the neighboring router. Not support under IPv4 VRF address family mode.</td>
</tr>
<tr>
<td>Interface</td>
<td>If the neighbor’s IPv6 address is a link local address, the local interface must be specified as well. Not support under IPv4 VRF address family mode.</td>
</tr>
<tr>
<td>autodetect interface</td>
<td>The routing interface on which the neighbor’s IPv6 link local address is auto detected.</td>
</tr>
<tr>
<td>As-number</td>
<td>The AS number to advertise as the local AS in the AS PATH sent to the neighbor.</td>
</tr>
<tr>
<td>no-prepend</td>
<td>Do not prepend the local-AS in the AS PATH received in the updates from this neighbor.</td>
</tr>
<tr>
<td>replace-as</td>
<td>Replace the router’s own AS with the local-AS in the AS PATH sent to the neighbor.</td>
</tr>
</tbody>
</table>
6.10.2.25. **neighbor update-source**

This command is used to configure BGP to use the IP address on the specific routing interface as the source address for the TCP connection with a neighbor.
To use the primary IP address on the outgoing interface to the neighbor for the TCP connection, use the no form of this command.

Format

```plaintext
neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} update-source {<slot/port> | loop <loop interface number> | vlan <vlan id>} [encrypted]
```

```plaintext
no neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} update-source
```

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4-address</td>
<td>IPv4 address of the neighboring router.</td>
</tr>
<tr>
<td>ipv6-address</td>
<td>IPv6 address of the neighboring router. Not support under IPv4 VRF address family mode.</td>
</tr>
<tr>
<td>Interface</td>
<td>If the neighbor’s IPv6 address is a link local address, the local interface must be specified as well. Not support under IPv4 VRF address family mode.</td>
</tr>
<tr>
<td>autodetect interface</td>
<td>The routing interface on which the neighbor’s IPv6 link local address is auto detected.</td>
</tr>
<tr>
<td>slot/port</td>
<td>Valid slot and port number separated by forward slashes.</td>
</tr>
<tr>
<td>loop interface number</td>
<td>The valid value is from 0 to 63.</td>
</tr>
<tr>
<td>vlan id</td>
<td>The valid value is from 1 to 4093.</td>
</tr>
</tbody>
</table>

Default

Disable
Use the primary IP address on the outgoing interface to the neighbor.

Mode

Router BGP Config Mode
IPv4 VRF Address Family

6.10.2.26. **neighbor description**

This command is used to record a text description for a neighbor. This description is informational and has no functional impact.
To remove the description, use the no form of this command.
Format
neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} description <description>

no neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} description

Fields
<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4-address</td>
</tr>
<tr>
<td>ipv6-address</td>
</tr>
<tr>
<td>Interface</td>
</tr>
<tr>
<td>autodetect interface</td>
</tr>
</tbody>
</table>

Default: None

Mode:
- Router BGP Config Mode
- IPv4 VRF Address Family

6.10.2.27. **neighbor ebgp-multihop**

This command is used to form neighborship with non-directly-connected external neighbor with configured maximum hop-count allowed to reach it. For internal BGP neighbors, the TTL value remains 64 and cannot be modified. To make the **update-source** config work for external BGP neighbors, **ebgp-multihop** should be configured to increase the TTL value instead of the default TTL of 1.

To remove the neighborship, use the no form of this command.

Format
neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} ebgp-multihop <hop-count>

no neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} ebgp-multihop

Fields
<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4-address</td>
</tr>
<tr>
<td>ipv6-address</td>
</tr>
<tr>
<td>Interface</td>
</tr>
<tr>
<td>autodetect interface</td>
</tr>
</tbody>
</table>
6.10.2.28. neighbor password

This command is used to enable Message Digest 5 (MD5) authentication on a TCP connection between two BGP peers and configures an authentication key. MD5 must either be enabled or disabled on both peers. The same password must be configured on both peers.

To disable this function, use the no form of this command.

Format
neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} password [<string> encrypted]
no neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} password

Fields

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4-address</td>
</tr>
<tr>
<td>ipv6-address</td>
</tr>
<tr>
<td>interface</td>
</tr>
<tr>
<td>autodetect interface</td>
</tr>
<tr>
<td>password</td>
</tr>
</tbody>
</table>

Default None

Mode Router BGP Config Mode
IPv4 VRF Address Family

6.10.2.29. neighbor connect-retry-interval

This command is used to configure the initial connection retry time for a specific neighbor. If a neighbor does not respond to an initial TCP connection attempt, BGP retries three times. The first retry is after the retry interval configured with neighbor connect-retry-interval. Each subsequence retry doubles the previous retry interval. So by
default, the TCP connection is retried after 2, 4, and 8 seconds. If none of the retries is successful, the adjacency is reset to IDLE state and the IDLE hold timer is started. BGP skips the retries and transitions to IDLE state if TCP returns an error, such as destination unreachable, on a connection attempt.

To return the router to default initial connection retry time for a specific neighbor, use the no form of this command.

Format

```
neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} connect-retry-interval <connection-retry-interval>
```

```
no neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} connect-retry-interval
```

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipv4-address</code></td>
<td>IPv4 address of the neighboring router.</td>
</tr>
<tr>
<td><code>ipv6-address</code></td>
<td>IPv6 address of the neighboring router.</td>
</tr>
<tr>
<td>Interface</td>
<td>If the neighbor’s IPv6 address is a link local address, the local interface must be specified as well.</td>
</tr>
<tr>
<td><code>autodetect interface</code></td>
<td>The routing interface on which the neighbor’s IPv6 link local address is auto detected.</td>
</tr>
<tr>
<td><code>connection-retry-interval</code></td>
<td>The valid range is 1 to 65535 seconds.</td>
</tr>
</tbody>
</table>

Default 2 seconds

Mode Router BGP Config Mode
- IPv4 VRF Address Family

6.10.2.30. neighbor maximum-prefix

This command is used to limit how many prefixes can be received from a neighbor. The prefix limit is compared against the number of prefixes received from neighbor, including prefixes that are rejected by inbound policy. A neighbor that exceeds the limit is shutdown unless the `warning-log` option is configured.

To revert to the default value for the maximum number of prefixes that BGP will accept from a specific neighbor, use the no form of this command.

Format

```
neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} maximum-prefix {<maximum> [<threshold> [warning-only] | unlimited]}
```

```
no neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} maximum-prefix
```

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipv4-address</code></td>
<td>IPv4 address of the neighboring router.</td>
</tr>
<tr>
<td><code>ipv6-address</code></td>
<td>IPv6 address of the neighboring router. Not support under IPv4 VRF address family mode.</td>
</tr>
</tbody>
</table>
Default
Threshold: default is 75

Mode
Router BGP Config Mode
IPv6 Address Family Config Mode
IPv4 VRF Address Family

6.10.2.31. neighbor next-hop-self

This command is used to configure BGP to set the next hop attribute to a local IP address when advertising a route to an internal peer.

Normally BGP retains the next hop attribute received from the external peer. When the next hop attribute in routes from external peers is retained, internal peer must have a route to the external peer’s IP address. This is commonly done by configuring the IGP on the boarder router to advertise the external subnet.

To disable this feature, use the no form of this command.

Format
neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} next-hop-self
no neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} next-hop-self

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4-address</td>
<td>IPv4 address of the neighboring router.</td>
</tr>
<tr>
<td>ipv6-address</td>
<td>IPv6 address of the neighboring router. Not support under IPv4 VRF address family mode.</td>
</tr>
<tr>
<td>Interface</td>
<td>If the neighbor’s IPv6 address is a link local address, the local interface must be specified as well. Not support under IPv4 VRF address family mode.</td>
</tr>
<tr>
<td>autodetect interface</td>
<td>The routing interface on which the neighbor’s IPv6 link local address is auto detected.</td>
</tr>
</tbody>
</table>
6.10.2.32. neighbor filter-list

This command is used to filter advertisements to or from a specific neighbor according to the advertisement’s AS path. Only a single AS path list can be configured in each direction for each neighbor. If you invoke the command a second time for a given neighbor, the new AS path list number replaces the previous AS path list number.

If you assign a neighbor filter list to a nonexisted AS path access list, all routes are filtered.

Filtering for IPv6 is independent of filtering configured for IPv4. If an UPDATE message includes both IPv4 and IPv6 NLRI, it could be filtered for IPv4 but accepted for IPv6 or vice versa.

To unconfigure neighbor filter lists, use the no form of this command.

Format

```
neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} filter-list <listnum> {in | out}
no neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} filter-list <listnum> {in | out}
```

Fields

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4-address</td>
<td>IPv4 address of the neighboring router.</td>
</tr>
<tr>
<td>ipv6-address</td>
<td>IPv6 address of the neighboring router.</td>
</tr>
<tr>
<td>Interface</td>
<td>If the neighbor’s IPv6 address is a link local address, the local interface must be specified as well.</td>
</tr>
<tr>
<td>autodetect interface</td>
<td>The routing interface on which the neighbor’s IPv6 link local address is auto detected.</td>
</tr>
<tr>
<td>Listnum</td>
<td>Number to identify an AS path list. The range is from 1 to 500.</td>
</tr>
<tr>
<td>In</td>
<td>Access list is applied to advertisements received from the neighbor.</td>
</tr>
<tr>
<td>Out</td>
<td>Access list is applied to advertisements to be sent to the neighbor.</td>
</tr>
</tbody>
</table>

Default None

Mode

Router BGP Config Mode
IPv6 Address Family Config Mode
IPv4 VRF Address Family
6.10.2.33. neighbor prefix-list

This command is used to filter advertisements sent to or receive from a specific neighbor based on the destination prefix of each route. Only one prefix list may be defined for each neighbor in each direction. If you assign a prefix list that does not exist, all prefixes are permitted.

To remove an IP filter list, use the no form of this command.

Format
neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port}> prefix-list <listname> {in | out}

no neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port}> prefix-list <listname> {in | out}

Fields

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4-address</td>
</tr>
<tr>
<td>ipv6-address</td>
</tr>
<tr>
<td>Interface</td>
</tr>
<tr>
<td>autodetect interface</td>
</tr>
<tr>
<td>Listname</td>
</tr>
<tr>
<td>In</td>
</tr>
<tr>
<td>Out</td>
</tr>
</tbody>
</table>

Default None

Mode Router BGP Config Mode
IPv6 Address Family Config Mode

6.10.2.34. neighbor remote-as

This command is used to configure a neighbor and identify the neighbor’s autonomous system. The neighbor’s AS number must be specified when the neighbor is created. Up to 128 neighbors may be configured.

To remove a neighbor, use the no form of this command.

Format
neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} remote-as <as-number>
no neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} remote-as

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4-address</td>
<td>IPv4 address of the neighboring router.</td>
</tr>
<tr>
<td>ipv6-address</td>
<td>IPv6 address of the neighboring router.</td>
</tr>
<tr>
<td>Interface</td>
<td>If the neighbor’s IPv6 address is a link local address, the local interface must be specified as well.</td>
</tr>
<tr>
<td>autodetect interface</td>
<td>The routing interface on which the neighbor’s IPv6 link local address is automatically detected.</td>
</tr>
<tr>
<td>As-number</td>
<td>Number of an autonomous system to which the neighbor belongs in the range from 1 to 4294967295.</td>
</tr>
</tbody>
</table>

Default None

Mode Router BGP Config Mode

6.10.2.35. neighbor remove-private-as

This command is used to remove private AS numbers when advertising routes to an external peer. This command can only be applied to external peers. Private AS numbers are removed or replaced whether or not the original AS path includes any non-private AS numbers. The AS path advertised to the external peer always includes at least one instance of the local AS number; therefore, removing private AS numbers never results in advertisement of an empty AS_PATH attribute. AS numbers from 64512 to 65535 inclusive are considered private. Although 65535 is a reserved ASN and not technically part of the private range, it is treated as a private AS when removing or replacing private ASNs.

To stop removing private AS numbers, use the no form of this command.

Format

neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} remove-private-as

no neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} remove-private-as

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4-address</td>
<td>IPv4 address of the neighboring router.</td>
</tr>
<tr>
<td>ipv6-address</td>
<td>IPv6 address of the neighboring router. Not supported under IPv4 VRF address family mode.</td>
</tr>
<tr>
<td>Interface</td>
<td>If the neighbor’s IPv6 address is a link local address, the local interface must be specified as well. Not supported under IPv4 VRF address family mode.</td>
</tr>
<tr>
<td>autodetect interface</td>
<td>The routing interface on which the neighbor’s IPv6 link local address is automatically detected.</td>
</tr>
</tbody>
</table>
all replace-as

To retain the original AS path length, replace each private AS number with the local AS number.

Default Private AS numbers are not removed by default

Mode
Router BGP Config Mode
IPv6 Address Family Config Mode
IPv4 VRF Address Family

6.10.2.36. neighbor route-map

This command is used to apply a route map to incoming or outgoing routes for a specific neighbor. A route map can be used to change the local preference, MED, or AS path of a route.

To remove a route map, use the no form of this command.

Format
neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} route-map <route-map-name> { in | out }

no neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} route-map <route-map-name> { in | out }

Fields

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4-address</td>
<td>IPv4 address of the neighboring router.</td>
</tr>
<tr>
<td>ipv6-address</td>
<td>IPv6 address of the neighboring router. Not support IPv4 VRF address family mode.</td>
</tr>
<tr>
<td>Interface</td>
<td>If the neighbor’s IPv6 address is a link local address, the local interface must be specified as well. Not support IPv4 VRF address family mode.</td>
</tr>
<tr>
<td>autodetect interface</td>
<td>The routing interface on which the neighbor’s IPv6 link local address is auto detected.</td>
</tr>
<tr>
<td>route-map-name</td>
<td>Identifier of a configured route map. The route map should be examined to filter the networks to be advertised/received.</td>
</tr>
<tr>
<td>In</td>
<td>Applies route map to incoming routes.</td>
</tr>
<tr>
<td>out</td>
<td>Applies route map to outgoing routes.</td>
</tr>
</tbody>
</table>

Default None

Mode
Router BGP Config Mode
IPv6 Address Family Config Mode
IPv4 VRF Address Family
6.10.2.37. neighbor route-reflector-client

This command is used to configure an internal peer as an IPv4 route reflector client. Configuring the first route reflector client automatically makes this router a route reflector. If you configure multiple route reflectors within a cluster, you must configure each route reflector in the cluster with the same cluster ID. Use the bgp cluster-id command to configure a cluster ID. An external peer may not be configured as a route reflector client.

When reflecting a route, BGP ignores the set statements in an outbound route map to avoid causing the receiver to compute routes that are not inconsistent with other routers in the AS.

To remove a route map, use the no form of this command.

Format
neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} route-reflector-client

no neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} route-reflector-client

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4-address</td>
<td>IPv4 address of the neighboring router.</td>
</tr>
<tr>
<td>ipv6-address</td>
<td>IPv6 address of the neighboring router. Not support under IPv4 VRF address</td>
</tr>
<tr>
<td>Interface</td>
<td>If the neighbor’s IPv6 address is a link local address, the local interface</td>
</tr>
<tr>
<td>autodetect</td>
<td>The routing interface on which the neighbor’s IPv6 link local address is</td>
</tr>
<tr>
<td>interface</td>
<td>auto detected.</td>
</tr>
</tbody>
</table>

Default Peers are not route reflector clients

Mode Router BGP Config Mode
IPv6 Address Family Config Mode
IPv4 VRF Address Family

6.10.2.38. neighbor shutdown

This command is used to bring down the adjacency with a specific neighbor. If the adjacency is up when the command is given, the peering session is dropped and all route information learnt from that peer is purged. When an adjacency is administratively shutdown, the adjacency stays down until administratively re-enabled by using no neighbor shutdown command.

To administratively reenable the neighbor, use the no form of this command.

Format
neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} shutdown

no neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} shutdown
6.10.2.39. neighbor timers

This command is used to override the global timer values and set the keepalive and hold timers for a specific BGP peer. The new values are not applied to adjacencies already in the ESTABLISHED state. A new keepalive or hold time is applied the next time an adjacency is formed.

To revert the keep alive and hold time for a specific peer, use the no form of this command. After executing this command, the BGP peer must be reset before the changes take effect.

Format

```
neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} timers <keepalive> <holdtime>
no neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} timers
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4-address</td>
<td>IPv4 address of the neighboring router.</td>
</tr>
<tr>
<td>ipv6-address</td>
<td>IPv6 address of the neighboring router. Not support under IPv4 VRF address family mode.</td>
</tr>
<tr>
<td>Interface</td>
<td>If the neighbor’s IPv6 address is a link local address, the local interface must be specified as well. Not support under IPv4 VRF address family mode.</td>
</tr>
<tr>
<td>autodetect interface</td>
<td>The routing interface on which the neighbor’s IPv6 link local address is autodetected.</td>
</tr>
<tr>
<td>Keepalive</td>
<td>Frequency (in seconds) with which the router sends keepalive messages to its peer. The range is from 0 to 65535.</td>
</tr>
<tr>
<td>Holdtime</td>
<td>The time (in seconds) that BGP continues to consider a neighbor to be alive without receiving a BGP KEEPALIVE or UPDATE packet from the neighbor. If no</td>
</tr>
</tbody>
</table>
KEEPALIVE is received from a neighbor for longer than this value, BGP drops the
adjacency. If the hold time is set to 0, BGP does not enforce a hold time and does
not send periodic KEEPALIVE messages. The range is from 0 to 65535.

Default
The default value of `<keepalive>` is 60 seconds.
The default value of `<holdtime>` is 180 seconds.

Mode
Router BGP Config Mode
IPv4 VRF Address Family

6.10.2.40. `neighbor advertisement-interval`

This command is used to configure the minimum time that must elapse between advertisement of the same route to a given neighbor. This value does not limit the rate of route selection but only the rate of route advertisement. If BGP changes the route to a destination multiple times while waiting for the advertisement interval to expire, only the final result is advertised to the neighbor. The interval applies to withdrawals as well as advertisements.

To revert to the default minimum time that must elapse between advertisements of the same route to a given neighbor, use the no form of this command.

Format
```
neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} advertisement-interval <seconds>
no neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} advertisement-interval
```

Fields
<table>
<thead>
<tr>
<th>Definition</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4-address</td>
<td>IPv4 address of the neighboring router.</td>
</tr>
<tr>
<td>ipv6-address</td>
<td>IPv6 address of the neighboring router. Not support IPv4 VRF address family mode.</td>
</tr>
<tr>
<td>Interface</td>
<td>If the neighbor’s IPv6 address is a link local address, the local interface must be specified as well. Not support IPv4 VRF address family mode.</td>
</tr>
<tr>
<td>autodetect interface</td>
<td>The routing interface on which the neighbor’s IPv6 link local address is auto detected.</td>
</tr>
<tr>
<td>Seconds</td>
<td>The minimum time between route advertisement, in seconds. Range is from 0 to 600.</td>
</tr>
</tbody>
</table>

Default
30 seconds for external peers and 5 seconds for internal peers

Mode
Router BGP Config Mode
IPv6 Address Family Config Mode
IPv4 VRF Address Family
6.10.2.41. neighbor send-community

This command is used to configure the router to send the BGP community attributes in Update messages to a specific neighbor.

To revert to default configuration, use the no form of this command.

Format

neighbor <ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port> send-community

no neighbor <ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port> send-community

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4-address</td>
<td>IPv4 address of the neighboring router.</td>
</tr>
<tr>
<td>ipv6-address</td>
<td>IPv6 address of the neighboring router. Not support IPv4 VRF address family mode.</td>
</tr>
<tr>
<td>Interface</td>
<td>If the neighbor’s IPv6 address is a link local address, the local interface must be specified as well. Not support IPv4 VRF address family mode.</td>
</tr>
<tr>
<td>autodetect</td>
<td>The routing interface on which the neighbor’s IPv6 link local address is auto detected.</td>
</tr>
</tbody>
</table>

Default

The communities attribute is not sent to neighbors

Mode

Router BGP Config Mode
IPv6 Address Family Config Mode
IPv4 VRF Address Family

6.10.2.42. neighbor send-community extended

This command is used to configure the router to send the BGP community attributes in Update messages to a specific neighbor. The BGP community attributes can be configurable.

To disable the exchange of VPNv4 prefixes with the neighbor, use the no form of this command.

Format

neighbor <ipv4-address> send-community <extended | both>

no neighbor <ipv4-address> send-community <extended | both>

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4-address</td>
<td>IPv4 address of the neighboring router.</td>
</tr>
<tr>
<td>extended</td>
<td>One of the following:</td>
</tr>
<tr>
<td>both</td>
<td>• Extended enables the router to send only extended community attributes.</td>
</tr>
</tbody>
</table>
Both enables the router to send both standard and extended community attributes.

Default The communities attribute is not sent to neighbors
Mode VPNv4 Address Family Config Mode

6.10.2.43. neighbor active

This command is used to enable exchange of IPv6 routes with a neighbor. The neighbor address must be the same IP address used in the neighbor remote-as command to create peer.

When IPv6 is enabled or disabled for a neighbor, the adjacency is brought down and restarted to communicate to the change to the peer. You should completely configure IPv6 policy for the peer before activating the peer.

To disable exchange of IPv6 routes, use the no form of this command.

Format neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} activate
go neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} activate

Fields Definition

ipv4-address	IPv4 address of the neighboring router.
ipv6-address	IPv6 address of the neighboring router. Not support under IPv4 VRF address family mode.
Interface	If the neighbor’s IPv6 address is a link local address, the local interface must be specified as well. Not support under IPv4 VRF address family mode.
autodetect interface	The routing interface on which the neighbor’s IPv6 link local address is auto detected.

Default None
Mode IPv6 Address Family Config Mode
IPv4 VRF Address Family

6.10.2.44. neighbor rfc5549-support

The enable advertisement of IPv4 routes over IPv6 next hops selectively to an external BGP IPv6 peer, use the command neighbor rfc5549-support in BGP Router Configuration mode. This command may only be applied to external BGP peers via single hop.

To disable advertisement/process of RFC 5549 routes for BGP neighbors, use the no form of the command.
Format neighbor {ipv6-address | autodetect interface <slot/port>} rfc5549-support
no neighbor {ipv6-address | autodetect interface <slot/port>} rfc5549-support

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6-address</td>
<td>IPv6 address of the neighboring router.</td>
</tr>
<tr>
<td>Autodetect interface <slot/port></td>
<td>The routing interface on which the neighbor’s link local IPv6 address is auto detected.</td>
</tr>
</tbody>
</table>

Default Enabled
Mode BGP Router Configuration Mode

6.10.2.45. distance

This command is used to set the preference (also known as administrative distance) of BGP routes to specific destinations. Up to 128 instances of this commands are allowed. If a distance command is configured that matches an existing distance command’s prefix and wildcard mask, the new command replaces the existing command. There can be overlap between the prefix and wildcard mask configured for different commands. When there is overlap, the command whose prefix and wildcard mask are the longest match for a neighbor’s address is applied to routes from that neighbor.

An ECMP route’s distance is determined by applying distance commands to the neighbor that provided the best path.

The change to the BGP distances does not affect existing routes. To apply a distance change to existing routes, you must force the routes to be deleted from the routing table and relearned, either by resetting the peers from which the routes are learnt or by disabling and re-enabling BGP.

To return to the default values, use the no form of this command.

Format distance <1-255> [<peer-range> <wildcard-mask>] [prefix-list]
no distance <1-255> [<peer-range> <wildcard-mask>] [prefix-list]

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-255</td>
<td>The preference value for matching routes. The range is from 1 to 255.</td>
</tr>
<tr>
<td>peer-range, wildcard-mask</td>
<td>Routes learned from BGP peers whose address falls within this prefix are assigned the configured preference value. The wildcard-mask is an inverted network mask whose 1 bits indicate the don’t care portion of the prefix.</td>
</tr>
<tr>
<td>prefix-list</td>
<td>A prefix list can optionally be specified to limit the preference value to a specific set of destination prefixes learned from matching neighbors.</td>
</tr>
</tbody>
</table>

Default BGP assigns preference values according to the distance bgp command, unless overridden for specific neighbors or prefixes by this command
Mode Router BGP Config Mode
6.10.2.46. **distance bgp**

This command is used to set the preference (also known as administrative distance) of BGP routes. Different distance values can be configured for routes learnt from external peers, routes learnt from internal peers, and BGP routes locally originated. A route with a lower preference value is preferred to a route with a higher preference value to the same destination. Routes with a preference of 255 may not be selected as best routes and used for forwarding.

The change to the BGP distances does not affect existing routes. To apply a distance change to existing routes, you must force the routes to be deleted from the routing table and relearned, either by resetting the peers from which the routes are learnt or by disabling and re-enabling BGP.

To return to the default values, use the no form of this command.

Format

```
distance bgp <external-distance> <internal-distance> <local-distance>
no distance bgp
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>external-distance</td>
<td>The preference value for routes learnt from external peers. The range is from 1 to 255.</td>
</tr>
<tr>
<td>internal-distance</td>
<td>The preference value for routes learnt from internal peers. The range is from 1 to 255.</td>
</tr>
<tr>
<td>local-distance</td>
<td>The preference value for locally-originated routes. The range is from 1 to 255.</td>
</tr>
</tbody>
</table>

Default

- external-distance: 20
- internal-distance: 200
- local-distance: 200

Mode

- Router BGP Config Mode
- IPv6 Address Family Config Mode
- IPv4 VRF Address Family

6.10.2.47. **default-information originate**

This command is used to allow BGP to originate a default route. By default, BGP does not originate a default route. If a default route is redistributed into BGP, BGP does not advertise the default route unless this command is issued. To disable this function, use the no form of this command.

Format

```
default-information originate <always>
```
6.10.2.48. maxiumum-paths

This command is used to configure the maximum number of next hops BGP may include in an Equal Cost Multipath (ECMP) route derived from paths received from neighbors within or outside the local AS.

Paths are considered for ECMP when their attributes are the same (local preference, AS path, origin, MED, peer type and IGP distance). When BGP uses multiple paths in an ECMP route, BGP still selects one path as the best path and advertises only that path to its peers.

To restore the default value, use the no form of this command.

<table>
<thead>
<tr>
<th>Format</th>
<th>maximum-paths [ibgp] <number></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no maximum-paths [ibgp] <number></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ibgp</td>
<td>Specifies the maximum number of next hops in a BGP route derived from paths received from neighbors within the local AS.</td>
</tr>
<tr>
<td>Number</td>
<td>Specifies the maximum number of next hops in a BGP route. The range is from 1 to 32.</td>
</tr>
</tbody>
</table>

Default Single next hop

Mode Router BGP Config Mode IPv6 Address Family Config Mode IPv4 VRF Address Family

6.10.2.49. default-metric

This command is used to configure the value of the Multi Exit Discriminator (MED) attribute for routes redistributed into Border Gateway Protocol (BGP) when no metric has been specified in the command `redistribute` for BGP. To delete the default for the metric of redistributed routes, use the no form of this command.
Format default-metric <number>
no default-metric

Fields Definition

| <number> | Default metric value applied to the redistributed route. The range of values for this argument is from 1 to 4294967295. |

Default No default metric is set and no MED is included in redistributed routes

Mode Router BGP Config Mode
IPv6 Address Family Config Mode
IPv4 VRF Address Family

6.10.2.50. redistribute

This command is used to redistribute routes from outside into BGP routing domain. BGP can redistribute local (connected), static, and OSPF routes.

A default route cannot be redistributed unless the default-information originate command is issued.

If a route map is configured, match as-path and match community terms are ignored. If no route map is configured with the name given, no prefixes are redistributed.

To disable redistribution, use the no form of this command.

Format redistribute <protocol> [metric <0-4294967295>] [match {internal | external 1 | external 2 | nssa-external 1 | nssa-external 2}] [route-map <route-map-name>]
no redistribute <protocol> [metric] [match {internal | external 1 | external 2 | nssa-external 1 | nssa-external 2}] [route-map <route-map-name>]

Fields Definition

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Source protocol from which routes are being redistributed. It can be one of the following keywords: connected, ospf, static, connected.</th>
</tr>
</thead>
<tbody>
<tr>
<td>metric <0-4294967295></td>
<td>When this option is specified, BGP advertises the prefix with the MED path attribute set to the configured value. If this option is not specified but a default metric is configured by default-information originate command, the MED is set to the default metric. If a default metric is not configured, the prefix is advertised without a MED attribute.</td>
</tr>
<tr>
<td>Match</td>
<td>Use this option to redistribute specific types of OSPF routes.</td>
</tr>
<tr>
<td>route-map-name</td>
<td>Identifier of a configured route map. The route map should be examined to filter the networks to be redistributed. A route map can be used to set attributes on redistribution routes.</td>
</tr>
</tbody>
</table>

Default BGP redistributes no route
6.10.2.51. distribute-list in

This command is used to filter routes received in incoming Border Gateway Protocol (BGP) updates based on destination prefix. The distribute list is applied to all routes received from all neighbors. Only routes permitted by the prefix list are accepted. If the command refers to a prefix list which does not exist, the command is accepted and all routes are permitted.

To disable the filter, use the no form of this command.

Format
distribute-list prefix <list-name> in

no distribute-list prefix <list-name> in

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>list-name</td>
<td>Name of a prefix list. The list defines which networks are to be received and which are to be suppressed in routing updates, based upon matching destination prefixes in the prefix list.</td>
</tr>
</tbody>
</table>

Default None

Mode
Router BGP Config Mode
IPv6 Address Family Config Mode
IPv4 VRF Address Family

6.10.2.52. distribute-list out

This command is used to configure a filter that restricts the advertisement of routes based on destination prefix. Only one instance of this command may be defined for each route source (connected, OSPF, or static). One instance of this command may also be configured as a global filter for outbound prefixes. If the command refers to a prefix list which does not exist, the command is accepted and all routes are permitted. When a distribute list is added, changed, or deleted for route redistribution, BGP automatically reconsiders all best routes.

To disable the filter, use the no form of this command.

Format
distribute-list prefix <list-name> out [connected | ospf | static]

no distribute-list prefix <list-name> out [connected | ospf | static]

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>list-name</td>
<td>Name of a prefix list. The list defines which networks are to be received and which are to be suppressed in routing updates, based upon matching destination prefixes in the prefix list.</td>
</tr>
</tbody>
</table>
6.10.2.53. ip bgp fast-external-failover {deny|permit}

This command configures fast external failover behavior for a specific routing interface. This command overrides the global configured fast external failover behavior. If permit is specified, the feature is enabled on the interface, regardless of the global configuration. If the deny is specified, the feature is disabled on the interface, regardless of the global configuration.

To disable the filter, use the no form of this command.

Format

```
ip bgp fast-external-failover {deny | permit}
no ip bgp fast-external-failover
```

Fields

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
</table>

| Permit | Enable fast external failover on the interface, regardless of the global configuration of the feature. |
| Deny | Disable fast external failover on the interface, regardless of the global configuration of the feature. |

Default None

Mode

Router BGP Config Mode
IPv4 VRF Address Family

6.10.2.54. network

This command is used to advertise an address prefix. The prefix is only advertised if the common routing table includes a non-BGP route with the same prefix. The route may be a connected route, a static route, or a dynamic route from another routing protocol.

BGP accepts up to 64 networks per address family. The network command may specify a default route.

If a route map is configured to set attributes on the advertised routes, `match as-path` and `match community` terms in the route map are ignored. If there is no route map with the name given, the network is not advertised.

To disable BGP from advertising an address prefix, use the no form of this command.
Format

```
network <ipaddress> mask <mask> [route-map <route-map-name>]
no network <ipaddress> mask <mask> [route-map <route-map-name>]
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ipaddress</td>
<td>An address prefix that BGP will advertise.</td>
</tr>
<tr>
<td>Mask</td>
<td>Network mask for the prefix.</td>
</tr>
<tr>
<td>route-map-name</td>
<td>Identifier of a configured route map. The route map should be examined to filter the networks to be advertised.</td>
</tr>
</tbody>
</table>

Default

No networks are advertised

Mode

Router BGP Config Mode
IPv4 VRF Address Family

6.10.2.55. network <ipv6-prefix>/<prefix-length>

This command is used to advertise an IPv6 prefix. The prefix is only advertised if the common routing table includes a non-BGP route with the same prefix. The route may be a connected route, a static route, or a dynamic route from another routing protocol.

BGP accepts up to 64 networks per address family. The network command may specify a default route.

If a route map is configured to set attributes on the advertised routes, `match as-path` and `match community` terms in the route map are ignored. If there is no route map with the name given, the network is not advertised.

To disable BGP from advertising an IPv6 prefix, use the no form of this command.

Format

```
network <ipv6-prefix>/<prefix-length> [route-map <route-map-name>]
no network <ipv6-prefix>/<prefix-length>
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6-prefix</td>
<td>An IPv6 prefix that BGP will advertise.</td>
</tr>
<tr>
<td>prefix-length</td>
<td>The prefix length of the IPv6 prefix.</td>
</tr>
<tr>
<td>route-map-name</td>
<td>Identifier of a configured route map. The route map should be examined to filter the networks to be advertised.</td>
</tr>
</tbody>
</table>

Default

No networks are advertised

Mode

IPv6 Address Family Config Mode
6.10.2.56. template peer

This command is used to create a BGP peer template and enter BGP peer template mode for the specified template. Peer template is a configuration feature that allows you to share policies between neighbors. Neighbors can then be configured to inherit parameters from the peer template. A peer template can include both session parameters and peer policies. Peer policies are configured with an address family configuration mode and apply only to that address family. You can configure up to 32 peer templates.

To delete a peer template, use the no form of this command.

Format
```
template peer <template name>
no template peer <template name>
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>template name</td>
<td>Name of the peer template. The name may be no more than 32 characters.</td>
</tr>
</tbody>
</table>

Default None

Mode Router BGP Config Mode

6.10.2.57. clear ip bgp

This command is used to resets peering sessions with all or a subnet of BGP peers. The command arguments specify which peering sessions are reset and the type of reset performed.

Format
```
```

* Resets adjacency with every BGP peer.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf-name</td>
<td>Display the BGP route table within a VRF instance.</td>
</tr>
<tr>
<td>1-4294967295</td>
<td>Specify the BGP peer’s AS number for which the adjacency will be reset.</td>
</tr>
<tr>
<td>neighbor-address</td>
<td>Specify the IPv4 and IPv6 address of the peer for which the adjacency will be reset.</td>
</tr>
<tr>
<td>Interface</td>
<td>Specify the interface for IPv6 link local peer address for which the adjacency will be reset.</td>
</tr>
<tr>
<td>listen range</td>
<td>The IP address range to listen BGP peers.</td>
</tr>
<tr>
<td>prefix/prefix-length</td>
<td>Specify the listen range IP prefix and prefix length to be created.</td>
</tr>
</tbody>
</table>
clear ip bgp counters

This command is used to reset all BGP counters to 0. These counters include send and receive packet and prefix counters for all neighbors.

Format

```
clear ip bgp counters
```

Default

None

Mode

- Privileged EXEC
- User EXEC

ip as-path access-list

This command is used to create an AS path access list. An AS path access list filters BGP routes on the AS PATH attribute of a BGP route. An AS path access list is an ordered sequence of statements. Each statement specifies a regular expression and a permit or deny action. If the regular expression matches the AS path of the route expressed as an ASCII string, the route is considered as a match and the statement’s action is taken. An AS path list has an implicit deny statement at the end. If a path does not match any of the statement in an AS path list, the action is considered to be deny.

Once you have created an AS path list, you cannot delete an individual statement. If you want to remove an individual statement, you must delete the AS path list and recreate it without the statement to be deleted.

Statements are applied in the order in which they are created. New statements are added to the end of the list. The statement with the first matching regular expression is applied.

128 AS path access lists are allowed to be configured with up to 64 statements each.

To enter the question mark within a regular expression, you must first enter `CTRL-V` to prevent the CLI from interpreting the question mark as a request for help.

To delete an AS path access list, use the no form of this command.
Format

```
ip as-path access-list <1-500> <deny | permit> <regexp>
no ip as-path access-list <1-500>
```

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-500</td>
<td>A number uniquely identifying the list. All AS path access list commands with the same this number are considered part of the same list.</td>
</tr>
<tr>
<td>Permit</td>
<td>Permit the routes whose AS PATH attribute matches the regular expression.</td>
</tr>
<tr>
<td>Deny</td>
<td>Deny the routes whose AS PATH attribute matches the regular expression.</td>
</tr>
</tbody>
</table>

A regular expression used to match the AS PATH attribute of a BGP route where the AS path is treated as an ASCII string.

AS path regular expression syntax:

- *asterisk(*)*: Matches zero or more sequences of the pattern.
- *brackets([])*: Designates a range of single-character patterns.
- *caret(^)*: Matches the beginning of the input string.
- *dollar sign($)*: Matches the end of the input string.
- *hyphen(-)*: Separates the end points of a range.
- *period(.)*: Matches any single character, including white space.
- *plus sign(+)*: Matches 1 or more sequences of the pattern.
- *question mark(?)*: Matches 1 or more occurrences of the pattern.
- *underscore (_)*: Matches a comma (,), left brace ({),right brace (}), left parenthesis, right parenthesis, the beginning of the input string, the end of the input string, or a space.

Default

None

Mode

Global Config

6.10.2.60. ip bgp-community new-format

This command is used to display BGP standard communities in the new format AA:NN. The new format displays a community number as the ASN followed by a 16-bit AS-specific number.

To display BGP standard communities as 32-bit integers, use the no form of this command.

Format

```
ip bgp-community new-format
no ip bgp-community new-format
```

Default

None

Mode

Global Config
6.10.2.61. ip community-list

This command is used to create or configure a BGP community list. A community list statement with no community values is considered a match for all routes, regardless of their community membership. So the statement `ip community-list standard testlist permit` is a permit all statement.

A community number may be entered in either format, as a 32-bit integer or a pair of 16-bit integers separated by a colon, regardless of whether the `ip bgp-community new-format` command is active. Up to 16 communities, including the well-known communities, can be listed in a single command. Up to 32 statements may be configured with a given community list name. Up to 128 unique community list names may be configured.

To delete a community list, use the no form of this command.

Format

```
ip community-list standard <list-name> {permit | deny} [community] [no-advertise] [no-export] [no-export-subconfed] [no-peer]
no ip community-list standard <list-name>
```

Fields Definition

list-name	Identifies a named standard community list. The name may contain up to 32 characters.
Permit	Indicates that matching routes are permitted.
Deny	Indicates that matching routes are denied.
Community	Specify a community number formatted as a 32-bit integers or in AA:NN format, where AA is a 2-byte AS number and NN is a 16 bit integer. The range is from 1 to 4294967295 (any 32-bit integer other than 0). Communities are separated by spaces.
no-advertise	Specify the routes that are not advertised to any peer.
no-export	Specify the routes that are not exported outside of the local AS.
no-export-subconfed	Specify the routes that are not exported to other external peers.
no-peer	Specify the routes that are not exported to other peers.

Default None

Mode Global Config

6.10.2.62. show ip as-path-access-list

This command is used to display the contents of AS path access lists.

Format

```
show ip as-path-access-list [<0-500>]
```
Default: None
Mode: Privileged EXEC
User EXEC

6.10.2.63. show ip community-list

This command is used to display community lists. The format of community values is dictated by the command `ip bgp-community new-format`.

Format

```
show ip community-list [detail] [<listname>]
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>listname</td>
<td>A standard community list name. This option limits the output to a single list.</td>
</tr>
<tr>
<td>detail</td>
<td>Specify to show statistics about community lists.</td>
</tr>
</tbody>
</table>

Default: None
Mode: Privileged EXEC
User EXEC

6.10.2.64. clear ip community-list

This command is used to clear community lists.

Format

```
clear ip community-list [<list-name>]
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>listname</td>
<td>Specify a community list name to be cleared.</td>
</tr>
</tbody>
</table>

Default: None
Mode: Privileged EXEC
User EXEC
6.10.2.65. rd

This command is used to specify the route distinguisher (RD) for a VRF instance that is used to create a VPNv4 prefix. An RD creates routing and forwarding tables and specifies the default route distinguisher for a VPN. The RD is added to the beginning of the IPv4 prefixes to change them into globally unique VPNv4 prefixes.

Format rd {route-distinguisher}

Fields Definition
route-distinguisher A route distinguisher can be specified in either of the following formats:
 - 2-byte ASN-related: Composed of an autonomous system number and an arbitrary number: <as-number>:<value>
 - 4-byte ASN-related: Composed of a 4-byte autonomous system number and an arbitrary number: <as-number>:<value>
 - IP address-related: Composed of an IP address and an arbitrary number: <ip-address>:<value>

Default A VRF does not associate with any RD

Mode Virtual Router Config

This command is effective only if BGP is running on the router. The RD for a VRF cannot be removed or changed once configured. For this reason, this command does not have the no form. To change the configured RD value, remove the VRF (using the no ip vrf command) and reconfigure the VRF.

6.10.2.66. route-target

This command is used to create a list of export, import, or both Route Target (RT) extended communities for the specified VRF instance. Enter the route-target command one time for each target extended community. Routes that are learned and carry a specific route-target extended community are imported into all VRFs configured with that extended community as an import route target.

Use no form to remove the route target specified for a VRF instance.

Format route-target {export | import | both} {route-target}
 no route-target {export | import | both} {route-target}

Fields Definition
export Exports routing information to the target VPN extended community.
6.10.2.67. **address-family ipv4**

This command is used to enter IPv4 VRF Address Family Configuration mode to configure BGP VRF parameters. Commands entered in this mode enable peering with BGP neighbors in this VRF instance. All the neighbor-specific commands are given in this mode as well.

To return to the default values, use the no form of this command.

Format

```
address-family ipv4 vrf <vrf-name>
no address-family ipv4 vrf <vrf-name>
```

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf-name</td>
<td>Specify the name of the VRF instance.</td>
</tr>
</tbody>
</table>

Default

VRF configuration is disabled

Mode

Router BGP Config Mode
6.10.2.68. address-family ipv6

This command is used to enter IPv6 Address Family Configuration mode in order to specify IPv6-specific configuration parameters. Commands entered in this mode can be used to enable exchange of IPv6 routes, specify IPv6 prefixes to be originated, and configure inbound and outbound policies to be applied to IPv6 routes.

To return to the default values, use the no form of this command.

Format address-family ipv6
 no address-family ipv6

Default Exchange of IPv6 routes is disabled

Mode Router BGP Config Mode

6.10.2.69. address-family vpnv4

This command is used to set up a routing session to carry VPN IPv4 (VPNv4) addresses across the backbone. When an iBGP neighbor is in this mode, each VPNv4 prefix is made globally unique by the addition of an 8-byte Route distinguisher (RD). Only unicast prefixes are carried to its peer.

The following commands are available in VPNv4 address family configuration mode.
• neighbor ip-address activate
• neighbor ip-address send-community both
• neighbor ip-address send-community extended

To return to the default values, use the no form of this command.

Format address-family vpnv4 unicast
 no address-family vpnv4 unicast

Default The VPNv4 address family is disabled

Mode Router BGP Config Mode

6.10.2.70. neighbor allowas-in

This command is used to configure BGP to accept prefixes even if local ASN is part of the AS_PATH attribute. A neighbor can inherit this configuration from a peer template.

To return to the default values, use the no form of this command.

Format neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} allowas-in <count>
 no neighbor {<ipv4-address> | <ipv6-address> [interface {<slot/port> | vlan {1-4093}}] | autodetect interface <slot/port>} allowas-in
<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>The maximum number of occurrences of the local ASN allowed in the AS_PATH attribute received in the prefix updates. The range is 1 to 10.</td>
</tr>
<tr>
<td>Default</td>
<td>Disabled</td>
</tr>
<tr>
<td>Mode</td>
<td>Router BGP Config Mode</td>
</tr>
</tbody>
</table>
6.11. VRRPv3 Commands

VRRPv3 provides address redundancy for both IPv4 and IPv6 router addresses. VRRPv3 support in QNOS is similar to VRRP support. The following table provides a summary of the differences.

<table>
<thead>
<tr>
<th>VRRPv2</th>
<th>VRRPv3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supports redundancy to IPv4 addresses</td>
<td>Supports redundancy to IPv4 and IPv6 addresses</td>
</tr>
<tr>
<td>Supports authentication</td>
<td>Does not support authentication</td>
</tr>
<tr>
<td>No concept of link-local address in IPv4 address space</td>
<td>For IPv6 addresses, VRRP IP contains the link-local IPv6 address too</td>
</tr>
<tr>
<td>The interval time used for sending VRRP Advertisement packets is in seconds</td>
<td>The interval time is in the order of milliseconds</td>
</tr>
<tr>
<td>VRRP MAC address format is 00-00-5E-00-01-{VRID}</td>
<td>VRRP MAC address format for IPv6 VR IP is 00-00-5E-00-02-{VRID}</td>
</tr>
</tbody>
</table>

VRRPv2 configuration cannot be modified under VRRPv3 enabled mode.

6.11.1. Show commands

6.11.1.1. show vrrp

This command displays information for all active VRRPv3 groups (no optional parameters), all active VRRPv3 groups configured in an IPv4 or IPv6 address family, or the active VRRPv3 groups configured in an IPv4 or IPv6 address family for the specified interface.

Format
show vrrp [{ipv4 | ipv6} [{<slot/port> | vlan <vlan-id>} <vrid>]]

Default
None

Mode
Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4</td>
<td>(Optional) indicates the Virtual router group belongs to IPv4 address family.</td>
</tr>
<tr>
<td>ipv6</td>
<td>(Optional) indicates the Virtual router group belongs to IPv6 address family.</td>
</tr>
<tr>
<td>slot/port</td>
<td>(Optional) indicates the interface number to which the Virtual router belongs.</td>
</tr>
<tr>
<td>vlan-id</td>
<td>(Optional) indicates the VLAN number to which the Virtual router belongs.</td>
</tr>
<tr>
<td>vrid</td>
<td>(Optional) Virtual router group number. The range is from 1 to 255.</td>
</tr>
</tbody>
</table>
Example:

(IX2) (config-if-vrrp)#show vrrp

vlan 2 - VRID 2 - Address-Family IPv4

Virtual IP address......................... 192.168.2.254
Secondary IP Address(es)....................
Virtual MAC Address......................... 00:00:5e:00:01:02
Priority.................................... 100
Configured Priority........................ 100
Ad

Pre-empt Mode............................. Enable
Accept Mode.............................. Disable
Administrative Mode....................... Enable
State.. Master
Master Router IP / Priority................. 192.168.2.250 / 100
Master Advertisement interval.............. 100 millisecs
Master Down interval...................... 300 millisecs

(IX2) (config-if-vrrp)#

6.11.1.2. show vrrp brief

This command displays brief information for all active VRRPv3 groups.

<table>
<thead>
<tr>
<th>Format</th>
<th>show vrrp brief</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>None</td>
</tr>
<tr>
<td>Mode</td>
<td>Privileged Exec</td>
</tr>
</tbody>
</table>

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Interface on which VRRP is configured.</td>
</tr>
<tr>
<td>VRID</td>
<td>ID of the virtual router.</td>
</tr>
<tr>
<td>A-F</td>
<td>IP address family type (IPv4 or IPv6) this Virtual Router belongs to.</td>
</tr>
<tr>
<td>Pri</td>
<td>Priority range of the virtual router.</td>
</tr>
</tbody>
</table>
show vrrp statistics

This command displays statistical information for a given VRRPv3 group or displays the global statistics. If this command is issued without the optional arguments then the global statistics are displayed. If the optional arguments are specified, the statistics are displayed for the virtual router corresponding to the given (IP address family, interface and VR-id) combination.

Format show vrrp statistics [{ipv4 | ipv6} {<slot/port> | vlan <vlan-id>} <vr-id>]

Default None

Mode Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4</td>
<td>(Optional) indicates the Virtual router group belongs to IPv4 address family.</td>
</tr>
<tr>
<td>ipv6</td>
<td>(Optional) indicates the Virtual router group belongs to IPv6 address family.</td>
</tr>
<tr>
<td>slot/port</td>
<td>(Optional) indicates the interface number to which the Virtual router belongs.</td>
</tr>
<tr>
<td>vlan-id</td>
<td>(Optional) indicates the VLAN number to which the Virtual router belongs.</td>
</tr>
<tr>
<td>vr-id</td>
<td>(Optional) Virtual router group number. The range is from 1 to 255.</td>
</tr>
</tbody>
</table>
Example:

(IX8D) (Config)#show vrrp statistics ipv4 0/1 1

Master Transitions............................. 0
New Master Reason........................... notMaster(0)
Advertisements Received.................... 153317
Advertisements Sent.......................... 0
Advertisement Interval Errors................ 0
IP TTL Errors.................................. 0
Last Protocol Error Reason................... noError(0)
Zero Priority Packets Received.............. 0
Zero Priority Packets Sent................... 0
Invalid Type Packets Received............... 0
Address List Errors............................ 0
Packet Length Errors.......................... 0
Row Discontinuity Time....................... 0 days 0 hrs 0 mins 0 secs
Refresh Rate (in milliseconds)............... 0

6.11.2. Configuration commands

6.11.2.1. fhrp version vrrp v3

To enable Virtual Router Redundancy Protocol version 3 (VRRPv3) configuration on a device, use the fhrp version vrrp v3 command in global configuration mode.

When VRRPv3 is in use, VRRP version 2 (VRRPv2) is unavailable. If you invoke no fhrp version vrrp v3, VRRPv3 is disabled and VRRPv2 is enabled. Also, operational data is reset, and the VRRPv2 configuration is applied. The same guidelines apply when VRRPv2 is in use and the no ip vrrp command is issued.

To disable the VRRPv3 and enable VRRPv2 in the router, use the no form of this command.

Format

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fhrp version vrrp v3</td>
<td>Enable VRRPv3 configuration</td>
</tr>
<tr>
<td>no fhrp version vrrp v3</td>
<td>Disable VRRPv3 and enable VRRPv2</td>
</tr>
</tbody>
</table>

Default

Disabled

Mode

Global Config

6.11.2.2. vrrp

This command creates a VRRPv3 group and enters VRRPv3 group configuration mode.

To remove the specified VRRPv3 group, use the no form of this command. Before you can use this command, you must disable Virtual Router using the shutdown command in the appropriate VRRP Config mode.

Format

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrrp <group-id> address-family {ipv4</td>
<td>ipv6}</td>
</tr>
<tr>
<td>no vrrp <group-id> address-family {ipv4</td>
<td>ipv6}</td>
</tr>
</tbody>
</table>

Default

Disables VRRPv3
This command configures the device to take over as master virtual router for a VRRP group if it has higher priority than the current master virtual route. To prevent the device from taking over as master virtual router for a VRRP group if it has higher priority than the current master virtual route, use the no form of this command.

Format

```
preempt [delay minimum <centiseconds>]
no preempt
```

Fields

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><centiseconds></td>
<td>Number of seconds that the device will delay before issuing an advertisement claiming master ownership. The default delay is 0 centiseconds. The valid range is 0–3600 centiseconds.</td>
</tr>
</tbody>
</table>

Default

Enabled with default delay value of 0

Mode

VRRPv3 Config

6.11.2.4. accept-mode

This command controls whether a virtual router in master state will accept packets addressed to the address owner's virtual IP address as its own if it is not the virtual IP address owner. To reset the accept mode to the default value, use the no form of this command.

Format

```
accept-mode
no accept-mode
```

Default

Disabled

Mode

VRRPv3 Config
6.11.2.5. priority

This command sets the priority level of the device within a VRRPv3 group. The priority level controls which device becomes the master virtual router. To reset the priority level of the device to the default value, use the no form of this command.

Format
```
priority <level>
no priority
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>level</td>
<td>Priority of the device within the VRRP group. The range is from 1 to 254.</td>
</tr>
</tbody>
</table>

Default 100

Mode VRRPv3 Config

6.11.2.6. timers advertise

This command configures the interval between successive advertisements by the master virtual router in a VRRP group. The advertisements being sent by the master virtual router communicate the advertisement interval, state, and priority of the current master virtual router. The VRRP **timers advertise** command configures the time between successive advertisement packets and the time before other routers declare the master router to be down. VRRP backup routers learn timer values from the master router advertisements. The timers configured on the master router always override any other timer settings that are used for calculating the master down time interval on VRRP backup routers. To restore the default value, use the no form of this command.

Format
```
timers advertise <milliseconds>
nomtimes advertise
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>milliseconds</td>
<td>Time interval between successive advertisements by the master virtual router. The unit of the interval is in 100 milliseconds. The valid range is 100 to 40000 milliseconds</td>
</tr>
</tbody>
</table>

Default 1 (100 milliseconds)

Mode VRRPv3 Config

6.11.2.7. shutdown

This command disables the VRRP group configuration. To enable and update the virtual router state after completing configuration, restore the default value, use the no form of this command.
Format shutdown
no shutdown

Default shutdown

Mode VRRPv3 Config

6.11.2.8. address

This command sets the primary or secondary IP address of the device within a VRRPv3 group. If the primary or secondary option is not specified, the specified IP address is set as the primary. The Virtual IPv6 primary address should be a link-local address only. When a global IPv6 address is given as a primary address for the VRRP IP, then the config fails with the following error message – “Error! Primary virtual IPv6 address should be a link-local address only.” Also, the removing of the primary virtual IP (IPv4 or IPv6) is not allowed. The primary virtual IP of a virtual router can only be modified. The secondary virtual IP can be removed using the no form of this command. Also, VRRPv3 for IPv6 requires that a primary virtual link-local IPv6 address is configured to allow the group to operate. After the primary link-local IPv6 address is established on the group, you can add the secondary global addresses.

To remove the secondary address, use the no form of this command.

Format address <ip-address> [primary | secondary]

no address <ip-address> secondary

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>IPv4 or IPv6 address</td>
</tr>
<tr>
<td></td>
<td>You can specify an IPv4 address in the following format: ipv4-address</td>
</tr>
<tr>
<td></td>
<td>You can specify an IPv6 address in the following format: ipv6-link-local-address</td>
</tr>
<tr>
<td>primary</td>
<td>(Optional) Set primary IP address of the VRRPv3 group.</td>
</tr>
<tr>
<td>secondary</td>
<td>(Optional) Set additional IP address of the VRRPv3 group.</td>
</tr>
</tbody>
</table>

Default None

Mode VRRPv3 Config

6.11.2.9. track interface

This command configures tracking of the interface for the device within a VRRPv3 group. Once interface tracking is configured, the VRRPv3 feature receives notifications when the interface changes state. The decrement option can be set to decrease the priority of the device within a VRRPv3 group by the specified value when the interface goes down.

To disable tracking of the interface for the device within a VRRPv3 group, use the no form of this command.

Format track interface {<slot/port> | vlan <vlan-id>} [decrement number]

no track interface {<slot/port> | vlan <vlan-id>} [decrement number]

6.11.2.10. track ip route

This command configures tracking of the IP route for the device within a Virtual Router Redundancy Protocol (VRRPv3) group. Once IP route tracking is configured, the VRRPv3 feature receives notifications when IP route changes state. The decrement option can be set to decrease the priority of the device within a VRRPv3 group by the specified value when the route becomes unavailable.

To disable tracking of IP route for the device within a VRRPv3 group, use the no form of this command.

Format

```plaintext
track ip route <ip-address/prefix-len> [decrement number]
no track ip route <ip-address/prefix-len> [decrement number]
```

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address/prefix-len</td>
<td>Prefix and prefix length of the route to be tracked</td>
</tr>
<tr>
<td>decrement number</td>
<td>(Optional) Specify the VRRP priority decrement for the tracked route. The number is the amount by which priority is decremented. The range is 1–254.</td>
</tr>
</tbody>
</table>

Default None (the default of the decrement number is 10)

Mode VRRPv3 Config

6.11.2.11. clear vrrp statistics

This command clears VRRP statistical information for given interface of the device within a VRRPv3 group and IP address family. If this command is issued without the optional arguments then the global statistics and all virtual routers (both IPv4 and IPv6) are reset.

If the optional arguments are specified, the statistics are reset for the virtual router corresponding to the given (IP address family, interface and VR-id) combination.

Format

```plaintext
clear vrrp statistics [{ipv4 | ipv6} {<slot/port> | vlan <vlan-id>} <vr-id>]
```

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4</td>
<td>(Optional) The Virtual router group belongs to IPv4 address family.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>ipv6</td>
<td>(Optional) The Virtual router group belongs to IPv6 address family.</td>
</tr>
<tr>
<td>slot/port</td>
<td>(Optional) The interface number to which the Virtual router belongs.</td>
</tr>
<tr>
<td>vlan-id</td>
<td>(Optional) The VLAN number to which the virtual router belongs. The range is from 1 to 4093.</td>
</tr>
<tr>
<td>vr-id</td>
<td>(Optional) The virtual router group number. The range is from 1 to 255.</td>
</tr>
</tbody>
</table>

Mode Privileged Exec
6.12. Virtual Router Commands

6.12.1. Show commands

6.12.1.1. show ip vrf

This command shows the information about the virtual router instances.

Format show ip vrf [{<vrf-name> | detail <vrf-name> | interfaces | memory [<vrf-name>]}]

Default None

Mode Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf-name</td>
<td>Name of the virtual router instance</td>
</tr>
<tr>
<td>detail</td>
<td>Displays the configuration and status of the specified virtual router</td>
</tr>
<tr>
<td>interfaces</td>
<td>Displays the list of interfaces and the virtual routers to which they belong</td>
</tr>
<tr>
<td>memory</td>
<td>Displays the runtime memory utilization of the processes running in a virtual router</td>
</tr>
</tbody>
</table>

6.12.2. Configuration commands

6.12.2.1. ip vrf

Use this command to create a virtual router with a specified name and enters VRF configuration mode. Alternatively, you can use no ip vrf command to delete the virtual router with the specified name.

Format ip vrf <vrf-name>
 no ip vrf <vrf-name>

Fields Definition

| vrf-name | The name of the virtual router. The name is a string of up to 64 characters from an ASCII set. |

Default No VRs are defined

Mode Global Config
6.12.2.2. maximum routes

Use this command to reserve the number of routes allowed and sets the maximum limit on the number of routes for a virtual router instance in the total routing table space for the router, provided there is enough free space in the router’s total routing table. Alternatively, you can use no maximum routes command to remove any reservation for the number of routes allowed in the virtual router instance and clears the warning threshold value.

Format
maximum routes {<limit> | warn <threshold>}
no maximum routes [warn]

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>limit</td>
<td>The number of routes for a virtual router instance in the total routing table space for the router. The limit ranges from 1 to 4294967295. If the limit value is greater than the total router table size, it is limited to the total size.</td>
</tr>
<tr>
<td>Warn threshold</td>
<td>The threshold value ranges from 1 to 100 and indicates the percent of the limit value at which a warning message is to be generated. If no limit value is given the platform maximum is taken as the limit value.</td>
</tr>
</tbody>
</table>

Default Limited by the number of free routes available

Mode Virtual Router Config

6.12.2.3. description

Use this command to configure a descriptive text for a virtual router. Alternatively, you can use no description command to remove the descriptive text configuration for a virtual router.

Format
description text
no description

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>text</td>
<td>The descriptive text for the virtual router. A set of ASCII characters up to 512 characters in length.</td>
</tr>
</tbody>
</table>

Default None

Mode Virtual Router Config

6.12.2.4. ip vrf forwarding

Use this command to associate a routing interface with a virtual router. Alternatively, you can use no ip vrf command to disassociate a routing interface from the configured virtual router and associates it back to the default virtual router.
Format

```
ip vrf forwarding <vrf-name>
no ip vrf forwarding
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf-name</td>
<td>The name of the virtual router.</td>
</tr>
</tbody>
</table>

Default
Default virtual router

Mode
Interface Config

In networking terms, black holes refer to the places in the Clos network where incoming or outgoing traffic is silently discarded without informing the source that the data did not reach its intended recipient. Black hole conditions arise when the traffic is directed towards an incorrect path in Clos networks where uRPF is not running.

The Black Hole Detection (BHD) feature helps in getting notification logs intermittently whenever packets are getting black-holed in the network.

6.13.1. Show commands

6.13.1.1. show bhd status

This command shows the global configuration of black hole detection feature along with the list of ports enabled for BHD.

Format
show bhd status

Default
None

Mode
Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spine port</td>
<td>The ports enabled for BHD</td>
</tr>
<tr>
<td>BHD Count</td>
<td>Displays the BHD packet counts</td>
</tr>
</tbody>
</table>

6.13.2. Configuration commands

6.13.2.1. bhd spine-port enable

Use this command to enable the port to be monitored for black hole detection. Only port-based routing interface can be enabled as BHD spine ports. Alternatively, you can use no bhd spine-port enable command to disable the port to be monitored for black hole detection.

Format
bhd spine-port enable
 no bhd spine-port enable

Default
Disabled

Mode
Interface Config
6.13.2.2. **bhd enable**

Use this command to enable the BHD feature globally on the system. Alternatively, you can use `no bhd enable` command to disable the BHD feature globally on the system.

Format

```
bhd enable
no bhd enable
```

Default Disabled

Mode Global Config

6.13.2.3. **clear counter bhd**

Use this command to clear the counters of BHD.

Format

```
clear counters bhd
```

Default None

Mode Privileged Exec
6.14. IP Event Dampening Commands

6.14.1.1. dampening

Use this command to enable IP event dampening on a routing interface.

Format

dampening [half-life period] [reuse-threshold suppress-threshold max-suppress-time[restart restart-penalty]]

no dampening

Mode

Interface Config

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half-life period</td>
<td>The number of seconds it takes for the penalty to reduce by half. The configurable range is 1-30 seconds. Default value is 5 seconds.</td>
</tr>
<tr>
<td>Reuse Threshold</td>
<td>The value of the penalty at which the dampened interface is restored. The configurable range is 1-20,000. Default value is 1000.</td>
</tr>
<tr>
<td>Suppress Threshold</td>
<td>The value of the penalty at which the interface is dampened. The configurable range is 1-20000. Default value is 2000.</td>
</tr>
<tr>
<td>Max Suppress Time</td>
<td>The maximum amount of time (in seconds) an interface can be in a suppressed state after it stops flapping. The configurable range is 1-255 seconds. The default value is four times of half-life period. If half-period value is allowed to default, the maximum suppress time defaults to 20 seconds.</td>
</tr>
<tr>
<td>Restart Penalty</td>
<td>Penalty applied to the interface after the device reloads. The configurable range is 1-20000. Default value is 2000.</td>
</tr>
</tbody>
</table>

6.14.1.2. show dampening interface

This command summarizes the number of interfaces configured with dampening and the number of interfaces being suppressed.

Format

show dampening interface

Mode

Privileged EXEC

Example:
The following shows examples of the command.

(Router)# show dampening interface

2 interfaces are configured with dampening.

1 interface is being suppressed.
7. IP Multicast Commands

7.1. Internet Group Management Protocol (IGMP) Commands

This section provides a detailed explanation of the IGMP commands. The commands are divided into the following different groups:

Show commands are used to display device settings, statistics and other information.

Configuration commands are used to configure features and options of the switch. For every configuration command there is a show command that will display the configuration setting.

7.1.1. Show commands

7.1.1.1. show ip igmp

This command displays the system-wide IGMP information.

Format
```
show ip igmp
```

Default
None

Mode
Privileged EXEC
User EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP Admin Mode</td>
<td>This field displays the administrative status of IGMP. This is a configured value.</td>
</tr>
<tr>
<td>IGMP Router-Alert check</td>
<td>This field displays the administrative status of Router-Alert validation for IGMP packets.</td>
</tr>
<tr>
<td>Interface</td>
<td>Valid slot and port number separated by forward slashes.</td>
</tr>
<tr>
<td>Interface Mode</td>
<td>This field indicates whether IGMP is enabled or disabled on the interface. This is a configured value.</td>
</tr>
<tr>
<td>Operational-Status</td>
<td>This field indicates the current state of IGMP on this interface. Possible values are Operational or Non-Operational.</td>
</tr>
</tbody>
</table>

7.1.1.2. show ip igmp groups

This command displays the registered multicast groups on the interface. If “detail” is specified this command displays the registered multicast groups on the interface in detail.

Format
```
show ip igmp groups <slot/port> | vlan <vlan-id> | loopback <0-63> [detail]
```
Fields	Definition
[slot/port] | Valid slot and port number separated by forward slashes.
<vlan-id> | VLAN ID. The range of VLAN ID is from 1 to 4093.
<loopback> | Loopback interface number. The range of Loopback interface is from 0-63.
[detail] | Display details of subscribed multicast groups.

Default | None
Mode | Privileged EXEC

Display Message

Fields	Definition
IP Address | This displays the IP address of the interface participating in the multicast group.
Subnet Mask | This displays the subnet mask of the interface participating in the multicast group.
Interface Mode | This displays whether IGMP is enabled or disabled on this interface.
// The following fields are not displayed if the interface is not enabled:
Querier Status | This displays whether the interface has IGMP in Querier mode or Non-Querier mode.
Groups | This displays the list of multicast groups that are registered on this interface.
If detail is specified, the following fields are displayed:
Multicast IP Address | This displays the IP Address of the registered multicast group on this interface.
Last Reporter | This displays the IP Address of the source of the last membership report received for the specified multicast group address on this interface.
Up Time | This displays the time elapsed since the entry was created for the specified multicast group address on this interface.
Expiry Time | This displays the amount of time remaining to remove this entry before it is aged out.
Version1 Host Timer | This displays the time remaining until the local router assumes that there are no longer any IGMP version 1 multicast members on the IP subnet attached to this interface. This could be an integer value or “-----” if there is no Version 1 host present.
7.1.1.3. show ip igmp interface

This command displays the IGMP information for the interface.

Format show ip igmp interface {<slot/port> | vlan <vlan-id> | loopback <0-63>}

Fields Definition

<slot/port> Valid slot and port number separated by forward slashes.
<vlan-id> VLAN ID. The range of VLAN ID is from 1 to 4093.
<loopback> Loopback interface number. The range of Loopback interface is from 0-63.
<multicast-group> The IP address of the multicast group.

Default None
Mode Privileged EXEC
 User EXEC

Display Message

Fields Definition

Interface Valid slot and port number separated by forward slashes.
IP Address This displays the IP address of the interface participating in the multicast group.
Subnet Mask This displays the subnet mask of the interface participating in the multicast group.
IGMP Admin Mode This field displays the administrative status of IGMP. This is a configured value
Interface Mode This field indicates whether IGMP is enabled or disabled on the interface. This is a configured value.
IGMP Version This field indicates the version of IGMP running on the interface. This value can be configured to create a router capable of running either IGMP version 1 or 2.
7.1.1.4. show ip igmp interface membership

This command displays the list of interfaces that have registered in the multicast group.

Format

```
show ip igmp interface membership <multiipaddr> [detail]
```

Fields

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><multiipaddr></td>
<td>A multicast IP address.</td>
</tr>
<tr>
<td>[detail]</td>
<td>Display details of subscribed multicast groups.</td>
</tr>
</tbody>
</table>

Default

None

Mode

- Privileged EXEC
- User EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Valid slot and port number separated by forward slashes.</td>
</tr>
<tr>
<td>Interface IP</td>
<td>This displays the IP address of the interface participating in the multicast group.</td>
</tr>
</tbody>
</table>
If detail is specified, the following fields are displayed:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Valid slot and port number separated by forward slashes.</td>
</tr>
<tr>
<td>Group Compatibility Mode</td>
<td>The group compatibility mode (v1, v2 or v3) for the specified group on this interface.</td>
</tr>
<tr>
<td>Source Filter Mode</td>
<td>The source filter mode (Include/Exclude) for the specified group on this interface. This is "-----" for IGMPv1 and IGMPv2 Membership Reports.</td>
</tr>
<tr>
<td>Source Hosts</td>
<td>This displays the list of unicast source IP Addresses in the group record of the IGMPv3 Membership Report with the specified multicast group IP Address. This is "-----" for IGMPv1 and IGMPv2 Membership Reports.</td>
</tr>
<tr>
<td>Expiry Time</td>
<td>This displays the amount of time remaining to remove this entry before it is aged out. This is "- ----" for IGMPv1 and IGMPv2 Membership Reports.</td>
</tr>
</tbody>
</table>

7.1.1.5. show ip igmp interface stats

This command displays the IGMP statistical information for the given interface. The statistics are only displayed when the interface is enabled for IGMP.

Format
show ip igmp interface stats {<slot/port> | vlan <vlan-id> | loopback<0-63>}

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><slot/port></td>
<td>Valid slot and port number separated by forward slashes.</td>
</tr>
<tr>
<td><vlan-id></td>
<td>VLAN ID. The range of VLAN ID is from 1 to 4093.</td>
</tr>
<tr>
<td><loopback></td>
<td>Loopback interface number. The range of Loopback interface is from 0-63.</td>
</tr>
</tbody>
</table>

Default
None

Mode
Privileged EXEC
7.1.2. Configuration commands

7.1.2.1. ip igmp

This command sets the administrative mode of IGMP in the router to active. To set the administrative mode of IGMP in the router to inactive, use the no form of this command.

Format

```
ip igmp
no ip igmp
```

Default
Disable

Mode
Global Config
Interface Config

7.1.2.2. ip igmp router-alert-check

This command is used to enable Router-Alert validation for IGMP packets.

To disable Router-Alert validation for IGMP packets, use the no form of this command.

User EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Querier Status</td>
<td>This field indicates the status of the IGMP router, whether it is running in Querier mode or Non-Querier mode.</td>
</tr>
<tr>
<td>Querier IP Address</td>
<td>This field displays the IP Address of the IGMP Querier on the IP subnet to which this interface is attached.</td>
</tr>
<tr>
<td>Querier Up Time</td>
<td>This field indicates the time since the interface Querier was last changed.</td>
</tr>
<tr>
<td>Querier Expiry Time</td>
<td>This field displays the amount of time remaining before the Other Querier Present Timer expires. If the local system is the querier, the value of this object is zero.</td>
</tr>
<tr>
<td>Wrong Version Queries</td>
<td>This field indicates the number of queries received whose IGMP version does not match the IGMP version of the interface.</td>
</tr>
<tr>
<td>Number of Joins Received</td>
<td>This field displays the number of times a group membership has been added on this interface.</td>
</tr>
<tr>
<td>Number of Groups</td>
<td>This field indicates the current number of membership entries for this interface.</td>
</tr>
</tbody>
</table>
7.1.2.3. ip igmp version

This command configures the version of IGMP for an interface.

To reset the version of IGMP for this interface to the default value, use the no form of this command.

Format
```
ip igmp version {1 | 2 | 3}
no ip igmp version
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><1-3></td>
<td>The IGMP version number.</td>
</tr>
</tbody>
</table>

Default 3

Mode Interface Config

7.1.2.4. ip igmp last-member-query-count

This command sets the number of Group-Specific Queries sent by the interface before the router assumes that there are no local members on the interface.

To reset the number of Group-Specific Queries to the default value, use the no form of this command.

Format
```
ip igmp last-member-query-count <1-20>
no ip igmp last-member-query-count
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><1-20></td>
<td>The range for last-member-query-count is from 1 to 20.</td>
</tr>
</tbody>
</table>

Default 2

Mode Interface Config
7.1.2.5. ip igmp last-member-query-interval

This command configures the Maximum Response Time being inserted into Group-Specific Queries sent in response to Leave Group messages on the interface.

To reset the Maximum Response Time being inserted into Group-Specific Queries sent in response to Leave Group messages on the interface to the default value, use the no form of this command.

Format

```
ip igmp last-member-query-interval <0-255>
no ip igmp last-member-query-interval
```

Fields	Definition

| <1-25> | The range for last-member-query-interval is from 1 to 25 seconds.

Default 1 second
Mode Interface Config

7.1.2.6. ip igmp query-interval

This command configures the query interval for the specified interface. This is the frequency at which IGMP Host-Query packets are transmitted on this interface.

To reset the query interval for the specified interface to the default value, use the no form of this command.

Format

```
ip igmp query-interval <1-31744>
no ip igmp query-interval
```

Fields	Definition

| <1-31744> | The range for query-interval is from 1 to 31744 seconds.

| IGMP version 3 | range 1-31744, version 2: range 1-3600, version 1: range 1-3600

Default 125 seconds
Mode Interface Config

7.1.2.7. ip igmp query-max-response-time

This command configures the maximum response time interval for the specified interface, which is the maximum query response time advertised in IGMPv2 queries on this interface. The time interval is specified in tenths of a second.
To reset the maximum response time interval for the specified interface to the default value, use the no form of this command.

Format
`ip igmp query-max-response-time <0-3174>`
no `ip igmp query-max-response-time`

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><1-3174></td>
<td>The range for query-max-response-time is from 0 to 3174 seconds.</td>
</tr>
<tr>
<td>IGMP version 3</td>
<td>range 1-3174, version 2: range 1-25, version 1: range 1-25</td>
</tr>
</tbody>
</table>

Default
10 seconds
Mode
Interface Config

7.1.2.8. ip igmp robustness

This command configures the robustness that allows tuning of the interface. The robustness is the tuning for the expected packet loss on a subnet. If a subnet is expected to have a lot of loss, the Robustness variable may be increased for the interface.

To reset the robustness value to the default value, use the no form of this command.

Format
`ip igmp robustness <1-255>`
no `ip igmp robustness`

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><1-255></td>
<td>The range for robustness is from 1 to 255.</td>
</tr>
</tbody>
</table>

Default
2
Mode
Interface Config

7.1.2.9. ip igmp startup-query-count

This command sets the number of Queries sent out on startup, separated by the Startup Query Interval on the interface.

To reset the number of Queries sent out on startup to the default value, use the no form of this command.

Format
`ip igmp startup-query-count <1-20>`
no ip igmp startup-query-count

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><1-20></td>
<td>The range for startup-query-count is from 1 to 20.</td>
</tr>
</tbody>
</table>

Default 2
Mode Interface Config

7.1.2.10. ip igmp startup-query-interval

This command sets the interval between General Queries sent by a Querier on startup on the interface. The time interval value is in seconds.

To reset the interval between General Queries sent by a Querier on startup on the interface to the default value, use the no form of this command.

Format ip igmp startup-query-interval <1-300>
no ip igmp startup-query-interval

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><1-300></td>
<td>The range for startup-query-interval is from 1 to 300 seconds.</td>
</tr>
</tbody>
</table>

Default 31
Mode Interface Config
7.2. MLD Commands

This section provides a detailed explanation of the MLD commands. The commands are divided into the following different groups:

Show commands are used to display device settings, statistics and other information.

Configuration commands are used to configure features and options of the switch. For every configuration command there is a show command that will display the configuration setting.

7.2.1. Show commands

7.2.1.1. show ipv6 mld groups

Use this command to display information about multicast groups that MLD reported. The information is displayed only when MLD is enabled on at least one interface. If MLD was not enabled on even one interface, there is no group information to be displayed.

Format

```
show ipv6 mld groups {<slot/port> | vlan <vlan-id> | <group-address>}
```

Fields

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><slot/port></td>
<td>Valid slot and port number separated by forward slashes.</td>
</tr>
<tr>
<td><vlan-id></td>
<td>VLAN ID. The range of VLAN ID is from 1 to 4093.</td>
</tr>
<tr>
<td><group-address></td>
<td>The address of the multicast group.</td>
</tr>
</tbody>
</table>

Default None

Mode Privileged Exec

Display Message

The following fields are displayed as a table when <slot/port> is specified.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Address</td>
<td>The address of the multicast group.</td>
</tr>
<tr>
<td>Interface</td>
<td>Interface through which the multicast group is reachable.</td>
</tr>
<tr>
<td>Up Time</td>
<td>Time elapsed in hours, minutes, and seconds since the multicast group has been known.</td>
</tr>
<tr>
<td>Expiry Time</td>
<td>Time left in hours, minutes, and seconds before the entry is removed from the MLD membership table.</td>
</tr>
</tbody>
</table>
When `<group-address>` is specified, the following fields are displayed for each multicast group and each interface.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Interface through which the multicast group is reachable.</td>
</tr>
<tr>
<td>Group Address</td>
<td>The address of the multicast group.</td>
</tr>
<tr>
<td>Last Reporter</td>
<td>The IP Address of the source of the last membership report received for this multicast group address on that interface.</td>
</tr>
<tr>
<td>Filter Mode</td>
<td>The filter mode of the multicast group on this interface. The values it can take are <code>include</code> and <code>exclude</code>.</td>
</tr>
<tr>
<td>Version 1 Host Timer</td>
<td>The time remaining until the router assumes there are no longer any MLD version-1 Hosts on the specified interface.</td>
</tr>
<tr>
<td>GroupCompat Mode</td>
<td>The compatibility mode of the multicast group on this interface. The values it can take are <code>MLDv1</code> and <code>MLDv2</code>.</td>
</tr>
</tbody>
</table>

The following table is displayed to indicate all the sources associated with this group.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Address</td>
<td>The IP address of the source.</td>
</tr>
<tr>
<td>Uptime</td>
<td>Time elapsed in hours, minutes, and seconds since the source has been known.</td>
</tr>
<tr>
<td>Expiry Time</td>
<td>Time left in hours, minutes, and seconds before the entry is removed.</td>
</tr>
</tbody>
</table>

7.2.1.2. show ipv6 mld interface

Use this command to display MLD-related information for the specific interface.

Format

```
show ipv6 mld interface [{<slot/port> | vlan <vlan-id>}]  
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><slot/port></code></td>
<td>Valid slot and port number separated by forward slashes.</td>
</tr>
<tr>
<td><code><vlan-id></code></td>
<td>VLAN ID. The range of VLAN ID is from 1 to 4093.</td>
</tr>
</tbody>
</table>

Default

None
Mode Privileged Exec

Display Message

The following information is displayed for each of the interfaces or for only the specified interface.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The interface number in slot/port format.</td>
</tr>
<tr>
<td>MLD Global Admin Mode</td>
<td>Displays the configured administrative status of MLD.</td>
</tr>
<tr>
<td>MLD Interface Admin Mode</td>
<td>Displays the configured administrative status of MLD on the interface.</td>
</tr>
<tr>
<td>MLD Operational Mode</td>
<td>The operational status of MLD on the interface.</td>
</tr>
<tr>
<td>MLD Version</td>
<td>Indicates the version of MLD configured on the interface.</td>
</tr>
<tr>
<td>Query Interval</td>
<td>Indicates the configured query interval for the interface.</td>
</tr>
<tr>
<td>Query Max Response Time</td>
<td>Indicates the configured maximum query response time (in seconds) advertised in MLD queries on this interface.</td>
</tr>
<tr>
<td>Robustness</td>
<td>Displays the configured value for the tuning for the expected packet loss on a subnet attached to the interface.</td>
</tr>
<tr>
<td>Startup Query interval</td>
<td>This valued indicates the configured interval between General Queries sent by a Querier on startup.</td>
</tr>
<tr>
<td>Startup Query Count</td>
<td>This value indicates the configured number of Queries sent out on startup, separated by the Startup Query Interval.</td>
</tr>
<tr>
<td>Last Member Query Interval</td>
<td>This value indicates the configured Maximum Response Time inserted into Group-Specific Queries sent in response to Leave Group messages.</td>
</tr>
<tr>
<td>Last Member Query Count</td>
<td>This value indicates the configured number of Group-Specific Queries sent before the router assumes that there are no local members.</td>
</tr>
</tbody>
</table>

The following information is displayed if the operational mode of the MLD interface is enabled.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Querier Status</td>
<td>This value indicates whether the interface is an MLD querier or non-querier on the subnet it is associated with.</td>
</tr>
<tr>
<td>Querier IP Address</td>
<td>The IP address of the MLD querier on the subnet the interface is associated with.</td>
</tr>
</tbody>
</table>
7.2.1.3. *show ipv6 mld traffic*

Use this command to display MLD statistical information for the router.

Format
show ipv6 mld traffic

Default
None

Mode
Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid MLD Packets Received</td>
<td>The number of valid MLD packets received by the router.</td>
</tr>
<tr>
<td>Valid MLD Packets Sent</td>
<td>The number of valid MLD packets sent by the router.</td>
</tr>
<tr>
<td>Queries Received</td>
<td>The number of valid MLD queries received by the router.</td>
</tr>
<tr>
<td>Queries Sent</td>
<td>The number of valid MLD queries sent by the router.</td>
</tr>
<tr>
<td>Reports Received</td>
<td>The number of valid MLD reports received by the router.</td>
</tr>
<tr>
<td>Reports Sent</td>
<td>The number of valid MLD reports sent by the router.</td>
</tr>
<tr>
<td>Leaves Received</td>
<td>The number of valid MLD leaves received by the router.</td>
</tr>
<tr>
<td>Leaves Sent</td>
<td>The number of valid MLD leaves sent by the router.</td>
</tr>
<tr>
<td>Bad Checksum MLD Packets</td>
<td>The number of bad checksum MLD packets received by the router.</td>
</tr>
<tr>
<td>Malformed MLD Packets</td>
<td>The number of malformed MLD packets received by the router.</td>
</tr>
</tbody>
</table>
7.2.2. Configuration commands

7.2.2.1. ipv6 mld query-interval

Use this command to set the MLD router’s query interval for the interface. The query-interval is the amount of time between the general queries sent when the router is the querier on that interface.

To reset the query interval for the specified interface to the default value, use the no form of this command.

Format ipv6 mld query-interval <1-31744>
 no ipv6 mld query-interval

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><1-31744></td>
<td>The range for query-interval is 1 to 31744 seconds.</td>
</tr>
<tr>
<td>MLD version 2</td>
<td>range 1-31744, version 1: range 1-3600</td>
</tr>
</tbody>
</table>

Default 125
Mode Interface Config

7.2.2.2. ipv6 mld query-max-response-time

Use this command to set the MLD querier’s maximum response time for the interface and this value is used in assigning the maximum response time in the query messages that are sent on that interface.

To reset the maximum response time interval for the specified interface to the default value, use the no form of this command.

Format ipv6 mld query-max-response-time <1-8387>
 no ipv6 mld query-max-response-time

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><0-8387></td>
<td>The range for query-max-response-time is 0 to 8387 seconds.</td>
</tr>
<tr>
<td>MLD version 2</td>
<td>range 1-8387, version 1: range 1-65</td>
</tr>
</tbody>
</table>

Default 10 seconds
Mode Interface Config
7.2.2.3. ipv6 mld last-member-query-interval

Use this command to set the last member query interval for the MLD interface, which is the value of the maximum response time parameter in the group specific queries sent out of this interface.

To reset the Maximum Response Time being inserted into Group-Specific Queries sent in response to Leave Group messages on the interface to the default value, use the no form of this command.

Format

```
ipv6 mld last-member-query-interval <1-65>
no ipv6 mld last-member-query-interval
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><1-65></td>
<td>The range for last-member-query-interval is from 1 to 65 seconds.</td>
</tr>
</tbody>
</table>

Default 1 second

Mode Interface Config

7.2.2.4. ipv6 mld last-member-query-count

Use this command to set the number of listener-specific queries sent before the router assumes that there are no local members on the interface.

To reset the number of Group-Specific Queries to the default value, use the no form of this command.

Format

```
ipv6 mld last-member-query-count <1-20>
no ipv6 mld last-member-query-count
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><1-20></td>
<td>The range for last-member-query-count is from 1 to 20.</td>
</tr>
</tbody>
</table>

Default 2

Mode Interface Config

7.2.2.5. ipv6 mld router

Use this command, in the administrative mode of the router, to enable MLD in the router.

To set the administrative mode of MLD in the router to inactive, use the no form of this command.
7.2.2.6. clear ipv6 mld counters

The user can go to the CLI Privilege Configuration Mode to clear MLD counters on the system.

Format clear ipv6 mld counters [{<slot/port> | vlan <vlan-id>}]
7.2.2.9. ipv6 mld reset-status

Use this command to reset the MLD proxy's host interface status parameters for the interface.

Format
ipv6 mld reset-status

Mode
Interface Config

7.2.2.10. ipv6 mld startup-query-count

Use this command to set the MLD router’s startup query count for the interface.

Format
ipv6 mld startup-query-count <1-20>

Default
2

Mode
Interface Config

7.2.2.11. ipv6 mld startup-query-interval

Use this command to set the MLD router’s startup query interval for the interface.

Format
ipv6 mld startup-query-interval <1-300>

Default
31

Mode
Interface Config
7.2.2.12. ipv6 mld unsolicit-rprt-interval

Use this command to set the MLD proxy unsolicited report interval for the interface.

Format ipv6 mld unsolicit-rprt-interval <1-260>

Default 1

Mode Interface Config
7.3. Multicast Commands

7.3.1. Show commands

7.3.1.1. show ip mcast

This command displays the system-wide multicast information.

Format
show ip mcast

Default
None

Mode
Privileged Exec
User Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin Mode</td>
<td>This field displays the administrative status of multicast. This is a configured value.</td>
</tr>
<tr>
<td>IPv4 Protocol State</td>
<td>This field indicates the current state of the IPv4 multicast protocol. Possible values are Operational or Non-Operational.</td>
</tr>
<tr>
<td>IPv6 Protocol State</td>
<td>This field indicates the current state of the IPv6 multicast protocol. Possible values are Operational or Non-Operational.</td>
</tr>
<tr>
<td>IPv4 Table Max Size</td>
<td>The max number of the IPv4 entries allowed in the multicast table.</td>
</tr>
<tr>
<td>IPv6 Table Max Size</td>
<td>The max number of the IPv6 entries allowed in the multicast table.</td>
</tr>
<tr>
<td>IPv4 Protocol</td>
<td>This field displays the multicast IPv4 protocol running on the router.</td>
</tr>
<tr>
<td>IPv6 Protocol</td>
<td>This field displays the multicast IPv6 protocol running on the router.</td>
</tr>
<tr>
<td>IPv4 Multicast Forwarding Cache Entry Count</td>
<td>This field displays the number of entries in the IPv4 multicast table.</td>
</tr>
<tr>
<td>IPv6 Multicast Forwarding Cache Entry Count</td>
<td>This field displays the number of entries in the IPv6 multicast table.</td>
</tr>
</tbody>
</table>
7.3.1.2. show ip mcast boundary

This command displays all the configured administrative scoped multicast boundaries.

Format show ip mcast boundary {<slot/port> | all | vlan <vlan-id>}

Fields Definition

<slot/port> Interface number.

<vlan-id> VLAN ID. The range of VLAN ID is 1 to 4093.

<all> All interface.

Default None

Mode Privileged Exec
 User Exec

Display Message

Fields Definition

Interface Valid slot and port number separated by forward slashes.

Group IP The group IP address.

Mask The group IP mask.

7.3.1.3. show ip mcast interface

This command displays the multicast information for the specified interface.

Format show ip mcast interface {<slot/port> | vlan <vlan-id>}

Fields Definition

<slot/port> Interface number.

<vlan-id> VLAN ID. The range of VLAN ID is 1 to 4093.

Default None

Mode Privileged Exec
 User Exec
7.3.1.4. show ip mcast mroute

This command displays a summary or all the details of the multicast table.

Format

```
show ip mcast mroute {detail | summary}
```

Display Message

If the “**detail**” parameter is specified, the following fields are displayed:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source IP</td>
<td>This field displays the IP address of the multicast data source.</td>
</tr>
<tr>
<td>Group IP</td>
<td>This field displays the IP address of the destination of the multicast packet.</td>
</tr>
<tr>
<td>Expiry Time (secs)</td>
<td>This field displays the time of expiry of this entry in seconds.</td>
</tr>
<tr>
<td>Up Time (secs)</td>
<td>This field displays the time elapsed since the entry was created in seconds.</td>
</tr>
<tr>
<td>RPF Neighbor</td>
<td>This field displays the IP address of the RPF neighbor.</td>
</tr>
<tr>
<td>Flags</td>
<td>This field displays the flags associated with this entry.</td>
</tr>
</tbody>
</table>
If the “summary” parameter is specified, the following fields are displayed:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source IP</td>
<td>This field displays the IP address of the multicast data source.</td>
</tr>
<tr>
<td>Group IP</td>
<td>This field displays the IP address of the destination of the multicast packet.</td>
</tr>
<tr>
<td>Protocol</td>
<td>This field displays the multicast routing protocol by which this entry was created.</td>
</tr>
<tr>
<td>Incoming Interface</td>
<td>This field displays the interface on which the packet for this source/group arrives.</td>
</tr>
<tr>
<td>Outgoing Interface List</td>
<td>This field displays the list of outgoing interfaces on which this packet is forwarded.</td>
</tr>
</tbody>
</table>

7.3.1.5. show ip mcast mroute group

This command displays the multicast configuration settings such as flags, timer settings, incoming and outgoing interfaces, RPF neighboring routers, and expiration times of all the entries in the multicast mroute table containing the given <groupipaddr>.

Format

```
show ip mcast mroute group <groupipaddr> {detail |summary}
```

Fields

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><groupipaddr></td>
<td>the IP Address of the destination of the multicast packet.</td>
</tr>
<tr>
<td>Detail</td>
<td>Display the multicast routing table details.</td>
</tr>
<tr>
<td>Summary</td>
<td>Display the multicast routing table summary.</td>
</tr>
</tbody>
</table>

Default

None

Mode

Privileged Exec
User Exec

Display Message

If the `detail` parameter is specified the follow fields are displayed:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source IP</td>
<td>This field displays the IP address of the multicast data source.</td>
</tr>
<tr>
<td>Group IP</td>
<td>This field displays the IP address of the destination of the multicast packet.</td>
</tr>
</tbody>
</table>
If the **summary** parameter is specified the follow fields are displayed:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source IP</td>
<td>This field displays the IP address of the multicast data source.</td>
</tr>
<tr>
<td>Group IP</td>
<td>This field displays the IP address of the destination of the multicast packet.</td>
</tr>
<tr>
<td>Protocol</td>
<td>This field displays the multicast routing protocol by which this entry was created.</td>
</tr>
<tr>
<td>Incoming Interface</td>
<td>This field displays the interface on which the packet for this group arrives.</td>
</tr>
<tr>
<td>Outgoing Interface List</td>
<td>This field displays the list of outgoing interfaces on which this packet is forwarded.</td>
</tr>
</tbody>
</table>

7.3.1.6. `show ip mcast mroute source`

This command displays the multicast configuration settings such as flags, timer settings, incoming and outgoing interfaces, RPF neighboring routers, and expiration times of all the entries in the multicast mroute table containing the given `<sourceipaddr>`.

Format

```
show ip mcast mroute source <sourceipaddr> {summary | detail}
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>< sourceipaddr ></code></td>
<td>the IP Address of the multicast data source.</td>
</tr>
<tr>
<td>summary</td>
<td>display the multicast routing table summary</td>
</tr>
<tr>
<td>Detail</td>
<td>Display the multicast routing table details.</td>
</tr>
</tbody>
</table>

Default

None

Mode

Privileged Exec
User Exec
Display Message

If the detail parameter is specified the follow fields are displayed:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source IP</td>
<td>This field displays the IP address of the multicast data source.</td>
</tr>
<tr>
<td>Group IP</td>
<td>This field displays the IP address of the destination of the multicast packet.</td>
</tr>
<tr>
<td>Expiry Time (secs)</td>
<td>This field displays the time of expiry of this entry in seconds.</td>
</tr>
<tr>
<td>Up Time (secs)</td>
<td>This field displays the time elapsed since the entry was created in seconds.</td>
</tr>
<tr>
<td>RPF Neighbor</td>
<td>This field displays the IP address of the RPF neighbor.</td>
</tr>
<tr>
<td>Flags</td>
<td>This field displays the flags associated with this entry.</td>
</tr>
</tbody>
</table>

If the summary parameter is specified the follow fields are displayed:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source IP</td>
<td>This field displays the IP address of the multicast data source.</td>
</tr>
<tr>
<td>Group IP</td>
<td>This field displays the IP address of the destination of the multicast packet.</td>
</tr>
<tr>
<td>Protocol</td>
<td>This field displays the multicast routing protocol by which this entry was created.</td>
</tr>
<tr>
<td>Incoming Interface</td>
<td>This field displays the interface on which the packet for this source arrives.</td>
</tr>
<tr>
<td>Outgoing Interface List</td>
<td>This field displays the list of outgoing interfaces on which this packet is forwarded.</td>
</tr>
</tbody>
</table>

7.3.1.7. show ip mcast mroute static

This command displays all the static routes configured in the static mcast table, if it is specified, or display the static route associated with the given <sourceipaddr>.

Format show ip mcast mroute static [sourceipaddr]

Fields Definition
< sourceipaddr > the IP Address of the multicast data source.

Default None
7.3.1.8. show ipv6 mroute

Use this command to display IPv6 multicast routing table information.

Format show ipv6 mroute {detail | summary}

Mode Privileged Exec
 User Exec

Display Message

If you use the summary parameter, the command displays the following information:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source IP</td>
<td>The IP address of the multicast data source.</td>
</tr>
<tr>
<td>Group IP</td>
<td>The IP address of the destination of the multicast packet.</td>
</tr>
<tr>
<td>Expiry Time</td>
<td>The time of expiry of this entry in seconds.</td>
</tr>
<tr>
<td>Up Time</td>
<td>The time elapsed since the entry was created in seconds.</td>
</tr>
<tr>
<td>RPF Neighbor</td>
<td>The IP address of the RPF neighbor.</td>
</tr>
<tr>
<td>Flags</td>
<td>The flags associated with this entry.</td>
</tr>
</tbody>
</table>
Example:

(M4500-48XP8C) # show ipv6 mroute summary

Multicast route table summary

<table>
<thead>
<tr>
<th>Source IP</th>
<th>Group IP</th>
<th>Protocol</th>
<th>Interface</th>
<th>Interface List</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ff1e::1</td>
<td>PIMSM</td>
<td>0/1</td>
<td></td>
</tr>
<tr>
<td>2002::6</td>
<td>ff1e::1</td>
<td>PIMSM</td>
<td>0/2</td>
<td>0/1</td>
</tr>
</tbody>
</table>

(M4500-48XP8C) (Interface 0/2)#show ipv6 mroute detail

IP Multicast Routing Table

Flags: C - Connected, J - Received Pim (*,G) Join, R - RP-bit set, F - Register flag, T - SPT-bit set

Timers: Uptime/Expires Protocol: PIMSM

(*,ff1e::1)
00:08:14/000 RP: 2002::1
Joins/Prunes: 0/0
Incoming interface: RPF nbr: ::
Outgoing interface list:
0/1 00:08:14/250 Joins: 0 Flags: C

(2002::6,ff1e::1)
00:00:14/195 Flags: T
Joins/Prunes: 0/0 Reg/Reg-stop: 0/0
Incoming interface: 0/2 RPF nbr: 2002::6
Outgoing interface list:
0/1 00:00:14/000 Joins: 0
7.3.1.9. show ipv6 mroute group

Use this command to display IPv6 multicast routing table information specific to the given group IPv6 address.

Format show ipv6 mroute group <group-address> {detail | summary}

Mode Privileged Exec
 User Exec

Display Message

If you use the detail parameter, the command displays the following information:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source IP</td>
<td>The IP address of the multicast data source.</td>
</tr>
<tr>
<td>Group IP</td>
<td>The IP address of the destination of the multicast packet.</td>
</tr>
<tr>
<td>Protocol</td>
<td>The multicast routing protocol by which the entry was created.</td>
</tr>
<tr>
<td>Incoming Interface</td>
<td>The interface on which the packet for the source/group arrives.</td>
</tr>
<tr>
<td>Outgoing Interface List</td>
<td>The list of the outgoing interfaces on which the packet is forwarded.</td>
</tr>
</tbody>
</table>

If you use the summary parameter, the command displays the following information:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source IP</td>
<td>The IP address of the multicast data source.</td>
</tr>
<tr>
<td>Group IP</td>
<td>The IP address of the destination of the multicast packet.</td>
</tr>
<tr>
<td>Expiry Time</td>
<td>The time of expiry of this entry in seconds.</td>
</tr>
<tr>
<td>Up Time</td>
<td>The time elapsed since the entry was created in seconds.</td>
</tr>
<tr>
<td>RPF Neighbor</td>
<td>The IP address of the RPF neighbor.</td>
</tr>
<tr>
<td>Flags</td>
<td>The flags associated with this entry.</td>
</tr>
</tbody>
</table>

7.3.1.10. show ipv6 mroute source

Use this command to display IPv6 multicast routing table information specific to the given source IPv6 address.

Format show ipv6 mroute source <source-address> {detail | summary}

Mode Privileged Exec
Display Message

If you use the **detail** parameter, the command displays the following information:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source IP</td>
<td>The IP address of the multicast data source.</td>
</tr>
<tr>
<td>Group IP</td>
<td>The IP address of the destination of the multicast packet.</td>
</tr>
<tr>
<td>Protocol</td>
<td>The multicast routing protocol by which the entry was created.</td>
</tr>
<tr>
<td>Incoming Interface</td>
<td>The interface on which the packet for the source/group arrives.</td>
</tr>
<tr>
<td>Outgoing Interface List</td>
<td>The list of the outgoing interfaces on which the packet is forwarded.</td>
</tr>
</tbody>
</table>

If you use the **summary** parameter, the command displays the following information:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source IP</td>
<td>The IP address of the multicast data source.</td>
</tr>
<tr>
<td>Group IP</td>
<td>The IP address of the destination of the multicast packet.</td>
</tr>
<tr>
<td>Expiry Time</td>
<td>The time of expiry of this entry in seconds.</td>
</tr>
<tr>
<td>Up Time</td>
<td>The time elapsed since the entry was created in seconds.</td>
</tr>
<tr>
<td>RPF Neighbor</td>
<td>The IP address of the RPF neighbor.</td>
</tr>
<tr>
<td>Flags</td>
<td>The flags associated with this entry.</td>
</tr>
</tbody>
</table>

7.3.11. **show ipv6 mroute static**

Use this command to display all configured IPv6 multicast static routes.

Format

```
show ipv6 mroute static <source-address>
```

Mode

- Privileged Exec
- User Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Address</td>
<td>The IP address of the multicast source network.</td>
</tr>
</tbody>
</table>
7.3.1.12. clear ip mroute

This command clears IPv4 multicast route entries.

Format

```
clear ip mroute { * | <groupipaddr> [ <sourceipaddr> ] }
```

Default None

Mode Privileged Exec

7.3.1.13. clear ipv6 mroute

Use this command to delete all or the specified IPv6 multicast route entries. This command clears dynamic mroute entries only. It does not clear static mroutes.

Format

```
clear ipv6 mroute { * | group-address [ source-address ] }
```

Mode Privileged Exec

7.3.2. Configuration commands

7.3.2.1. ip multicast

This command sets the administrative mode of the IP multicast forwarder in the router to active. For multicast routing to become operational, IGMP must be currently enabled. An error message will be displayed on the CLI if multicast routing is enabled while IGMP is disabled. However, the IP multicast mode configuration is stored in the multicast configuration file and is automatically enabled once IGMP is enabled.

To set the administrative mode of the IP multicast forwarder in the router to inactive, use the no form of this command.

Format

```
ip multicast
no ip multicast
```

Default None
7.3.2.2. ip mcast boundary

This command adds an administrative scope multicast boundary specified by <groupipaddr> and <mask> for which this multicast administrative boundary is applicable. <groupipaddr> is a group IP address and <mask> is a group IP mask.

To remove an administrative scope multicast boundary specified by <groupipaddr> and <mask> for which this multicast administrative boundary is applicable, use the no form of this command.

Format

```
ip mcast boundary <groupipaddr> <mask>
no ip mcast boundary <groupipaddr> <mask>
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
</table>
| <groupipaddr> | The multicast group address for the start of the range of addresses to be excluded.
The address must be in the range of 239.0.0.0 through 239.255.255.255. |
| <mask> | The mask to be applied to the multicast group address. |

Default None

Mode Interface Config

7.3.2.3. ip multicast ttl-threshold

This command applies the given <ttl-threshold> to a routing interface. The <ttl-threshold> is the TTL threshold which is to be applied to the multicast Data packets which are to be forwarded from the interface.

To reset the <ttl-threshold> for the routing interface to the default value, use the no form of this command.

Format

```
ip multicast ttl-threshold <0 - 255>
no ip multicast ttl-threshold
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><0 - 255></td>
<td>the TTL threshold. The range is from 0 to 255.</td>
</tr>
</tbody>
</table>

Default 1

Mode Interface Config
7.4. IPv4 Protocol Independent Multicast (PIM) Commands

7.4.1. Show commands

7.4.1.1. show ip pim

This command displays the system-wide information for PIM-SM.

Format

```
show ip pim
```

Default

None

Mode

Privileged Exec

User Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIM Mode</td>
<td>Indicates the PIM mode is sparse (PIM-SM)</td>
</tr>
<tr>
<td>Data Threshold Rate (Kbps)</td>
<td>Rate (in kbps) of SPT Threshold</td>
</tr>
<tr>
<td>Interface</td>
<td>slot/port, or VLAN ID</td>
</tr>
<tr>
<td>Interface Mode</td>
<td>Indicates whether PIM is enabled or disabled on this interface</td>
</tr>
<tr>
<td>Operational Status</td>
<td>The current state of PIM on this interface: Operational or Non-Operational.</td>
</tr>
</tbody>
</table>

7.4.1.2. show ip pim bsr-router

This command displays the bootstrap router (BSR) information.

Format

```
show ip pim bsr-router {candidate | elected}
```

Default

None

Mode

Privileged Exec

User Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSR Address</td>
<td>IP address of the BSR</td>
</tr>
</tbody>
</table>
7.4.1.3. show ip pim interface

This command displays the interface information for PIM on the specified interface. If no interface is specified, the command displays the status parameters for all PIM-enabled interfaces.

Format
```
show ip pim interface [{<slot/port> | loopback <loopback-id> | vlan <vlan-id>}]
```

Fields
<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><slot/port></td>
</tr>
<tr>
<td>Interface number.</td>
</tr>
<tr>
<td><loopback-id></td>
</tr>
<tr>
<td>The loopback interface. The range is 0 to 63.</td>
</tr>
<tr>
<td><vlan-id></td>
</tr>
<tr>
<td>VLAN ID. The range of VLAN ID is 1 to 4093.</td>
</tr>
</tbody>
</table>

Default
None

Mode
Privileged Exec
User Exec

Display Message

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
</tr>
<tr>
<td>slot/port, loopback ID, or VLAN ID</td>
</tr>
<tr>
<td>Mode</td>
</tr>
<tr>
<td>Indicates the PIM mode enabled on the interface is sparse</td>
</tr>
<tr>
<td>Hello Interval</td>
</tr>
<tr>
<td>The frequency at which PIM hello messages are transmitted on this interface. By default, the value is 30 seconds</td>
</tr>
<tr>
<td>Join Prune Interval</td>
</tr>
<tr>
<td>The join/prune interval for the PIM router. The interval is in seconds</td>
</tr>
</tbody>
</table>
7.4.1.4. show ip pim neighbor

This command displays PIM neighbors discovered by PIMv2 Hello messages. If the interface number is not specified, this command displays the neighbors discovered on all the PIM enabled interfaces.

Format

```
show ip pim neighbor [{<slot/port> | vlan <vlan-id>}]`
```

Fields

<table>
<thead>
<tr>
<th>Definition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><slot/port></td>
<td>Interface number.</td>
</tr>
<tr>
<td><vlan-id></td>
<td>VLAN ID. The range of VLAN ID is 1 to 4093.</td>
</tr>
</tbody>
</table>

Default

None

Mode

- Privileged Exec
- User Exec

Display Message

Fields

<table>
<thead>
<tr>
<th>Definition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neighbor Address</td>
<td>The IP address of the neighbor on an interface</td>
</tr>
<tr>
<td>Interface</td>
<td>slot/port or VLAN ID</td>
</tr>
<tr>
<td>Up Time</td>
<td>The time since this neighbor has become active on this interface</td>
</tr>
<tr>
<td>Expiry Time</td>
<td>The expiry time of the neighbor on this interface</td>
</tr>
<tr>
<td>DR Priority</td>
<td>The DR Priority configured on this Interface (PIM-SM only)</td>
</tr>
<tr>
<td>BSR Border</td>
<td>Identifies whether this interface is configured as a bootstrap router border interface</td>
</tr>
</tbody>
</table>
DR Priority is applicable only when sparse-mode configured routers are neighbors. Otherwise, NA is displayed in this field.

7.4.1.5. `show ip pim rp mapping`

Use this command to display all active group-to-RP mappings of which the router is aware (either configured or learned from the bootstrap router (BSR)). Use the optional parameters to limit the display to a specific RP address or to view group-to-candidate RP or group to Static RP mapping information.

Format

`show ip pim rp mapping [[<rp-address> | candidate | static]]`

Default

None

Mode

Privileged Exec

User Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP Address</td>
<td>The IP address of the RP for the group specified</td>
</tr>
<tr>
<td>Group Address</td>
<td>The IP address and prefix length of the multicast group</td>
</tr>
<tr>
<td>Group Mask</td>
<td>The subnet mask associated with the group</td>
</tr>
<tr>
<td>Origin</td>
<td>Indicates the mechanism (BSR or static) by which the RP was selected</td>
</tr>
<tr>
<td>Expiry Time</td>
<td>The expiry time of the RP mapping</td>
</tr>
<tr>
<td>C-RP Advertisement Interval(secs)</td>
<td>Indicates the configured C-RP Advertisement interval with which the router, acting as a C-RP, will periodically send the C-RP advertisement messages.</td>
</tr>
<tr>
<td>Next Candidate RP Advertisement (hh:mm:ss)</td>
<td>Time (in hours, minutes, and seconds) in which the next C-RP Advertisement is due from this Router</td>
</tr>
</tbody>
</table>

7.4.1.6. `show ip pim rp-hash`

This command displays which rendezvous point (RP) is being used for a specified group.

Format

`show ip pim rp-hash <group-address>`
### Fields	Definition
<group-address> | the multicast group address for the start of the range of addresses to be excluded. The address must be in the range of 239.0.0.0 through 239.255.255.255.

Default: None
Mode: Privileged Exec, User Exec
Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP Address</td>
<td>The IP address of the RP for the group specified</td>
</tr>
<tr>
<td>Type</td>
<td>Indicates the mechanism (BSR or static) by which the RP was selected</td>
</tr>
</tbody>
</table>

7.4.1.7. show ip pim ssm

This command displays the configured source specific IP multicast addresses. If no SSM Group range is configured, this command output is No SSM address range is configured.

Format: show ip pim ssm
Default: None
Mode: Privileged Exec, User Exec
Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Address</td>
<td>The IP multicast address of the SSM group</td>
</tr>
<tr>
<td>Prefix Length</td>
<td>The network prefix length</td>
</tr>
</tbody>
</table>

7.4.1.8. show ip pim statistic

This command displays statistics for the received PIM control packets per interface. This command displays statistics only if PIM sparse mode is enabled.

Format: show ip pim statistics [{<slot/port> | vlan <vlan-id>}]
show ip mfc

This command displays mroute entries in the multicast forwarding (MFC) database.

Format

```
show ip mfc
```

Default

None

Mode

- Privileged Exec
- User Exec
Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFC IPv4 Mode</td>
<td>Enabled when IPv4 Multicast routing is operational.</td>
</tr>
<tr>
<td>MFC IPv6 Mode</td>
<td>Enabled when IPv6 Multicast routing is operational.</td>
</tr>
<tr>
<td>MFC Entry Count</td>
<td>The number of entries present in MFC.</td>
</tr>
<tr>
<td>Current multicast IPv4 protocol</td>
<td>The current operating IPv4 multicast routing protocol.</td>
</tr>
<tr>
<td>Current multicast IPv6 protocol</td>
<td>The current operating IPv6 multicast routing protocol.</td>
</tr>
<tr>
<td>Total software forwarded packets</td>
<td>Total number of multicast packets forwarded in software.</td>
</tr>
<tr>
<td>Source address</td>
<td>Source address of the multicast route entry.</td>
</tr>
<tr>
<td>Group address</td>
<td>Group address of the multicast route entry.</td>
</tr>
<tr>
<td>Packets forwarded in software for this entry</td>
<td>Number of multicast packets that are forwarded in software for a specific multicast route entry.</td>
</tr>
<tr>
<td>IPv4 Protocol</td>
<td>Multicast routing protocol that has added a specific entry.</td>
</tr>
<tr>
<td>Expiry Time (secs)</td>
<td>Expiry time for a specific Multicast Route entry in seconds.</td>
</tr>
<tr>
<td>Up Time (secs)</td>
<td>Up Time in seconds for a specific Multicast Routing entry.</td>
</tr>
<tr>
<td>Incoming interface</td>
<td>Incoming interface for a specific Multicast Route entry.</td>
</tr>
<tr>
<td>Outgoing interface list</td>
<td>Outgoing interface list for a specific Multicast Route entry.</td>
</tr>
</tbody>
</table>

7.4.1.10. clear ip pim statistics

This command clears IP PIM statistics.

Format
clear ip pim statistics

Default
None

Mode
Privileged Exec
7.4.2. Configuration commands

7.4.2.1. ip pim bsr-candidate

This command is used to configure the router to announce its candidacy as a bootstrap router (BSR).

To remove a configured candidate bootstrap router (C-BSR), use the no form of this command.

Format
```
ip pim bsr-candidate interface {<slot/port> | loopback <loopback-id> | vlan <vlan-id>} <hash-mask-length> [<priority>] [interval <1-16383>]
no ip pim bsr-candidate interface {<slot/port> | loopback <loopback-id> | vlan <vlan-id>}
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><slot/port></td>
<td>Valid slot and port number separated by forward slashes.</td>
</tr>
<tr>
<td><vlan-id></td>
<td>VLAN ID. The range of VLAN ID is 1 to 4093.</td>
</tr>
<tr>
<td><loopback-id></td>
<td>The loopback interface. The range is 0 to 63.</td>
</tr>
<tr>
<td><hash-mask-length></td>
<td>BSR hash-mask length. The range of the mask is 0 to 32.</td>
</tr>
<tr>
<td><priority></td>
<td>BSR priority. The range of the priority is 0 to 255.</td>
</tr>
<tr>
<td><interval></td>
<td>BSR candidate advertisement interval. The range of the priority is 1 to 16383.</td>
</tr>
</tbody>
</table>

Default Disable

Mode Global Config

- This command takes effect only when PIM-SM is configured as the PIM mode.

7.4.2.2. ip pim rp-address

This command is used to statically configure the RP address for one or more multicast groups. The parameter rp-address is the IP address of the RP. The parameter groupaddress is the group address supported by the RP. The parameter groupmask is the group mask for the group address. The optional keyword override indicates that if there is a conflict, the RP configured with this command prevails over the RP learned by BSR.

To remove a configured RP address for one or more multicast groups, use the no form of this command.

Format
```
ip pim rp-address <rp-address> <group-address> <group-mask> [override]
no ip pim rp-address <rp-address> <group-address> <group-mask>
```
7.4.2.3. ip pim rp-candidate

This command is used to configure the router to advertise itself as a PIM candidate rendezvous point (RP) to the bootstrap router (BSR).

To disable the router to advertise itself as a PIM candidate rendezvous point (RP) to the bootstrap router (BSR), use the no form of this command.

Format

```
ip pim rp-candidate interface {<slot/port> | loopback <loopback-id> | vlan <vlan-id>} <group-address> <group-mask> [interval <1-16383>]
no ip pim rp-candidate interface {<slot/port> | loopback <loopback-id> | vlan <vlan-id>} <group-address> <group-mask>
```

Fields

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><slot/port></td>
<td>Valid slot and port number separated by forward slashes.</td>
</tr>
<tr>
<td><vlan-id></td>
<td>VLAN ID. The range of VLAN ID is 1 to 4093.</td>
</tr>
<tr>
<td><loopback-id></td>
<td>The loopback interface. The range is 0 to 63.</td>
</tr>
<tr>
<td><group-address></td>
<td>Specifies the group address.</td>
</tr>
<tr>
<td><group-mask></td>
<td>Specifies the group mask.</td>
</tr>
<tr>
<td>[interval]</td>
<td>Indicates the RP candidate advertisement interval. The range is from 1 to 16383. The default value is 60 seconds.</td>
</tr>
</tbody>
</table>

This command takes effect only when PIM-SM is configured as the PIM mode.
This command takes effect only when PIM-SM is configured as the PIM mode.

7.4.2.4. ip pim sparse

This command enables the administrative mode of PIM-SM in the router.

To set the administrative mode of IPv4 PIM-SM in the router to inactive, use the no form of this command.

Format

```
ip pim sparse
no ip pim sparse
```

Default Disable

Mode Global Config

7.4.2.5. ip pim-spt-threshold

Use this command to configure the Data Threshold rate for the last-hop router to switch to the shortest path. The possible values are 0 or Infinity.

To reset the Data Threshold rate for the last-hop router to switch to the shortest path to the default value, use the no form of this command.

Format

```
ip pim spt-threshold {0 | Infinity}
no ip pim spt-threshold
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><0></td>
<td>This is 0 kilobits per seconds.</td>
</tr>
<tr>
<td><Infinity></td>
<td>This command will disable the function.</td>
</tr>
</tbody>
</table>

Default 0

Mode Global Config

This command takes effect only when PIM-SM is configured as the PIM mode.
7.4.2.6. **ip pim ssm**

Use this command to define the Source Specific Multicast (SSM) range of IP multicast addresses.

To disable the specified Source Specific Multicast (SSM) range, use the no form of this command.

Format

```
ip pim ssm {default | <group-address> <group-mask>}
no ip pim ssm {default | <group-address> <group-mask>}
```

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Defines the SSM range access list 232/8.</td>
</tr>
<tr>
<td><group-address></td>
<td>Specifies the group address.</td>
</tr>
<tr>
<td><group-mask></td>
<td>Specifies the group-mask.</td>
</tr>
</tbody>
</table>

Default Disable

Mode Global Config

7.4.2.7. **ip pim**

This command administratively enables PIM on an interface or range of interfaces.

To set the administrative mode of PIM on an interface to disabled, use the no form of this command.

Format

```
ip pim
no ip pim
```

Default Disable

Mode Interface Config

7.4.2.8. **ip pim bsr-border**

Use this command to prevent bootstrap router (BSR) messages from being sent or received through an interface or range of interfaces.

To disable the interface from being the BSR border, use the no form of this command.

Format

```
ip pim bsr-border
no ip pim bsr-border
```

Default Disable
This command takes effect only when PIM-SM is configured as the PIM mode.

7.4.2.9. `ip pim dr-priority`

Use this command to set the priority value for which a router is elected as the designated router (DR). This command can be configured on a single interface or a range of interfaces.

To reset the priority value to the default value for which a router is elected as the designated router (DR), use the no form of this command.

Format

```
ip pim dr-priority <0-4294967294>
no ip pim dr-priority
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><0-4294967294></code></td>
<td>The range for dr-priority is from 0 to 4294967294.</td>
</tr>
</tbody>
</table>

Default

1

7.4.2.10. `ip pim hello-interval`

Use this command to configure the PIM hello interval for the specified router interface or range of interfaces.

To reset the PIM hello interval to the default value, use the no form of this command.

Format

```
ip pim hello-interval <0-18000>
no ip pim hello-interval
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><0-18000></code></td>
<td>The range for hello-interval is from 0 to 18000 seconds.</td>
</tr>
</tbody>
</table>

Default

30
7.4.2.11. ip pim join-prune-interval

This command is used to configure the join/prune interval for the PIM-SM router on an interface or range of interfaces. The join/prune interval is specified in seconds.

To reset the PIM join/prune interval to the default value, use the no form of this command.

Format
```
ip pim join-prune-interval <0-18000>
no ip pim join-prune-interval
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><0-18000></td>
<td>The range for the join/prune interval is from 0 to 18000 seconds.</td>
</tr>
</tbody>
</table>

Default 60

Mode Interface Config

This command takes effect only when PIM-SM is configured as the PIM mode.
7.5. IPv6 Protocol Independent Mulitcast (PIM) Commands

7.5.1. Show commands

7.5.1.1. show ipv6 pim

Use this command to display the system-wide information for PIM-SM.

Format
show ipv6 pim

Default
None

Mode
Privileged Exec

User Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIM Mode</td>
<td>Indicates the PIM mode is sparse (PIM-SM)</td>
</tr>
<tr>
<td>Data Threshold Rate</td>
<td>Indicates the data threshold rate for PIM.</td>
</tr>
<tr>
<td>Interface</td>
<td>slot/port, loopback ID or VLAN ID.</td>
</tr>
<tr>
<td>Interface Mode</td>
<td>Indicates whether PIM is enabled or disabled on this interface.</td>
</tr>
<tr>
<td>Operational Status</td>
<td>The current state of PIM on this interface. Possible values are Operational or Non-Operational.</td>
</tr>
</tbody>
</table>

7.5.1.2. show ipv6 pim ssm

Use this command to displays the configured source specific IPv6 multicast addresses. If no SSM Group range is configured, this command output is No SSM address range is configured.

Format
show ipv6 pim ssm

Default
None

Mode
Privileged Exec

User Exec
7.5.1.3. show ipv6 pim interface

Use this command to display the interface information for PIM on the specified interface. If no interface is specified, the command displays the status parameters for all PIM-enabled interfaces.

Format

```plaintext
show ipv6 pim interface [{<slot/port> | loopback <loopback-id> | vlan <vlan-id>}]
```

Fields

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Address</td>
</tr>
<tr>
<td>The IPv6 multicast address of the SSM group.</td>
</tr>
<tr>
<td>Prefix Length</td>
</tr>
<tr>
<td>The network prefix length.</td>
</tr>
</tbody>
</table>

Display Message

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
</tr>
<tr>
<td>slot/port, loopback ID, or VLAN ID.</td>
</tr>
<tr>
<td>Mode</td>
</tr>
<tr>
<td>Indicate the PIM mode enabled on the interface is sparse.</td>
</tr>
<tr>
<td>Hello Interval</td>
</tr>
<tr>
<td>The frequency at which PIM hello messages are transmitted on this interface. By default, the value is 30 seconds.</td>
</tr>
<tr>
<td>Join Prune Interval</td>
</tr>
<tr>
<td>The join/prune interval for the PIM router. The interval is in seconds. By default, the value is 60 seconds.</td>
</tr>
<tr>
<td>DR Priority</td>
</tr>
<tr>
<td>The priority of the Designated Router configured on the interface.</td>
</tr>
<tr>
<td>BSR Border</td>
</tr>
<tr>
<td>Identifies whether this interface is configured as a bootstrap router border interface.</td>
</tr>
</tbody>
</table>
7.5.1.4. `show ipv6 pim neighbor`

Use this command to display PIM neighbors discovered by PIMv2 Hello messages. If the interface number is not specified, this command displays the neighbors discovered on all the PIM-enabled interfaces.

Format

```
show ipv6 pim neighbor [ [<slot/port> | vlan <vlan-id> ] ]
```

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><slot/port></code></td>
<td>Valid slot and port number separated by forward slashes.</td>
</tr>
<tr>
<td><code><vlan-id></code></td>
<td>VLAN ID. The range of VLAN ID is 1 to 4093.</td>
</tr>
</tbody>
</table>

Default

None

Mode

- Privileged Exec
- User Exec

Display Message

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Slot, and port number separated by forward slashes, or VLAN ID.</td>
</tr>
<tr>
<td>Neighbor Address</td>
<td>The IP address of the neighbor on an interface.</td>
</tr>
<tr>
<td>Up Time</td>
<td>The time since this neighbor has become active on this interface.</td>
</tr>
<tr>
<td>Expiry Time</td>
<td>The expiry time of the neighbor on this interface.</td>
</tr>
<tr>
<td>DR Priority</td>
<td>The DR Priority configured on this interface (PIM-SM only).</td>
</tr>
</tbody>
</table>

7.5.1.5. `show ipv6 pim bsr-router`

This command displays the bootstrap router (BSR) information.

Format

```
show ipv6 pim bsr-router {candidate | elected}
```

Default

None
7.5.1.6. show ipv6 pim rp-hash

This command displays which rendezvous point (RP) is being used for a specified group.

Format

```
show ipv6 pim rp-hash <group-address>
```

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><group-address></td>
<td>The IPv6 address of the specified group.</td>
</tr>
</tbody>
</table>

Default

None

Mode

Privileged Exec
User Exec

Display Message

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP Address</td>
<td>The IPv6 address of the RP for the group specified.</td>
</tr>
<tr>
<td>Type</td>
<td>Indicates the mechanism (BSR or static) by which the RP was selected.</td>
</tr>
</tbody>
</table>
7.5.1.7. show ipv6 pim rp-mapping

This command displays the mapping for the PIM group to the active Rendezvous points (RP) of which the router is aware (either configured or learned from the bootstrap router (BSR)). Use the optional parameters to limit the display to a specific RP address or to view group-to-candidate RP or group to Static RP mapping information.

Format
show ipv6 pim rp mapping [{rp-address | candidate | static}]

Default
None

Mode
Privileged Exec
User Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP Address</td>
<td>The IPv6 address of the RP for the group specified.</td>
</tr>
<tr>
<td>Group Address</td>
<td>The IPv6 address and prefix length of the multicast group.</td>
</tr>
<tr>
<td>Origin</td>
<td>Indicates the mechanism (BSR or static) by which the RP was selected.</td>
</tr>
<tr>
<td>Expiry Time</td>
<td>The expiry time of the RP mapping.</td>
</tr>
<tr>
<td>Next Candidate RP Advertisement (hh:mm:ss)</td>
<td>Time (in hours, minutes, and seconds) in which the next C-RP Advertisement is due from this Router</td>
</tr>
</tbody>
</table>

If candidate is specified, the following fields are displayed:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-RP Advertisement Interval</td>
<td>Indicates the configured C-RP Advertisement interval with which the router, acting as a Candidate RP will periodically send the C-RP advertisement messages to the elected BSR.</td>
</tr>
</tbody>
</table>

7.5.1.8. show ipv6 pim statistic

This command displays statistics for the received PIM control packets per interface. This command displays statistics only if PIM sparse mode is enabled.

Format
show ipv6 pim statistics [{<slot/port> | vlan <vlan-id>}]
clear ipv6 pim statistics

This command clears IPv6 PIM Statistics.

Format

clear ipv6 pim statistics

Default

None

Mode

Privileged Exec

Display Message

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><slot/port></td>
<td>Interface number.</td>
</tr>
<tr>
<td><vlan-id></td>
<td>VLAN ID. The range of VLAN ID is 1 to 4093.</td>
</tr>
</tbody>
</table>

Default

None

Mode

Privileged Exec

User Exec

7.5.1.9. clear ipv6 pim statistics

This command clears IPv6 PIM Statistics.

Format

clear ipv6 pim statistics

Default

None

Mode

Privileged Exec
7.5.2. Configuration commands

7.5.2.1. ipv6 pim sparse

This command enables the administrative mode of PIM-SM in the router.

To set the administrative mode of IPv6 PIM-SM in the router to inactive, use the no form of this command.

Format ipv6 pim sparse
 no ipv6 pim sparse

Default Disable

Mode Global Config

7.5.2.2. ipv6 pim

This command administratively enables PIM on an interface or range of interfaces.

To set the administrative mode of IPv6 PIM on an interface to disabled, use the no form of this command.

Format ipv6 pim
 no ipv6 pim

Default Disable

Mode Interface Config

7.5.2.3. ipv6 pim hello-interval

Use this command to configure the PIM hello interval for the specified router interface or range of interfaces.

To reset the PIM hello interval to the default value, use the no form of this command.

Format ipv6 pim hello-interval <0–18000>
 no ipv6 pim hello-interval

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><0-18000></td>
<td>The range for hello-interval is from 0 to 18000 seconds.</td>
</tr>
</tbody>
</table>

Default 30

Mode Interface Config
7.5.2.4. ipv6 pim bsr-border

Use this command to prevent bootstrap router (BSR) messages from being sent or received through an interface or range of interfaces. Note that this command takes effect only when PIM-SM is enabled in the Global mode.

To disable the interface from being the BSR border, use the no form of this command.

Format
```
ipv6 pim bsr-border
no ipv6 pim bsr-border
```

Default
Disable

Mode
Interface Config

7.5.2.5. ipv6 pim bsr-candidate

This command is used to configure the router to announce its candidacy as a bootstrap router (BSR). The argument `<slot/port>` corresponds to a physical routing interface or VLAN routing interface.

To remove a configured PIM candidate bootstrap router (C-BSR), use the no form of this command.

Format
```
ipv6 pim bsr-candidate interface {<slot/port> | loopback <loopback-id> | vlan <vlan-id>} <hash-mask-length> [<priority>] [interval <1-16383>]
no ipv6 pim bsr-candidate interface {<slot/port> | loopback <loopback-id> | vlan <vlan-id>}
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><slot/port></code></td>
<td>Interface number on this router from which the BSR address is derived, to make it a candidate. This interface must be enabled with PIM.</td>
</tr>
<tr>
<td><code><loopback-id></code></td>
<td>The loopback interface. The range is 0 to 63.</td>
</tr>
<tr>
<td><code><vlan-id></code></td>
<td>VLAN ID. The range of VLAN ID is 1 to 4093.</td>
</tr>
<tr>
<td><code><hash-mask-length></code></td>
<td>BSR hash-mask length. The range of the mask is 0 to 128. The length of a mask that is to be ANDeed with the group address before the hash function is called. All groups with the same seed hash correspond to the same RP. For example, if this value was 24, only the first 24 bits of the group addresses matter. This allows you to get one RP for multiple groups.</td>
</tr>
<tr>
<td><code><priority></code></td>
<td>Priority of the candidate BSR. The range of the priority is 0 to 255. The BSR with the larger priority is preferred. If the priority values are the same, the router with the larger IP address is the BSR. The default value is 0.</td>
</tr>
<tr>
<td><code><interval></code></td>
<td>BSR candidate advertisement interval. The range of the priority is 1 to 16383.</td>
</tr>
</tbody>
</table>

Default
None
7.5.2.6. ipv6 pim dr-priority

Use this command to set the priority value for which a router is elected as the designated router (DR). This command can be configured on a single interface or a range of interfaces.

To reset the priority value to the default value for which a router is elected as the designated router (DR), use the no form of this command.

Format

```
ipv6 pim dr-priority <0-4294967294>
no ipv6 pim dr-priority
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><0-4294967294></td>
<td>The range for dr-priority is from 0 to 4294967294.</td>
</tr>
</tbody>
</table>

Default 1

Mode Interface Config

7.5.2.7. ipv6 pim join-prune-interval

This command is used to configure the interface join/prune interval for the PIM-SM router on an interface or range of interfaces. The join/prune interval is specified in seconds.

To reset the join/prune interval to the default value, use the no form of this command.

Format

```
ipv6 pim join-prune-interval <0-18000>
no ipv6 pim join-prune-interval
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><0-18000></td>
<td>The range for join-prune-interval is from 0 to 18000 seconds.</td>
</tr>
</tbody>
</table>

Default 60

Mode Interface Config

7.5.2.8. ipv6 pim rp-address

This command is used to define the address of a PIM Rendezvous point (RP) for a specific multicast group range. The parameter `<rp-address>` is the IPv6 address of the RP. The parameter `<group-address>` is the group address supported by the RP. The parameter `<prefix-length>` is the group mask for the group address. The optional
keyword **override** indicates that if there is a conflict, the RP configured with this command prevails over the RP learned by BSR.

To remove a configured RP address for one or more multicast groups, use the no form of this command.

Format

```
ipv6 pim rp-address <rp-address> <group-address/prefix-length> [override]
nipv6 pim rp-address <rp-address> <group-address/prefix-length>
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><rp-address></td>
<td>The IPv6 address of the RP.</td>
</tr>
<tr>
<td><group-address></td>
<td>The group address supported by the RP.</td>
</tr>
<tr>
<td><prefix-length></td>
<td>The group mask for the group address.</td>
</tr>
</tbody>
</table>

Override

Indicates that if there is a conflict, the RP configured with this command prevails over the RP learned by BSR.

Default

None

Mode

Global Config

7.5.2.9. ipv6 pim rp-candidate

This command is used to configure the router to advertise itself as a PIM candidate rendezvous point (RP) to the bootstrap router (BSR) for a specific multicast group range.

To disable the router to advertise itself as a PIM candidate rendezvous point (RP) to the bootstrap router (BSR), use the no form of this command.

Format

```
ipv6 pim rp-candidate interface {<slot/port> | loopback <loopback-id> | vlan <vlan-id>} <group-address/prefix-length> [interval <interval>]
nipv6 pim rp-candidate interface {<slot/port> | loopback <loopback-id> | vlan <vlan-id>} <group-address/prefix-length>
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><slot/port></td>
<td>The IP address associated with this interface type and number is advertised as a candidate RP address. This interface must be enabled with PIM.</td>
</tr>
<tr>
<td><loopback-id></td>
<td>The loopback interface. The range is 0 to 63.</td>
</tr>
<tr>
<td><vlan-id></td>
<td>VLAN ID. The range of VLAN ID is 1 to 4093.</td>
</tr>
<tr>
<td><group-address></td>
<td>The multicast group address that is advertised in association with the RP address.</td>
</tr>
</tbody>
</table>
7.5.2.10. **ipv6 pim spt-threshold**

This command is used to configure the Data Threshold rate for the last-hop router to switch to the shortest path. Now support to enable (0) or disable(Infinity).

To reset the Data Threshold rate for the last-hop router to switch to the shortest path to the default value, use the no form of this command.

Format

```
ipv6 pim spt-threshold {0 | Infinity}
no ipv6 pim spt-threshold
```

Fields

- `<0>`: This is 0 kilobits per seconds.
- `<Infinity>`: This command will disable the function.

Default

0

Mode

Global Config

7.5.2.11. **ipv6 pim ssm**

Use this command to define the Source Specific Multicast (SSM) range of IPv6 multicast addresses on the router. Note that this command takes effect only when PIM-SM is configured as the PIM mode.

To disable the specified Source Specific Multicast (SSM) range, use the no form of this command.

Format

```
ipv6 pim ssm {default | <group-address>/<prefix-length>}
no ipv6 pim ssm {default | <group-address>/<prefix-length>}
```

Fields

- `<default>`: Defines the SSM range access list FF3x::/32.
<group-address>
Specifies the group address.

<group-mask>
Specifies the group-mask.

Default
Disable

Mode
Global Config
8. IPv6 Commands

8.1. Tunnel Interface Commands

The commands in this section describe how to create, delete, and manage tunnel interfaces. Several different types of tunnels provide functionality to facilitate the transition of IPv4 networks to IPv6 networks. These tunnels are divided into two classes: configured and automatic. The distinction is that configured tunnels are explicitly configured with a destination or endpoint of the tunnel. Automatic tunnels, in contrast, infer the endpoint of the tunnel from the destination address of packets routed into the tunnel. To assign an IP address to the tunnel interface, please refer to “ip address” command. To assign an IPv6 address to the tunnel interface, please refer to “ipv6 address” command.

8.1.1. Show commands

8.1.1.1. show interface tunnel

This command displays the parameters related to tunnel such as tunnel mode, tunnel source address and tunnel destination address.

Format show interface tunnel [0-7]

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><0-7></td>
<td>Specify the tunnel interface number you would like to show.</td>
</tr>
</tbody>
</table>

Default None

Mode Privileged Exec

Display Message

If you do not specify a tunnel ID, the command shows the following information for each configured tunnel:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>tunnel ID</td>
<td>Shows the tunnel identification number.</td>
</tr>
<tr>
<td>interface</td>
<td>Shows the name of the tunnel interface.</td>
</tr>
<tr>
<td>tunnel Mode</td>
<td>Shows the tunnel mode.</td>
</tr>
<tr>
<td>source Address</td>
<td>Shows the source transport address of the tunnel.</td>
</tr>
<tr>
<td>destination Address</td>
<td>Shows the destination transport address of the tunnel.</td>
</tr>
</tbody>
</table>
If you specify a tunnel ID, the command shows the following information for the tunnel:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface Link Status</td>
<td>Shows whether the link is up or down.</td>
</tr>
<tr>
<td>MTU Size</td>
<td>Shows the maximum transmission unit for packets on the interface.</td>
</tr>
<tr>
<td>IPv6 Address/Length</td>
<td>If you enable IPv6 on the interface and assign an address, the IPv6 address and prefix display.</td>
</tr>
</tbody>
</table>

Example: If you specify a tunnel ID, the command shows the following information for the tunnel in the example.

```
(M4500-48XF8C) (Interface tunnel 0)#show interface tunnel 0
```

Routing Mode............................... Disabled
Administrative Mode............................ Enabled
IPv6 Implicit Mode............................ Disabled
IPv6 Operational Mode.......................... Disabled
Interface Maximum Transmit Unit.............. 1480
Router Duplicate Address Detection Transmits... 1
Router Advertisement NS Interval............. 0
Router Advertisement Lifetime............... 1800
Router Advertisement Reachable Time........... 0
Router Advertisement Interval(max).......... 600
Router Advertisement Interval(min).......... 200
Router Advertisement Managed Config Flag..... Disabled
Router Advertisement Other Config Flag....... Disabled
Router Advertisement Suppress Flag.......... Disabled
IPv6 Destination Unreachables.............. Disabled
8.1.2. Configuration commands

8.1.2.1. interface tunnel

This command uses to enter the Interface Config mode for a tunnel interface. The tunnel id range is from 0 to 7.

To remove the tunnel interface and associated configuration parameters for the specified tunnel interface, use the no form of this command.

Format

```
interface tunnel <0-7>
no interface tunnel <0-7>
```

Default

None

Mode

Global Config

8.1.2.2. tunnel source

This command specifies the source transport address of the tunnel, either explicitly or by reference to an interface.

To remove the tunnel source, use the no form of this command.

Format

```
tunnel source {<ipv4-address> | <ethernet> {<slot/port> | vlan <vlan-id>}}>
no tunnel source
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><slot/port></td>
<td>The Interface number.</td>
</tr>
<tr>
<td><vlan-id></td>
<td>VLAN ID. The range of VLAN ID is 1 to 4093.</td>
</tr>
<tr>
<td><ipv4-address></td>
<td>A valid IP Address.</td>
</tr>
</tbody>
</table>

Default

None

Mode

Interface Tunnel Mode

8.1.2.3. tunnel destination

This command specifies the destination transport address of the tunnel.

To remove the tunnel destination, use the no form of this command.
Format
```
tunnel destination {<ipv4-address>}
```
```
no tunnel destination
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><ipv4-address></code></td>
<td>A valid IP Address.</td>
</tr>
</tbody>
</table>

Default None

Mode Interface Tunnel Mode

8.1.2.4. tunnel mode

This command specifies the mode of the tunnel.

To restore the tunnel mode, use the no form of this command.

Format
```
tunnel mode ipv6ip [6to4]
```
```
no tunnel mode
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>[6to4]</code></td>
<td>With the optional 6to4 argument, the tunnel mode is set to 6to4 automatic.</td>
</tr>
<tr>
<td></td>
<td>Without the optional 6to4 argument, the tunnel mode is configured.</td>
</tr>
</tbody>
</table>

Default None

Mode Interface Tunnel Mode
8.2. Loopback Interface Commands

The commands in this section describe how to create, delete, and manage loopback interfaces. A loopback interface is always expected to be up. This interface can provide the source address for sent packets and can receive both local and remote packets. The loopback interface is typically used by routing protocols. To assign an IP address to the loopback interface, please refer to “ip address” command. To assign an IPv6 address to the loopback interface, please refer to “ipv6 address” command.

8.2.1. Show commands

8.2.1.1. show interface loopback

This command displays information about configured loopback interfaces.

Format

```
show interface loopback [{<0-63> | vrf <vrf-name>}]
```

Fields

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
</table>

| **<0-63>** | Specify the ID of the loopback interface. The range is from 0 to 63. |
| **<vrf-name>** | Specify the name of the VRF |

Default

None

Mode

Privileged Exec

Display Message

If you do not specify a loopback ID, the following information appears for each loopback interface on the system:

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
</table>

Loopback ID	Shows the loopback ID associated with the rest of the information in the row.
Interface	Shows the interface name.
IP Address	Shows the IP address of the interface

If you specify a loopback ID, the following information appears:

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
</table>

| **Interface Link Status** | Shows whether the link is up or down. |
| **IP Address** | Shows the IPv4 address of the interface. |
8.2.2. Configuration commands

8.2.2.1. interface loopback

This command is used to enter the Interface Config mode for a loopback interface. The range of the loopback ID is 0 to 63.

To remove the loopback interface and associated configuration parameters for the specified loopback interface, use the no form of this command.

Format

```
interface loopback <0-63>
no interface loopback <0-63>
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><0-63></td>
<td>Specify the ID of the loopback interface.</td>
</tr>
</tbody>
</table>

Default None

Mode Global Config

<table>
<thead>
<tr>
<th>IPv6 is enabled (disabled)</th>
<th>Shows whether IPv6 is enabled on the interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 Prefix is</td>
<td>Shows the IPv6 address of the interface.</td>
</tr>
<tr>
<td>MTU size</td>
<td>Shows the maximum transmission size for packets on this interface, in bytes.</td>
</tr>
</tbody>
</table>
8.3. IPv6 Routing Commands

This section describes the IPv6 commands you use to configure IPv6 on the system and on the interfaces. This section also describes IPv6 management commands and show commands.

8.3.1. Show commands

8.3.1.1. show ipv6 brief

This command displays the IPv6 status and IPv6 unicast routing mode.

Format
show ipv6 brief

Default
None

Mode
Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 Unicast Routing Mode</td>
<td>Shows whether the IPv6 unicast routing mode is enabled.</td>
</tr>
<tr>
<td>IPv6 Hop Limit</td>
<td>Shows the unicast hop count used in IPv6 packets originated by the node. For more information, see “ipv6 hop-limit”.</td>
</tr>
<tr>
<td>ICMPv6 Rate Limit Error Interval</td>
<td>Shows how often the token bucket is initialized with burst-size tokens. For more information, see “ipv6 icmp error-interval”.</td>
</tr>
<tr>
<td>ICMPv6 Rate Limit Burst Size</td>
<td>Shows the number of ICMPv6 error messages that can be sent during one burst-interval. For more information, see “ipv6 icmp error-interval”.</td>
</tr>
<tr>
<td>Maximum Routes</td>
<td>Shows the maximum IPv6 route table size.</td>
</tr>
<tr>
<td>IPv6 Unresolved Data Rate Limit</td>
<td>Shows the rate in packets-per-second for the number of IPv6 data packets trapped to CPU when the packet fails to be forwarded in the hardware due to unresolved hardware address of the destined IPv6 node.</td>
</tr>
<tr>
<td>IPv6 Neighbors Dynamic Renew</td>
<td>Shows the dynamic renewal mode for the periodic NUD (neighbor unreachability detection) run on the existing IPv6 neighbor entries based on the activity of the entries in the hardware.</td>
</tr>
<tr>
<td>IPv6 NUD Maximum Unicast Solicits</td>
<td>Shows the maximum number of unicast Neighbor Solicitations sent during NUD (neighbor unreachability detection) before switching to multicast Neighbor Solicitations.</td>
</tr>
<tr>
<td>IPv6 NUD Maximum Multicast Solicits</td>
<td>Shows the maximum number of multicast Neighbor Solicitations sent during NUD (neighbor unreachability detection) when in UNREACHABLE state.</td>
</tr>
</tbody>
</table>
IPv6 NUD Maximum Unicast Solicits Exponential Backoff Multiple

Shows the exponential backoff multiple to be used in the calculation of the next timeout value for Neighbor Solicitations transmission during NUD (neighbor unreachability detection) following the exponential backoff algorithm.

8.3.1.2. show ipv6 interface

This command displays the usability status of IPv6 interfaces and whether ICMPv6 Destination Unreachable messages may be sent.

Format

```
show ipv6 interface [ {brief | {port <slot/port> | vlan <vlan-id>} [prefix] | tunnel <0-7> | loopback <0-63>}]`
```

Fields

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><slot/port></td>
<td>Valid slot and port number separated by forward slashes.</td>
</tr>
<tr>
<td><vlan-id></td>
<td>VLAN ID. The range of VLAN ID is 1 to 4093.</td>
</tr>
<tr>
<td><0-7></td>
<td>Specify the tunnel ID.</td>
</tr>
<tr>
<td><0-63></td>
<td>Specify the loopback ID.</td>
</tr>
</tbody>
</table>

Default

None

Mode

Privileged Exec

User Exec

Display Message

If you use the brief parameter, the following information displays for all configured IPv6 interfaces:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Shows the interface in slot/port, vlan, lb (loopback), or tunnel format.</td>
</tr>
<tr>
<td>Oper. Mode</td>
<td>Shows whether the mode is enabled or disabled.</td>
</tr>
<tr>
<td>IPv6 Address/Length</td>
<td>Shows the IPv6 address and length on interfaces with IPv6 enabled.</td>
</tr>
</tbody>
</table>

If you specify an interface, the following information also appears:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 Prefix</td>
<td>Shows the IPv6 prefix for the specified interface.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Routing Mode</td>
<td>Shows whether IPv6 routing is enabled or disabled.</td>
</tr>
<tr>
<td>IPv6 Enable Mode</td>
<td>Shows whether IPv6 is enabled on the interface.</td>
</tr>
<tr>
<td>IPv6 Routing Operational Mode</td>
<td>Shows whether the operational state of an interface is enabled or disabled.</td>
</tr>
<tr>
<td>IPv6 Link-local Scope ID</td>
<td>Shows the scope ID of the link local address.</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Shows the bandwidth of the interface.</td>
</tr>
<tr>
<td>Interface Maximum Transmission Unit</td>
<td>Shows the MTU size, in bytes.</td>
</tr>
<tr>
<td>Router Duplicate Address Detection Transmits</td>
<td>Shows the number of consecutive duplicate address detection probes to transmit.</td>
</tr>
<tr>
<td>Address Autoconfigure Mode</td>
<td>Shows whether the autoconfigure mode is enabled or disabled.</td>
</tr>
<tr>
<td>Address DHCP Mode</td>
<td>Shows whether the DHCPv6 client is enabled on the interface.</td>
</tr>
<tr>
<td>IPv6 Hop Limit Unspecified</td>
<td>Indicate if the router is configured on this interface to send Router Advertisements with unspecified (0) as the Current Hop Limit value.</td>
</tr>
<tr>
<td>Router Advertisement NS Interval</td>
<td>Shows the interval, in milliseconds, between router advertisements for advertised neighbor solicitations.</td>
</tr>
<tr>
<td>Router Advertisement MTU</td>
<td>Shows the MTU value of the interface in router advertisements.</td>
</tr>
<tr>
<td>Router Advertisement Lifetime</td>
<td>Shows the router lifetime value of the interface in router advertisements.</td>
</tr>
<tr>
<td>Router Advertisement Reachable Time</td>
<td>Shows the amount of time, in milliseconds, to consider a neighbor reachable after neighbor discovery confirmation.</td>
</tr>
<tr>
<td>Max/Min Router Advertisement Interval</td>
<td>Shows the frequency, in seconds, that router advertisements are sent.</td>
</tr>
<tr>
<td>Router Advertisement Managed Config Flag</td>
<td>Shows whether the managed configuration flag is set (enabled) for router advertisements on this interface.</td>
</tr>
<tr>
<td>Router Advertisement Other Config Flag</td>
<td>Shows whether the other configuration flag is set (enabled) for router advertisements on this interface.</td>
</tr>
<tr>
<td>Router Advertisement Router Preference</td>
<td>Shows router preference value in IPv6 router advertisements.</td>
</tr>
</tbody>
</table>
If an IPv6 prefix is configured on the interface, the following information also appears.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 Prefix</td>
<td>Shows the IPv6 prefix for the specified interface.</td>
</tr>
<tr>
<td>Preferred Lifetime</td>
<td>Shows the amount of time the advertised prefix is a preferred prefix.</td>
</tr>
<tr>
<td>Valid Lifetime</td>
<td>Shows the amount of time the advertised prefix is valid.</td>
</tr>
<tr>
<td>Onlink Flag</td>
<td>Shows whether the onlink flag is set (enabled) in the prefix.</td>
</tr>
<tr>
<td>Autonomous Flag</td>
<td>Shows whether the autonomous address-configuration flag (autoconfig) is set (enabled) in the prefix.</td>
</tr>
</tbody>
</table>

8.3.1.3. show ipv6 interface neighbors

This command displays information about the IPv6 neighbors.

Format

```
show ipv6 interface neighbors [<ipv6-address> | interface {<slot>/port} | {tunnel <0-7>} | {vlan <1-4093}>]
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><ipv6-address></td>
<td>Specify the IPv6 address of the neighbor.</td>
</tr>
<tr>
<td><slot/port></td>
<td>Valid slot and port number separated by forward slashes.</td>
</tr>
<tr>
<td><0-7></td>
<td>Specify the tunnel ID.</td>
</tr>
<tr>
<td><1-4093></td>
<td>Specify the VLAN ID.</td>
</tr>
</tbody>
</table>

Default

None

Mode

Privileged Exec
Display Message

Count of Learned Neighbors the number of neighbor mac address be learned.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Shows the interface in slot/port format.</td>
</tr>
<tr>
<td>Type</td>
<td>The type of the IPV6 address. It can be Dynamic, Static, Local or Other.</td>
</tr>
<tr>
<td>IPV6 Address</td>
<td>IPV6 address of neighbor or interface.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>Link-layer Address.</td>
</tr>
<tr>
<td>IsRtr</td>
<td>Shows whether the neighbor is a router. If the value is TRUE, the neighbor is known to be a router, and FALSE otherwise. A value of FALSE might not mean Note that routers are not always known to be routers.</td>
</tr>
<tr>
<td>Neighbor State</td>
<td>State of neighbor cache entry. Possible values are Incomplete, Reachable, Stale, Delay, Probe, and Unknown.</td>
</tr>
<tr>
<td>Age(Seconds)</td>
<td>The time in seconds that has elapsed since an entry was added to the cache.</td>
</tr>
</tbody>
</table>

8.3.1.4. show ipv6 protocols

This command lists a summary of the configuration and status of the active IPv6 routing protocols. The command lists routing protocols that are configured and enabled. If a protocol is selected on the command line, the display is limited to that protocol.

Format show ipv6 protocols [bgp | ospf]

Fields Definition

bgp Option to specify only display BGP summary.

Ospf Option to specify only display OSPF summary.

Default None

Mode Privileged Exec

Display Message

BGP section:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing Protocol</td>
<td>BGP.</td>
</tr>
<tr>
<td>Field</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>BGP Router ID</td>
<td>The router ID configured for BGP.</td>
</tr>
<tr>
<td>Local AS Number</td>
<td>The AS number that the local router is in.</td>
</tr>
<tr>
<td>BGP Admin Mode</td>
<td>Whether BGP is globally enabled or disabled.</td>
</tr>
<tr>
<td>BGP GR-Enabled Mode</td>
<td>Whether BGP Graceful Restart Enabled Mode is enabled. (Enabled or Disabled)</td>
</tr>
<tr>
<td>BGP GR-Aware Mode</td>
<td>Whether BGP Graceful Restart Aware Mode is enabled. (Enabled or Disabled)</td>
</tr>
<tr>
<td>BGP GR restart-time</td>
<td>Setting of BGP Graceful Restart Timer.</td>
</tr>
<tr>
<td>BGP GR stalepath-time</td>
<td>Setting of BGP Graceful Stale Path Timer.</td>
</tr>
<tr>
<td>Maximum Paths</td>
<td>The maximum number of next hops in an internal or external BGP route.</td>
</tr>
<tr>
<td>Always compare MED</td>
<td>Whether BGP is configured to compare the MEDs for routes received from peers in different ASs.</td>
</tr>
<tr>
<td>Maximum AS Path Length</td>
<td>Whether BGP is configured to compare the MEDs for routes received from peers in different ASs.</td>
</tr>
<tr>
<td>Fast Interval Failover</td>
<td>Whether BGP immediately brings down an iBGP adjacency if the routing table manager reports that the peer address is no longer reachable.</td>
</tr>
<tr>
<td>Fast External Failover</td>
<td>Whether BGP immediately brings down an eBGP adjacency if the link to the neighbor goes down.</td>
</tr>
<tr>
<td>Distance</td>
<td>The default administrative distance (or route preference) for external, internal, and locally-originated BGP routes.</td>
</tr>
<tr>
<td>Prefix List In</td>
<td>The global prefix list used to filter inbound routes from all neighbors.</td>
</tr>
<tr>
<td>Prefix List Out</td>
<td>The global prefix list used to filter outbound routes to all neighbors.</td>
</tr>
<tr>
<td>Network Originated</td>
<td>The set of networks originated through a network command.</td>
</tr>
<tr>
<td>Neighbors</td>
<td>A list of configured neighbors.</td>
</tr>
</tbody>
</table>

OSPFv3 section:

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fields</td>
<td></td>
</tr>
<tr>
<td>Routing Protocol</td>
<td>OSPFv3.</td>
</tr>
<tr>
<td>Router ID</td>
<td>The router ID configured for OSPFv3.</td>
</tr>
</tbody>
</table>
8.3.1.5. show ipv6 route

This command displays the IPv6 routing table. The `<ipv6-address>` specifies a specific IPv6 address for which the best-matching route would be displayed. The `<ipv6-prefix/ipv6-prefix-length>` specifies a specific IPv6 network for which the matching route would be displayed. The `<interface>` specifies that the routes with next-hops on the `<interface>` be displayed. The `<slot/port>` corresponds to a physical routing interface. The keyword `vlan` is used to specify the VLAN ID of the routing VLAN directly. The `<protocol>` specifies the protocol that installed the routes. The `<protocol>` is one of the following keywords: connected, bgp, ospf, static, 6to4. The `all` specifies that all routes including best and non-best routes are displayed. Otherwise, only the best routes are displayed.

If you use the `connected` keyword for `<protocol>`, the `all` option is not available because there are no best or non-best connected routes.

Format

```
show ipv6 route [[<ipv6-address> [<protocol>]] | [{<ipv6-prefix/ipv6-prefix-length> | <slot/port> | vlan <vlan-id>} [<protocol>]] | <protocol> | summary] [all] [all]
```

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan-id</td>
<td>The range is from 1 to 4093.</td>
</tr>
</tbody>
</table>

Default

None

Mode

Privileged Exec

User Exec
Display Message

The `show ipv6 route` command displays the routing tables in the following format:

Codes: C - connected, S - static, 6To4 - 6to4 Route, B - BGP Derived, D - Database Route

O - OSPF Intra, OI - OSPF Inter, OE1 - OSPF Ext 1, OE2 - OSPF Ext 2

ON1 - OSPF NSSA Ext Type 1, ON2 - OSPF NSSA Ext Type 2, K - Kernel

The columns for the routing table display the following information:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>The code for the routing protocol that created this routing entry.</td>
</tr>
<tr>
<td>IPv6-Prefix/IPv6-Prefix-Length</td>
<td>The IPv6-Prefix and prefix-length of the destination IPv6 network corresponding to this route.</td>
</tr>
<tr>
<td>Preference/Metric</td>
<td>The administrative distance (preference) and cost (metric) associated with this route. An example of this output is [1/0], where 1 is the preference and 0 is the metric.</td>
</tr>
<tr>
<td>Tag</td>
<td>Displays the decimal value of the tag associated with a redistributed route, if it is not 0.</td>
</tr>
<tr>
<td>Next-Hop</td>
<td>The outgoing router IPv6 address to use when forwarding traffic to the next router (if any) in the path toward the destination</td>
</tr>
</tbody>
</table>
| Route-Timestamp | The last updated time for dynamic routes. The format of Route-Timestamp will be
| | • Days:Hours:Minutes if days \(\geq 1 \)
| | • Hours:Minutes:Seconds if days < 1
| Interface | The outgoing router interface to use when forwarding traffic to the next destination. For reject routes, the next hop interface would be Null0 interface. |
| T | A flag appended to an IPv6 route to indicate that it is an ECMP route, but only one of its next hops has been installed in the forwarding table. The forwarding table may limit the number of ECMP routes or the number of ECMP groups. When an ECMP route cannot be installed because such a limit is reached, the route is installed with a single next hop. Such truncated routes are identified by a T after the interface name. |

To administratively control the traffic destined to a particular network and prevent it from being forwarded through the router, you can configure a static reject route on the router. Such traffic would be discarded and the ICMP destination unreachable message is sent back to the source. This is typically used for preventing routing loops. The reject route added in the RTO is of the type OSPF Inter-Area. Reject routes (routes of REJECT type installed by any protocol) are not redistributed by OSPF. Reject routes are supported in both OSPFv2 and OSPFv3.
8.3.1.6. show ipv6 route ecmp-groups

This command reports all current ECMP groups in the IPv6 routing table. An ECMP group is a set of two or more next hops used in one or more routes. The groups are numbered arbitrarily from 1 to n. The output indicates the number of next hops in the group and the number of routes that use the set of next hops. The output lists the IPv6 address and outgoing interface of each next hop in each group.

Format show ipv6 route ecmp-groups
Default None
Mode Privileged Exec

8.3.1.7. show ipv6 route hw-failure

This command displays the routes that failed to be added to the hardware due to hash errors or a table full condition.

Format show ipv6 route hw-failure
Default None
Mode Privileged Exec

8.3.1.8. show ipv6 route preferences

This command displays the preference value associated with the type of route. Lower numbers have a greater preference. A route with a preference of 255 cannot be used to forward traffic.

Format show ipv6 route preferences
Default None
Mode Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>Preference of directly-connected routes.</td>
</tr>
<tr>
<td>Static</td>
<td>Preference of static routes.</td>
</tr>
<tr>
<td>OSPF Intra</td>
<td>Preference of routes within the OSPF area.</td>
</tr>
<tr>
<td>OSPF Inter</td>
<td>Preference of routes to other OSPF routes that are outside of the area.</td>
</tr>
</tbody>
</table>
8.3.1.9. show ipv6 route summary

This command displays the summary of the routing table. Use *all* to display the count summary for all routes, including best and non-best routes. Use the command without parameters to display the count summary for only the best routes.

Format
show ipv6 route summary [all]

Default
None

Mode
Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected Routes</td>
<td>Total number of connected routes in the routing table.</td>
</tr>
<tr>
<td>Static Routes</td>
<td>Total number of static routes in the routing table.</td>
</tr>
<tr>
<td>Kernel Routes</td>
<td>Total number of kernel routes in the routing table.</td>
</tr>
<tr>
<td>6to4 Routes</td>
<td>Total number of 6to4 routes in the routing table.</td>
</tr>
<tr>
<td>BGP Routes</td>
<td>Total number of routes installed by BGP protocol. The routes include external routes, internal routes and local routes.</td>
</tr>
<tr>
<td>OSPF Routes</td>
<td>Total number of routes installed by OSPFv3 protocol. The routes include intra-area routes, inter-area routes, external type-1 routes, and external type-2 routes.</td>
</tr>
<tr>
<td>Reject Routes</td>
<td>Total number of reject routes installed by all protocols.</td>
</tr>
<tr>
<td>Total Routes</td>
<td>Total number of routes in the routing table.</td>
</tr>
<tr>
<td>Best Routes</td>
<td>The number of best routes currently in the routing table. This number only counts the best route to each destination.</td>
</tr>
<tr>
<td>Metric</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Alternate Routes</td>
<td>The number of alternate routes currently in the routing table. An alternate route is a route that was not selected as the best route to its destination.</td>
</tr>
<tr>
<td>Route Adds</td>
<td>The number of routes that have been added to the routing table.</td>
</tr>
<tr>
<td>Route Modifies</td>
<td>The number of routes that have been changed after they were initially added to the routing table.</td>
</tr>
<tr>
<td>Route Deletes</td>
<td>The number of routes that have been deleted from the routing table.</td>
</tr>
<tr>
<td>Unresolved Route Adds</td>
<td>The number of routes adds that failed because none of the route’s next hops were on a local subnet. Note that static routes can fail to be added to the routing table at startup because the routing interfaces are not yet up.</td>
</tr>
<tr>
<td>Invalid Route Adds</td>
<td>The number of routes that failed to be added to the routing table because the route was invalid. A log message is written for each of these failures.</td>
</tr>
<tr>
<td>Failed Route Adds</td>
<td>The number of routes that failed to be added to the routing table because of a resource limitation in the routing table.</td>
</tr>
<tr>
<td>Kernel Failed Route Adds</td>
<td>The number of routes that failed to be added to the routing table by kernel because of a resource limitation in the routing table.</td>
</tr>
<tr>
<td>Hardware Failed Route Adds</td>
<td>The number of routes that failed to be inserted into the hardware due to a hash error or a table full condition.</td>
</tr>
<tr>
<td>Reserved Locals</td>
<td>The number of routing table entries reserved for a local subnet on a routing interface that is down. Space for local routes is always reserved so that local routes can be installed when a routing interface bounces.</td>
</tr>
<tr>
<td>Unique Next Hops (High)</td>
<td>The number of distinct next hops used among all routes currently in the routing table. The (High) means the highest count of unique next hops since counters were last cleared. These include local interfaces for local routes and neighbors for indirect routes.</td>
</tr>
<tr>
<td>Next Hop Groups (High)</td>
<td>The current number of next hop groups in use by one or more routes. Each next hop group includes one or more next hops. The (High) means the highest count of next hop groups since counters were last cleared.</td>
</tr>
<tr>
<td>ECMP Groups (High)</td>
<td>The number of next hop groups with multiple next hops. The (High) means the highest count of next hop groups with multiple next hops since counters were last cleared.</td>
</tr>
<tr>
<td>ECMP Routes</td>
<td>The number of routes with multiple next hops currently in the routing table.</td>
</tr>
<tr>
<td>Truncated ECMP Routes</td>
<td>The number of ECMP routes that are currently installed in the forwarding table with just one next hop. The forwarding table may limit the number of ECMP routes or the number of ECMP groups. When a ECMP route cannot be installed because such a limit is reached, the route is installed with a single next hop.</td>
</tr>
</tbody>
</table>
8.3.1.10. show ipv6 traffic

This command displays traffic and statistics for IPv6 and ICMPv6. Specify a logical, loopback, or tunnel interface to view information about traffic on a specific interface. If you do not specify an interface, the command displays information about traffic on all interfaces.

Format
```
show ipv6 traffic [ [<slot/port> | loopback <loopback-id> | tunnel <tunnel-id> | vlan <vlan-id> ] ]
```

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>loopback-id</td>
<td>The range is from 0 to 63.</td>
</tr>
<tr>
<td>tunnel-id</td>
<td>The range is from 0 to 7.</td>
</tr>
<tr>
<td>vlan-id</td>
<td>The range is from 1 to 4093.</td>
</tr>
</tbody>
</table>

Default
None

Mode
Privileged Exec

Display Message
IPv6 STATISTICS

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Datagrams Received</td>
<td>Total number of input datagrams received by the interface, including those received in error.</td>
</tr>
<tr>
<td>Received Datagrams Locally Delivered</td>
<td>Total number of datagrams successfully delivered to IPv6 user-protocols (including ICMP). This counter increments at the interface to which these datagrams were addressed, which might not necessarily be the input interface for some of the datagrams.</td>
</tr>
<tr>
<td>Received Datagrams Discarded Due To Header Errors</td>
<td>Number of input datagrams discarded due to errors in their IPv6 headers, including version number mismatch, other format errors, hop count exceeded, errors discovered in processing their IPv6 options, etc.</td>
</tr>
<tr>
<td>Received Datagrams Discarded Due To MTU</td>
<td>Number of input datagrams that could not be forwarded because their size exceeded the link MTU of outgoing interface.</td>
</tr>
<tr>
<td>Metric</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>Received Datagrams Discarded Due To No Route</td>
<td>Number of input datagrams discarded because no route could be found to transmit them to their destination.</td>
</tr>
<tr>
<td>Received Datagrams With Unknown Protocol</td>
<td>Number of locally-addressed datagrams received successfully but discarded because of an unknown or unsupported protocol. This counter increments at the interface to which these datagrams were addressed, which might not be necessarily the input interface for some of the datagrams.</td>
</tr>
<tr>
<td>Received Datagrams Discarded Due To Invalid Address</td>
<td>Number of input datagrams discarded because the IPv6 address in their IPv6 header’s destination field was not a valid address to be received at this entity. This count includes invalid addresses (for example, ::0) and unsupported addresses (for example, addresses with unallocated prefixes). For entities which are not IPv6 routers and therefore do not forward datagrams, this counter includes datagrams discarded because the destination address was not a local address.</td>
</tr>
<tr>
<td>Received Datagrams Discarded Due To Truncated Data</td>
<td>Number of input datagrams discarded because datagram frame didn’t carry enough data.</td>
</tr>
<tr>
<td>Received Datagrams Discarded Other</td>
<td>Number of input IPv6 datagrams for which no problems were encountered to prevent their continue processing, but which were discarded (e.g., for lack of buffer space). Note that this counter does not include datagrams discarded while awaiting re-assembly.</td>
</tr>
<tr>
<td>Received Datagrams Reassembly Required</td>
<td>Number of IPv6 fragments received which needed to be reassembled at this interface. Note that this counter increments at the interface to which these fragments were addressed, which might not be necessarily the input interface for some of the fragments.</td>
</tr>
<tr>
<td>Datagrams Successfully Reassembled</td>
<td>Number of IPv6 datagrams successfully reassembled. Note that this counter increments at the interface to which these datagrams were addressed, which might not be necessarily the input interface for some of the fragments.</td>
</tr>
<tr>
<td>Datagrams Failed To Reassemble</td>
<td>Number of failures detected by the IPv6 reassembly algorithm (for whatever reason: timed out, errors, etc.). Note that this is not necessarily a count of discarded IPv6 fragments. This counter increments at the interface to which these fragments were addressed, which might not be necessarily the input interface for some of the fragments.</td>
</tr>
<tr>
<td>Datagrams Forwarded</td>
<td>Number of output datagrams which this entity received and forwarded to their final destinations. In entities which do not act as IPv6 routers, this counter will include only those packets which were Source-Routed via this entity, and the Source-Route processing was successful. Note that for a successfully forwarded datagram the counter of the outgoing interface increments.</td>
</tr>
<tr>
<td>Datagrams Locally Transmitted</td>
<td>Total number of IPv6 datagrams which local IPv6 user-protocols (including ICMP) supplied to IPv6 in requests for transmission. Note that this counter does not include any datagrams counted in Datagrams Forwarded.</td>
</tr>
<tr>
<td>Datagrams Transmit Failed</td>
<td>Number of output IPv6 datagrams for which no problem was encountered to prevent their transmission to their destination, but which were discarded (e.g.,</td>
</tr>
</tbody>
</table>
for lack of buffer space). Note that this counter would include datagrams counted in Datagrams Forwarded if any such packets met this (discretionary) discard criterion.

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datagrams Successfully Fragmented</td>
<td>Number of IPv6 datagrams that have been successfully fragmented at this output interface.</td>
</tr>
<tr>
<td>Datagrams Failed To Fragment</td>
<td>Number of IPv6 datagrams that have been discarded because they needed to be fragmented at this output interface but could not be.</td>
</tr>
<tr>
<td>Fragments Created</td>
<td>Number of output datagram fragments that have been generated as a result of fragmentation at this output interface.</td>
</tr>
<tr>
<td>Multicast Datagrams Received</td>
<td>Number of multicast packets received by the interface.</td>
</tr>
<tr>
<td>Multicast Datagrams Transmitted</td>
<td>Number of multicast packets transmitted by the interface.</td>
</tr>
</tbody>
</table>

ICMPv6 STATISTICS

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total ICMPv6 Messages Received</td>
<td>Total number of ICMP messages received by the interface which includes all those counted by ipv6IficmpltInErrors. Note that this interface is the interface to which the ICMP messages were addressed which may not be necessarily the input interface for the messages.</td>
</tr>
<tr>
<td>ICMPv6 Messages With Errors Received</td>
<td>Number of ICMP messages which the interface received but determined as having ICMP-specific errors (bad ICMP checksums, bad length, etc.).</td>
</tr>
<tr>
<td>ICMPv6 Destination Unreachable Messages Received</td>
<td>Number of ICMP Destination Unreachable messages received by the interface.</td>
</tr>
<tr>
<td>ICMPv6 Messages Prohibited Administratively Received</td>
<td>Number of ICMP destination unreachable/communication administratively prohibited messages received by the interface.</td>
</tr>
<tr>
<td>ICMPv6 Time Exceeded Messages Received</td>
<td>Number of ICMP Time Exceeded messages received by the interface.</td>
</tr>
<tr>
<td>ICMPv6 Parameter Problem Messages Received</td>
<td>Number of ICMP Parameter Problem messages received by the interface.</td>
</tr>
<tr>
<td>ICMPv6 Packet Too Big Messages Received</td>
<td>Number of ICMP Packet Too Big messages received by the interface.</td>
</tr>
<tr>
<td>ICMPv6 Echo Request Messages Received</td>
<td>Number of ICMP Echo request messages received by the interface.</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>ICMPv6 Echo Reply Messages Received</td>
<td>Number of ICMP Echo reply messages received by the interface.</td>
</tr>
<tr>
<td>ICMPv6 Router Solicit Messages Received</td>
<td>Number of ICMP Router Solicit messages received by the interface.</td>
</tr>
<tr>
<td>ICMPv6 Router Advertisement Messages Received</td>
<td>Number of ICMP Router Advertisement messages received by the interface.</td>
</tr>
<tr>
<td>ICMPv6 Neighbor Solicit Messages Received</td>
<td>Number of ICMP Neighbor Solicit messages received by the interface.</td>
</tr>
<tr>
<td>ICMPv6 Neighbor Advertisement Messages Received</td>
<td>Number of ICMP Neighbor Advertisement messages received by the interface.</td>
</tr>
<tr>
<td>ICMPv6 Redirect Messages Received</td>
<td>Number of Redirect messages received by the interface.</td>
</tr>
<tr>
<td>ICMPv6 Group Membership Query Messages Received</td>
<td>Number of ICMPv6 Group Membership Query messages received by the interface.</td>
</tr>
<tr>
<td>ICMPv6 Group Membership Response Messages Received</td>
<td>Number of ICMPv6 Group Membership Response messages received by the interface.</td>
</tr>
<tr>
<td>ICMPv6 Group Membership Reduction Messages Received</td>
<td>Number of ICMPv6 Group Membership Reduction messages received by the interface.</td>
</tr>
<tr>
<td>Total ICMPv6 Messages Transmitted</td>
<td>Total number of ICMP messages which this interface attempted to send. Note that this counter includes all those counted by icmpOutErrors.</td>
</tr>
<tr>
<td>ICMPv6 Messages Not Transmitted Due To Error</td>
<td>Number of ICMP messages which this interface did not send due to problems discovered within ICMP such as a lack of buffers. This value should not include errors discovered outside the ICMP layer such as the inability of IPv6 to route the resultant datagram. In some implementations there may be no types of error which contribute to this counter's value.</td>
</tr>
<tr>
<td>ICMPv6 Destination Unreachable Messages Transmitted</td>
<td>Number of ICMP Destination Unreachable messages sent by the interface.</td>
</tr>
<tr>
<td>ICMPv6 Messages Prohibited Administratively Transmitted</td>
<td>Number of ICMP destination unreachable/communication administratively prohibited messages sent.</td>
</tr>
<tr>
<td>ICMPv6 Time Exceeded Messages Transmitted</td>
<td>Number of ICMP Time Exceeded messages sent by the interface.</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>ICMPv6 Parameter Problem Messages Transmitted</td>
<td>Number of ICMP Parameter Problem messages sent by the interface.</td>
</tr>
<tr>
<td>ICMPv6 Packet Too Big Messages Transmitted</td>
<td>Number of ICMP Packet Too Big messages sent by the interface.</td>
</tr>
<tr>
<td>ICMPv6 Echo Request Messages Transmitted</td>
<td>Number of ICMP Echo request messages sent by the interface.</td>
</tr>
<tr>
<td>ICMPv6 Echo Reply Messages Transmitted</td>
<td>Number of ICMP Echo reply messages sent by the interface.</td>
</tr>
<tr>
<td>ICMPv6 Router Solicit Messages Transmitted</td>
<td>Number of ICMP Router Solicitation messages sent by the interface.</td>
</tr>
<tr>
<td>ICMPv6 Router Advertisement Messages Transmitted</td>
<td>Number of ICMP Router Advertisement messages sent by the interface.</td>
</tr>
<tr>
<td>ICMPv6 Neighbor Solicit Messages Transmitted</td>
<td>Number of ICMP Neighbor Solicitation messages sent by the interface.</td>
</tr>
<tr>
<td>ICMPv6 Neighbor Advertisement Messages Transmitted</td>
<td>Number of ICMP Neighbor Advertisement messages sent by the interface.</td>
</tr>
<tr>
<td>ICMPv6 Redirect Messages Transmitted</td>
<td>Number of Redirect messages sent. For a host, this object will always be zero, since hosts do not send redirects.</td>
</tr>
<tr>
<td>ICMPv6 Group Membership Query Messages Transmitted</td>
<td>Number of ICMPv6 Group Membership Query messages sent.</td>
</tr>
<tr>
<td>ICMPv6 Group Membership Response Messages Transmitted</td>
<td>Number of ICMPv6 Group Membership Response messages sent.</td>
</tr>
<tr>
<td>ICMPv6 Group Membership Reduction Messages Transmitted</td>
<td>Number of ICMPv6 Group Membership Reduction messages sent.</td>
</tr>
<tr>
<td>ICMPv6 Duplicate Address Detects</td>
<td>Number of duplicate addresses detected by interface.</td>
</tr>
</tbody>
</table>
8.3.2. Configuration commands

This section describes the IPv6 commands you use to configure IPv6 on the system and on the interface.

8.3.2.1. ipv6 hop-limit

This command defines the unicast hop count used in ipv6 packets originated by the node. The value is also included in router advertisements. The default “not configured” means that a value of zero is sent in router advertisements and a value of 64 is sent in packets originated by the node. Note that this is not the same as configuring a value of 64.

To return the unicast hop count to the default, use the no form of this command.

Format ipv6 hop-limit <hops>
 no ipv6 hop-limit

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><hops></td>
<td>The range is from 1 to 255.</td>
</tr>
</tbody>
</table>

Default Not configured
Mode Global Config

8.3.2.2. ipv6 unicast-routing

Use this command to enable the forwarding of IPv6 unicast packets.

To disable the forwarding of IPv6 unicast packets, use the no form of this command.

Format ipv6 unicast-routing
 no ipv6 unicast-routing

Default Disabled
Mode Global Config

8.3.2.3. ipv6 enable

Use this command to enable IPv6 routing on an interface, including tunnel and loopback interfaces that has not been configured with an explicit IPv6 address. When you use this command, the interface is automatically configured with a link-local address. You do not need to use this command if you configured an IPv6 global address on the interface.

To disable IPv6 routing on an interface, use the no form of this command.
ipv6 enable

Default: Disabled

Mode: Interface Config, Interface VLAN

8.3.2.4. ipv6 address

Use this command to configure an IPv6 address on an interface, including tunnel and loopback interfaces, and to enable IPv6 processing on this interface. You can assign multiple globally reachable addresses to an interface by using this command. You do not need to assign a linklocal address by using this command since one is automatically created. The `<prefix>` field consists of the bits of the address to be configured. The `<prefix_length>` designates how many of the high-order contiguous bits of the address make up the prefix.

You can express IPv6 addresses in eight blocks. Also of note is that instead of a period, a colon now separates each block. For simplification, leading zeros of each 16 bit block can be omitted. One sequence of 16 bit blocks containing only zeros can be replaced with a double colon "::", but not more than one at a time (otherwise it is no longer a unique representation).

- **Dropping zeros:** 3ffe:ffff:100::f101:0:0:1 becomes 3ffe:ffff:100:f101::1
- **Local host:** 0000:0000:0000:0000:0000:0000:0000:0001 becomes ::1
- **Any host:** 0000:0000:0000:0000:0000:0000:0000:0000:0000:0000:0000:0000:0000:0001 becomes :

The hexadecimal letters in the IPv6 addresses are not case-sensitive. An example of an IPv6 prefix and prefix length is 3ffe:1::1234/64.

The optional `[eui-64]` field designates that IPv6 processing on the interfaces was enabled using an EUI-64 interface ID in the low order 64 bits of the address. If you use this option, the value of `<prefix_length>` must be 64 bits.

To remove all IPv6 addresses or specified IPv6 address on an interface, use the no form of this command. If you do not specify any parameter, the command deletes all the IPv6 addresses on an interface.

Format

```
ipv6 address <prefix> / <prefix_length> [eui64 | link-local]
no ipv6 address <prefix> / <prefix_length> [eui64 | link-local]
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><prefix></code></td>
<td>The parameter consists of the bits of the address to be configured.</td>
</tr>
<tr>
<td><code><prefix_length></code></td>
<td>This option designates how many of the high-order contiguous bits of the address comprise the prefix.</td>
</tr>
<tr>
<td><code>[eui-64]</code></td>
<td>This field designates that IPv6 processing on the interfaces was enabled using an EUI-64 interface ID in the low order 64 bits of the address. If you do not</td>
</tr>
</tbody>
</table>
8.3.2.5. ipv6 address autoconfig

Use this command to allow an in-band interface to acquire an IPv6 address through IPv6 Neighbor Discovery Protocol (NDP) and through the use of Router Advertisement messages.

To revert the IPv6 autoconfiguration status on an interface to the default value, use the no form of this command.

Format ipv6 address autoconfig
 no ipv6 address autoconfig

Default Disable
Mode Interface Config
 Interface VLAN

8.3.2.6. ipv6 address dhcp

This command enables the DHCPv6 client on an in-band interface so that it can acquire network information, such as the IPv6 address, from a network DHCP server.

To release a leased address and disable DHCPv6 on an interface, use the no form of this command.

Format ipv6 address dhcp [restart]
 no ipv6 address dhcp

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><dhcp></td>
<td>Obtains IPv6 address from DHCPv6.</td>
</tr>
<tr>
<td><restart></td>
<td>To restart the DHCPv6 process.</td>
</tr>
</tbody>
</table>

Default Disable
Mode Interface-Vlan Config
8.3.2.7. `ipv6 route`

Use this command to configure an IPv6 static route. The `<ipv6-prefix>` is the IPv6 network that is the destination of the static route. The `<prefix_length>` is the length of the IPv6 prefix — a decimal value (usually 0-64) that shows how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the `<prefix_length>`. The `<next-hop-address>` is the IPv6 address of the next hop that can be used to reach the specified network. The `<preference>` parameter is a value the router uses to compare this route with routes from other route sources that have the same destination. The range for `<preference>` is 1 - 255, and the default value is 1. The interface `<slot/port>` identifies direct static routes from point-to-point and broadcast interfaces, and must be specified when using a link-local address as the next hop. A route with a preference of 255 cannot be used to forward traffic.

To delete an IPv6 static route, use the no form of this command. Use the command without the optional parameters to delete all static routes to the specified destination. Use the `<preference>` parameter to revert preference of a route to default preference.

Format

```
ipv6 route <ipv6-prefix>/<prefix_length> {<next-hop-address> | Null0 | interface {<slot/port> | tunnel <tunnel-id> | vlan <vlan-id>}} <next-hop-address> [ <preference> ]
```

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><tunnel-id></code></td>
<td>The range is from 0 to 7.</td>
</tr>
<tr>
<td><code><vlan-id></code></td>
<td>The range is from 1 to 4093.</td>
</tr>
</tbody>
</table>

Default Disable

Mode Global Config

8.3.2.8. `ipv6 route distance`

This command sets the default distance (preference) for IPv6 static routes. Lower route distance values are preferred when determining the best route. The `ipv6 route` command allows you to optionally set the distance (preference) of an individual static route. The default distance is used when no distance is specified in this command.

Changing the default distance does not update the distance of existing static routes, even if they were assigned the original default distance. The new default distance will only be applied to static routes created after invoking the `ipv6 route distance` command.

To reset the default static route preference value in the router to the original default preference, use the no form of this command.
Format
ipv6 route distance <1-255>
no ipv6 route distance

Default
1

Mode
Global Config

8.3.2.9. ipv6 mtu

This command sets the maximum transmission unit (MTU) size, in bytes, of IPv6 packets on an interface. This command replaces the default or link MTU with a new MTU value. The default MTU value for a tunnel interface is 1480. You cannot change this value.

To reset maximum transmission unit value to default value, use the no form of this command.

Format
ipv6 mtu <1280-9394>
no ipv6 mtu

Default
0 or link speed (MTU value is 1500)

Mode
Interface Config

8.3.2.10. ipv6 nd dad attempts

This command sets the number of duplicate address detection probes transmitted on an interface. Duplicate address detection verifies that an IPv6 address on an interface is unique.

To reset to number of duplicate address detection value to default value, use the no form of this command.

Format
ipv6 nd dad attempts <0 – 255>
no ipv6 nd dad attempts

Default
1

Mode
Interface Config

8.3.2.11. ipv6 nd managed-config-flag

This command sets the “managed address configuration” flag in router advertisements on the interface. When the value is true, end nodes use DHCPv6. When the value is false, end nodes automatically configure addresses.

To reset the “managed address configuration” flag in router advertisements to the default value, use the no form of this command.
8.3.2.12. ipv6 nd ns-interval

This command sets the interval between router advertisements for advertised neighbor solicitations, in milliseconds, for an interface. An advertised value of 0 means the interval is unspecified.

To reset the neighbor solicit retransmission interval of the specified interface to the default value, use the no form of this command.

Format

```
ipv6 nd ns-interval { <1000 – 4294967295> | 0 }
no ipv6 nd ns-interval
```

Default 0

Mode Interface Config

8.3.2.13. ipv6 nd other-config-flag

This command sets the “other stateful configuration” flag in router advertisements sent from the interface.

To reset the “other stateful configuration” flag back to its default value in router advertisements sent from the interface, use the no form of this command.

Format

```
ipv6 nd other-config-flag
no ipv6 nd other-config-flag
```

Default False

Mode Interface Config

8.3.2.14. ipv6 nd ra-interval

This command sets the transmission interval between router advertisements on the interface.

To set router advertisement interval to the default, use the no form of this command.

Format

```
ipv6 nd ra-interval <4 – 1800> [<Min Router Advertisement Interval>]
no ipv6 nd ra-interval
```
8.3.2.15. ipv6 nd ra-lifetime

This command sets the value, in seconds, that is placed in the Router Lifetime field of the router advertisements sent from the interface. The `<lifetime>` value must be zero, or it must be an integer between the value of the router advertisement transmission interval and 9000. A value of zero means this router is not to be used as the default router.

To reset router lifetime to the default value, use the no form of this command.

Format

```plaintext
ipv6 nd ra-lifetime <lifetime>
no ipv6 nd ra-lifetime
```

Default 1800

Mode Interface Config

8.3.2.16. ipv6 nd reachable-time

This command sets the router advertisement time to consider a neighbor reachable after neighbor discovery confirmation. Reachable time is specified in milliseconds. A value of zero means the time is unspecified by the router.

To reset reachable time to the default value, use the no form of this command.

Format

```plaintext
ipv6 nd reachable-time <0 - 3600000>
no ipv6 nd reachable-time
```

Default 0

Mode Interface Config
8.3.2.17. ipv6 nd router-preference

This command sets the default router preference that the interface advertises in router advertisement messages.

To reset router preference to default, use the no form of this command.

Format
ipv6 nd router-preference <high | low | medium>
no ipv6 nd router-preference

Default
Medium

Mode
Interface Config

8.3.2.18. ipv6 nd suppress-ra

This command suppresses router advertisement transmission on an interface.

To enables router transmission on an interface, use the no form of this command.

Format
ipv6 nd suppress-ra
no ipv6 nd suppress-ra

Default
Disabled

Mode
Interface Config

8.3.2.19. ipv6 nd prefix

This command is used to configure parameters associated with prefixes the router advertises in its router advertisements. The first optional parameter is the valid lifetime of the router, in seconds. You can specify a value or indicate that the lifetime value is infinite. The second optional parameter is the preferred lifetime of the router.

The router advertises its global IPv6 prefixes in its router advertisements (RAs). An RA only includes the prefixes of the IPv6 addresses configured on the interface where the RA is transmitted. Addresses are configured using the ipv6 address interface configuration command. Each prefix advertisement includes information about the prefix, such as its lifetime values and whether hosts should use the prefix for on-link determination or address auto-configuration. Use the ipv6 nd prefix command to configure these values.

The ipv6 nd prefix command allows you to preconfigure RA prefix values before you configure the associated interface address. In order for the prefix to be included in RAs, you must configure an address that matches the prefix using the ipv6 address command. Prefixes specified using ipv6 nd prefix without associated interface address will not be included in RAs and will not be committed to the device configuration.

To set prefix configuration to default values, use the no form of this command.
Format

```
ipv6 nd prefix <prefix/prefix_length> [{<0-4294967295> | infinite}]{<0-4294967295> | infinite}][no-autoconfig][off-link]
no ipv6 nd prefix <prefix/prefix_length>
```

Default

Valid-lifetime: 2592000
Preferred-lifetime: 604800
Autoconfig: enabled
On-link: enabled

Mode

Interface Config

8.3.2.20. ipv6 neighbor

Use this command to configure a static IPv6 neighbor with the given IPv6 address and MAC address on a routing interface.

To remove a static IPv6 neighbor with the given IPv6 address on a routing interface, use the no form of this command.

Format

```
ipv6 neighbor <ipv6address> {<slot/port> | vlan <1-4093>} <macaddr>
no ipv6 neighbor <ipv6address> {<slot/port> | vlan <1-4093>}
```

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6address</td>
<td>The IPv6 address of the neighbor.</td>
</tr>
<tr>
<td>Macaddr</td>
<td>The MAC address for the neighbor.</td>
</tr>
</tbody>
</table>

Default

None

Mode

Global Config

8.3.2.21. ipv6 neighbor dynamicrenew

Use this command to automatically renew the IPv6 neighbor entries.

To disable automatic renewing of IPv6 neighbor entries, use the no form of this command.

Format

```
ipv6 neighbors dynamicrenew
no ipv6 neighbors dynamicrenew
```

Default

Disable

Mode

Global Config
8.3.2.22. ipv6 nud

Use this command to configure Neighbor Unreachability Detection (NUD). NUD verifies that communication with a neighbor exists.

To reset to the default value, use the no form of this command.

Format

```
ipv6 nud {backoff-multiple <1-5> | max-multicast-solicits <3-255> | max-unicast-solicits <3-10>}
no ipv6 {backoff-multiple | max-multicast-solicits | max-unicast-solicits}
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>backoff-multiple</td>
<td>Set the exponential backoff multiple to calculate time outs in NS transmissions during NUD. The value ranges from 1 to 5. The next timeout value is limited to a maximum value of 60 seconds if the value with exponential backoff calculation is greater than 60 seconds.</td>
</tr>
<tr>
<td>max-multicast-solicits</td>
<td>Set the maximal number of multicast solicit sent during NUD. The value ranges from 3 to 255.</td>
</tr>
<tr>
<td>max-unicast-solicits</td>
<td>Set the maximal number of unicast solicit sent during NUD. The value ranges from 3 to 10.</td>
</tr>
</tbody>
</table>

Default

- backoff-multiple: 1
- max-multicast-solicits: 3
- max-unicast-solicits: 3

Mode

- Global Config

8.3.2.23. ipv6 unreachables

Use this command to enable the generation of ICMPv6 Destination Unreachable messages. By default, the generation of ICMPv6 Destination Unreachable messages is enabled.

To prevent the generation of ICMPv6 Destination Unreachable messages, use the no form of this command.

Format

```
ipv6 unreachables
no ipv6 unreachables
```

Default

- Enable

Mode

- Interface Config
8.3.2.24. **ipv6 unresolved-traffic rate-limit**

Use this command to control the rate at which IPv6 data packets come into the CPU. By default, rate limiting is disabled. When enabled, the rate can range from 50 to 1024 packets per second.

To disable the rate limit, use the no form of this command.

Format

```
ipv6 unresolved-traffic rate-limit <50-1024>
no ipv6 unresolved-traffic rate-limit
```

Default Enable

Mode Global Config

8.3.2.25. **ipv6 icmp error-interval**

Use this command to limit the rate at which ICMPv6 error messages are sent. The rate limit is configured as a token bucket, with two configurable parameters, burst-size and burst-interval. To disable ICMPv6 rate limiting, set burst-interval to zero (0).

To return burst-interval and burst-size to their default values, use the no form of this command.

Format

```
ipv6 icmp error-interval <burst-interval> [burst-size]
no ipv6 icmp error-interval
```

Fields

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><burst-interval></td>
<td>Specifies how often the token bucket is initialized with burst-size tokens. burst-interval is from 0 to 2147483647 milliseconds (msec).</td>
</tr>
<tr>
<td><burst-size></td>
<td>The number of ICMPv6 error messages that can be sent during one burst-interval. The range is from 1 to 200 messages.</td>
</tr>
</tbody>
</table>

Default burst-interval of 1000 msec
burst-size of 100 messages

Mode Global Config

8.3.2.26. **clear ipv6 route counters**

This command resets to zero the IPv6 routing table counters reported in the command “show ipv6 route summary”. The command only resets event counters. Counters that report the current state of the routing table, such as the number of routes of each type, are not reset.
Format clear ipv6 route counters
Default None
Mode Privileged Exec

8.3.2.27. ipv6 nd mtu

Use this command to set the advertised IPv6 MTU. To restore to the default value, use the no form of this command.

Format ipv6 nd mtu <1280-9394>
 no ipv6 nd mtu
Default 0
Mode Interface Config
8.4. OSPFv3 Commands

This section describes the commands you use to configure OSPFv3, which is a link-state routing protocol that you use to route traffic within a network.

8.4.1. Show commands

8.4.1.1. show ipv6 ospf

This command displays information relevant to the OSPF router.

Some of the information below displays only if you enable OSPF and configure certain features.

Format show ipv6 ospf

Default None

Mode Privileged Exec

Display Messages

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router ID</td>
<td>A 32 bit integer in dotted decimal format identifying the router, about which information is displayed. This is a configured value.</td>
</tr>
<tr>
<td>OSPF Admin Mode</td>
<td>Shows whether the administrative mode of OSPF in the router is enabled or disabled. This is a configured value.</td>
</tr>
<tr>
<td>External LSDB Limit</td>
<td>Shows the maximum number of non-default AS-external-LSAs entries that can be stored in the link-state database.</td>
</tr>
<tr>
<td>Exit Overflow Interval</td>
<td>Shows the number of seconds that, after entering Overflow State, a router will attempt to leave Overflow State.</td>
</tr>
<tr>
<td>SPF Start Time</td>
<td>The number of milliseconds the SPF calculation is delayed if no SPF calculation has been scheduled during the current “wait interval”.</td>
</tr>
<tr>
<td>SPF Hold Time</td>
<td>The number of milliseconds of the initial “wait interval”.</td>
</tr>
<tr>
<td>SPF Maximum Hold Time</td>
<td>The maximum number of milliseconds of the “wait interval”.</td>
</tr>
<tr>
<td>LSA Refresh Group Pacing</td>
<td>The size of the LSA refresh group window, in seconds.</td>
</tr>
<tr>
<td>LSA Refresh Group Pacing</td>
<td>Time</td>
</tr>
<tr>
<td>Autocost Ref BW</td>
<td>Shows the value of auto-cost reference bandwidth configured on the router.</td>
</tr>
<tr>
<td>Default Passive Setting</td>
<td>Shows whether the interfaces are passive by default.</td>
</tr>
<tr>
<td>Prefix Suppression</td>
<td>Display whether prefix-suppression is enabled or disabled.</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Maximum Paths</td>
<td>The maximum number of paths that OSPF can report for a given destination.</td>
</tr>
<tr>
<td>Default Metric</td>
<td>Default value for redistributed routes.</td>
</tr>
<tr>
<td>Maximum Routes</td>
<td>The maximum number of routes that OSPF can support.</td>
</tr>
<tr>
<td>Stub Router Configuration</td>
<td>Indicates whether stub router is configured.</td>
</tr>
<tr>
<td>BFD Mode</td>
<td>Indicates whether BFD is enabled or disabled.</td>
</tr>
<tr>
<td>Default Route Advertise</td>
<td>Indicates whether the default routes received from other source protocols are advertised or not.</td>
</tr>
<tr>
<td>Always</td>
<td>Shows whether default routes are always advertised.</td>
</tr>
<tr>
<td>Metric</td>
<td>The metric for the advertised default routes.</td>
</tr>
<tr>
<td>Metric Type</td>
<td>Shows whether the routes are External Type 1 or External Type 2.</td>
</tr>
<tr>
<td>Number of Active Areas</td>
<td>The number of active OSPF areas. An “active” OSPF area is an area with at least one interface up.</td>
</tr>
<tr>
<td>ABR Status</td>
<td>Shows whether the router is an OSPF Area Border Router.</td>
</tr>
<tr>
<td>ASBR Status</td>
<td>Reflects whether the ASBR mode is enabled or disabled. Enable implies that the router is an autonomous system border router. The router automatically becomes an ASBR when it is configured to redistribute routes learnt from other protocols. The possible values for the ASBR status is enabled (if the router is configured to redistribute routes learned by other protocols) or disabled (if the router is not configured for the same).</td>
</tr>
<tr>
<td>Stub Router Status</td>
<td>When OSPF runs out of resources to store the entire link state database, or any other state information, OSPF goes into stub router mode. As a stub router, OSPF re-originates its own router LSAs, setting the cost of all non-stub interfaces to infinity. To restore OSPF to normal operation, disable and re-enable OSPF.</td>
</tr>
<tr>
<td>External LSDB Overflow</td>
<td>When the number of non-default external LSAs exceeds the configured limit, External LSDB Limit, OSPF goes into LSDB overflow state. In this state, OSPF withdraws all of its self-originated non-default external LSAs. After the Exit Overflow Interval, OSPF leaves the overflow state, if the number of external LSAs has been reduced.</td>
</tr>
<tr>
<td>External LSA Count</td>
<td>Shows the number of external (LS type 5) link-state advertisements in the link-state database.</td>
</tr>
<tr>
<td>External LSA Checksum</td>
<td>Shows the sum of the LS checksums of external link-state advertisements contained in the link-state database.</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>New LSAs Originated</td>
<td>Shows the number of new link-state advertisements that have been originated.</td>
</tr>
<tr>
<td>LSAs Received</td>
<td>Shows the number of link-state advertisements received determined to be new instantiations.</td>
</tr>
<tr>
<td>LSA Count</td>
<td>The total number of link state advertisements currently in the link state database.</td>
</tr>
<tr>
<td>Maximum Number of LSAs</td>
<td>The maximum number of LSAs that OSPF can store.</td>
</tr>
<tr>
<td>LSA High Water Mark</td>
<td>The maximum size of the link state database since the system started.</td>
</tr>
<tr>
<td>Retransmit List Entries</td>
<td>The total number of LSAs waiting to be acknowledged by all neighbors. An LSA may be pending acknowledgment from more than one neighbor.</td>
</tr>
<tr>
<td>Maximum Number of Retransmit Entries</td>
<td>The maximum number of LSAs that can be waiting for acknowledgment at any given time.</td>
</tr>
<tr>
<td>Retransmit Entries High Water Mark</td>
<td>The highest number of LSAs that have been waiting for acknowledgment.</td>
</tr>
<tr>
<td>Redistributing</td>
<td>This field is a heading and appears only if you configure the system to take routes learned from a non-OSPF source and advertise them to its peers.</td>
</tr>
<tr>
<td>Source</td>
<td>Shows source protocol/routes that are being redistributed. Possible values are static, connected, or BGP.</td>
</tr>
<tr>
<td>Metric</td>
<td>The metric of the routes being redistributed.</td>
</tr>
<tr>
<td>Metric Type</td>
<td>Shows whether the routes are EX1 ro EX2.</td>
</tr>
<tr>
<td>Tag</td>
<td>The decimal value attached to each external route.</td>
</tr>
<tr>
<td>NSF Helper Support</td>
<td>Indicate whether helpful neighbor functionality has been enabled for OSPF for planned restarts, unplanned restarts, or Always (Both).</td>
</tr>
<tr>
<td>NSF Helper Strict LSA Checking</td>
<td>Indicate whether strict LSA checking has been enabled. If enabled then an OSPF helpful neighbor will exit helper mode whenever a topology change occurs. If disabled, an OSPF neighbor will continue as a helpful neighbor in spite of topology changes.</td>
</tr>
</tbody>
</table>

8.4.1.2. show ipv6 ospf abr

This command displays the internal OSPFv3 routes to reach Area Border Routers (ABR). This command takes no options.
Format show ipv6 ospf abr
Default None
Mode Privileged Exec
 User Exec

Display Messages

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>The type of the route to the destination. It can be either:</td>
</tr>
<tr>
<td></td>
<td>• intra — Intra-area route</td>
</tr>
<tr>
<td></td>
<td>• inter — Inter-area route</td>
</tr>
<tr>
<td>Router ID</td>
<td>Router ID of the destination</td>
</tr>
<tr>
<td>Cost</td>
<td>Cost of using this route</td>
</tr>
<tr>
<td>Area ID</td>
<td>The area ID of the area from which this route is learned.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>Next hop toward the destination</td>
</tr>
<tr>
<td>Next Hop Intf</td>
<td>The outgoing router interface to use when forwarding traffic to the next hop.</td>
</tr>
</tbody>
</table>

8.4.1.3. show ipv6 ospf area

This command displays information about the area. The <areaid> identifies the OSPF area that is being displayed.

Format show ipv6 ospf area <areaid>
Default None
Mode Privileged Exec
 User Exec

Display Messages

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AreaID</td>
<td>The area id of the requested OSPF area.</td>
</tr>
<tr>
<td>External Routing</td>
<td>A number representing the external routing capabilities for this area.</td>
</tr>
<tr>
<td>Spf Runs</td>
<td>The number of times that the intra-area route table has been calculated using this area's link-state database.</td>
</tr>
</tbody>
</table>
Area Border Router Count
The total number of area border routers reachable within this area.

Area LSA Count
Total number of link-state advertisements in this area's link-state database, excluding AS External LSAs.

Area LSA Checksum
A number representing the Area LSA Checksum for the specified AreaID excluding the external (LS type 5) link-state advertisements.

Stub Mode
Represents whether the specified Area is a stub area or not. The possible values are enabled and disabled. This is a configured value.

Import Summary LSAs
Shows whether to import summary LSAs (enabled).

Stub Area Metric Value
The metric value of the stub area. This field displays only if the area is configured as a stub area.

The following OSPF NSSA specific information displays only if the area is configured as an NSSA.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Import Summary LSAs</td>
<td>Shows whether to import summary LSAs into the NSSA.</td>
</tr>
<tr>
<td>Redistribute into NSSA</td>
<td>Shows whether to redistribute information into the NSSA.</td>
</tr>
<tr>
<td>Default Information Originate</td>
<td>Shows whether to advertise a default route into the NSSA</td>
</tr>
<tr>
<td>Default Metric</td>
<td>Shows the metric value for the default route advertised into the NSSA.</td>
</tr>
<tr>
<td>Default Metric Type</td>
<td>Shows the metric type for the default route advertised into the NSSA.</td>
</tr>
<tr>
<td>Translator Role</td>
<td>Shows the NSSA translator role of the ABR, which is always or candidate.</td>
</tr>
<tr>
<td>Translator Stability Interval</td>
<td>Shows the amount of time that an elected translator continues to perform its duties after it determines that its translator status has been deposed by another router.</td>
</tr>
<tr>
<td>Translator State</td>
<td>Shows whether the ABR translator state is disabled, always, or elected.</td>
</tr>
</tbody>
</table>

8.4.1.4. show ipv6 ospf asbr

This command displays the internal OSPFv3 routes to reach Autonomous System Boundary Routers (ASBR). This command takes no options.

Format
```
show ipv6 ospf asbr
```
Display Messages

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>The type of the route to the destination. It can be either:</td>
</tr>
<tr>
<td></td>
<td>• intra — Intra-area route</td>
</tr>
<tr>
<td></td>
<td>• inter — Inter-area route</td>
</tr>
<tr>
<td>Router ID</td>
<td>Router ID of the destination</td>
</tr>
<tr>
<td>Cost</td>
<td>Cost of using this route</td>
</tr>
<tr>
<td>Area ID</td>
<td>The area ID of the area from which this route is learned.</td>
</tr>
<tr>
<td>Next Hop</td>
<td>Next hop toward the destination</td>
</tr>
<tr>
<td>Next Hop Intf</td>
<td>The outgoing router interface to use when forwarding traffic to the next hop.</td>
</tr>
</tbody>
</table>

8.4.1.5. show ipv6 ospf database

This command displays information about the link state database when OSPFv3 is enabled. If you do not enter any parameters, the command displays the LSA headers for all areas. Use the optional <areaid> parameter to display database information about a specific area. Use the other optional parameters to specify the type of link state advertisements to display. Use external to display the external LSAs. Use inter-area to display the inter-area LSAs. Use link to display the link LSAs. Use network to display the network LSAs. Use nssa-external to display NSSA external LSAs. Use prefix to display intra-area Prefix LSAs. Use router to display router LSAs. Use unknown area, unknown as, or unknown link to display unknown area, AS or link-scope LSAs, respectively. Use <lsid> to specify the link state ID (LSID). Use adv-router to show the LSAs that are restricted by the advertising router. Use self-originate to display the LSAs in that are self originated. The information below is only displayed if OSPF is enabled.

Format show ipv6 ospf [<areaid>] database [(external | inter-area (prefix | router) | link | network | nssa-external | prefix | router | unknown {area | as | link})] [<lsid>] [(adv-router [rtrid] | self-originate)]
8.4.1.6. `show ipv6 ospf database database-summary`

This command displays the number of each type of LSA in the database and the total number of LSAs in the database.

Format

`show ipv6 ospf database database-summary`

Default

None

Mode

Privileged Exec

User Exec

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><areaid></code></td>
<td>Configures to display database information about a specific area.</td>
</tr>
<tr>
<td><code><lsid></code></td>
<td>Specify the link state ID.</td>
</tr>
<tr>
<td><code><rtrid></code></td>
<td>Specify an IP Address.</td>
</tr>
</tbody>
</table>

Display Messages

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link Id</td>
<td>A number that uniquely identifies an LSA that a router originates from all other self originated LSA's of the same LS type.</td>
</tr>
<tr>
<td>Adv Router</td>
<td>The Advertising Router. Is a 32 bit dotted decimal number representing the LSDB interface.</td>
</tr>
<tr>
<td>Age</td>
<td>A number representing the age of the link state advertisement in seconds.</td>
</tr>
<tr>
<td>Sequence</td>
<td>A number that represents which LSA is more recent.</td>
</tr>
<tr>
<td>Csum</td>
<td>The total number LSA checksum.</td>
</tr>
<tr>
<td>Options</td>
<td>This is an integer. It indicates that the LSA receives special handling during routing calculations.</td>
</tr>
<tr>
<td>Rtr Opt</td>
<td>Router Options are valid for router links only.</td>
</tr>
</tbody>
</table>
Display Messages

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>Total number of router LSAs in the OSPFv3 link state database.</td>
</tr>
<tr>
<td>Network</td>
<td>Total number of network LSAs in the OSPFv3 link state database.</td>
</tr>
<tr>
<td>Inter-area Prefix</td>
<td>Total number of inter-area prefix LSAs in the OSPFv3 link state database.</td>
</tr>
<tr>
<td>Inter-area Router</td>
<td>Total number of inter-area router LSAs in the OSPFv3 link state database.</td>
</tr>
<tr>
<td>Type-7 Ext</td>
<td>Total number of NSSA external LSAs in the OSPFv3 link state database.</td>
</tr>
<tr>
<td>Link</td>
<td>Total number of link LSAs in the OSPFv3 link state database.</td>
</tr>
<tr>
<td>Intra-area Prefix</td>
<td>Total number of intra-area prefix LSAs in the OSPFv3 link state database.</td>
</tr>
<tr>
<td>Link Unknown</td>
<td>Total number of link-source unknown LSAs in the OSPFv3 link state database.</td>
</tr>
<tr>
<td>Area Unknown</td>
<td>Total number of area unknown LSAs in the OSPFv3 link state database.</td>
</tr>
<tr>
<td>AS Unknown</td>
<td>Total number of as unknown LSAs in the OSPFv3 link state database.</td>
</tr>
<tr>
<td>Subtotal</td>
<td>Number of entries for the identified area.</td>
</tr>
<tr>
<td>Self-Originated Type-7 Ext</td>
<td>Total number of self originated Type-7 external LSAs in the database.</td>
</tr>
<tr>
<td>Type-5 Ext</td>
<td>Total number of AS external LSAs in the database.</td>
</tr>
<tr>
<td>Self-Originated Type-5 Ext</td>
<td>Total number of self originated AS external LSAs in the database.</td>
</tr>
<tr>
<td>Total</td>
<td>Total number of router LSAs in the OSPFv3 link state database.</td>
</tr>
</tbody>
</table>

8.4.1.7. show ipv6 ospf interface

This command displays the information for the physical or virtual interface tables.

Format

```
show ipv6 ospf interface {<slot/port> | loopback <0-63> | tunnel <0-7> | vlan <vlan-id>}
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><slot/port></td>
<td>Interface number.</td>
</tr>
<tr>
<td><0-63></td>
<td>Loopback Interface ID.</td>
</tr>
<tr>
<td>Fields</td>
<td>Definition</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>IPv6 Address</td>
<td>Shows the IPv6 address of the interface.</td>
</tr>
<tr>
<td>ifIndex</td>
<td>Shows the interface index number associated with the interface.</td>
</tr>
<tr>
<td>OSPF Admin Mode</td>
<td>Shows whether the admin mode is enabled or disabled.</td>
</tr>
<tr>
<td>OSPF Area ID</td>
<td>Shows the area ID associated with this interface.</td>
</tr>
<tr>
<td>Router Priority</td>
<td>Shows the router priority. The router priority determines which router is the designated router.</td>
</tr>
<tr>
<td>Retransmit Interval</td>
<td>Shows the frequency, in seconds, at which the interface sends LSA.</td>
</tr>
<tr>
<td>Hello Interval</td>
<td>Shows the frequency, in seconds, at which the interface sends Hello packets.</td>
</tr>
<tr>
<td>Dead Interval</td>
<td>Shows the amount of time, in seconds, the interface waits before assuming a neighbor is down.</td>
</tr>
<tr>
<td>LSA Ack Interval</td>
<td>Shows the amount of time, in seconds, the interface waits before sending an LSA acknowledgement after receiving an LSA.</td>
</tr>
<tr>
<td>Transmit Delay Interval</td>
<td>A number representing the OSPF Transmit Delay for the specified interface.</td>
</tr>
<tr>
<td>Authentication Type</td>
<td>Shows the type of authentication the interface performs on LSAs it receives.</td>
</tr>
<tr>
<td>Metric Cost</td>
<td>Shows the priority of the path. Low costs have a higher priority than high costs.</td>
</tr>
<tr>
<td>Prefix-suppresion</td>
<td>Shows whether prefix-suppression is enabled, disabled, or unconfigured on the given interface.</td>
</tr>
<tr>
<td>Passive Status</td>
<td>Shows whether the interface is passive or not.</td>
</tr>
<tr>
<td>OSPF MTU-ignore</td>
<td>Shows whether to ignore MTU mismatches in database descriptor packets sent from neighboring routers.</td>
</tr>
</tbody>
</table>
The following information only displays if OSPF is initialized on the interface:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPF Interface Type</td>
<td>Shows the configured state of Link LSA Suppression for the interface.</td>
</tr>
<tr>
<td>State</td>
<td>Broadcast LANs, such as Ethernet and IEEE 802.5, take the value broadcast. The OSPF Interface Type will be 'broadcast'.</td>
</tr>
<tr>
<td>Designated Router</td>
<td>The OSPF Interface States are: down, loopback, waiting, point-to-point, designated router, and backup designated router.</td>
</tr>
<tr>
<td>Backup Designated Router</td>
<td>The router ID representing the designated router.</td>
</tr>
<tr>
<td>Number of Link Events</td>
<td>The number of link events.</td>
</tr>
<tr>
<td>Metric Cost</td>
<td>The cost of the OSPF interface.</td>
</tr>
</tbody>
</table>

8.4.1.8. show ipv6 ospf interface brief

This command displays brief information for the physical or virtual interface tables.

Format show ipv6 ospf interface brief

Default None

Mode Privileged Exec

User Exec

Display Messages

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The routing interface associated with the rest of the data in the row.</td>
</tr>
<tr>
<td>OSPF Admin Mode</td>
<td>States whether OSPF is enabled or disabled on a router interface. This is a configured value.</td>
</tr>
<tr>
<td>OSPF Area ID</td>
<td>Represents the OSPF Area ID for the specified interface. This is a configured value.</td>
</tr>
<tr>
<td>Router Priority</td>
<td>Shows the router priority. The router priority determines which router is the designated router.</td>
</tr>
</tbody>
</table>
8.4.1.9. `show ipv6 ospf interface stats`

This command displays the statistics for a specific interface. The command only displays information if OSPF is enabled.

Format

```
show ipv6 ospf interface stats {<slot/port> | loopback <loopback-id> | vlan <vlan-id>}
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><slot/port></code></td>
<td>Interface number.</td>
</tr>
<tr>
<td><code><loopback-id></code></td>
<td>The loopback ID ranges from 0 to 63.</td>
</tr>
<tr>
<td><code><vlan-id></code></td>
<td>VLAN ID. The range is from 0 to 4093.</td>
</tr>
</tbody>
</table>

Default None

Mode

- Privileged Exec
- User Exec

Display Messages

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPFv3 Area ID</td>
<td>The area id of this OSPF interface.</td>
</tr>
<tr>
<td>Area Border Router Count</td>
<td>The number of the area border router.</td>
</tr>
<tr>
<td>AS Border Router Count</td>
<td>The number of the AS border router.</td>
</tr>
<tr>
<td>Area LSA Count</td>
<td>The number of area LSAs.</td>
</tr>
</tbody>
</table>
IPv6 Address
The IPv6 address associated with this OSPF interface.

OSPF Interface Events
The number of times the specified OSPF interface has changed its state, or an error has occurred.

Virtual Events
The number of state changes or errors that occurred on this virtual link.

Neighbor Events
The number of times this neighbor relationship has changed state, or an error has occurred.

Sent Packets
The number of OSPF packets transmitted on the interface.

Received Packets
The number of valid OSPF packets received on the interface.

Discards
The number of received OSPF packets discarded because of an error in the packet or an error in processing the packet.

Bad Version
The number of received OSPF packets whose version field in the OSPF header does not match the version of the OSPF process handling the packet.

Virtual Link Not Found
The number of received OSPF packets discarded where the ingress interface is in a non-backbone area and the OSPF header identifies the packet as belonging to the backbone, but OSPF does not have a virtual link to the packet’s sender.

Area Mismatch
The number of OSPF packets discarded because the area ID in the OSPF header is not the area ID configured on the ingress interface.

Invalid Destination Address
The number of OSPF packets discarded because the packet’s destination IP address is not the address of the ingress interface and is not the AllDrRouters or AllSpfRouters multicast addresses.

No Neighbor at Source Address
The number of OSPF packets dropped because the sender is not an existing neighbor or the sender’s IP address does not match the previously recorded IP address for that neighbor. NOTE: Does not apply to Hellos.

Invalid OSPF Packet Type
The number of OSPF packets discarded because the packet type field in the OSPF header is not a known type.

Hello Ignored
The number of received Hello packets that were ignored by this router from the new neighbors after the limit has been reached for the number of neighbors on an interface or on the system as a whole.

8.4.1.10. `show ipv6 ospf lsa-group`

This command displays the number of self-originated LSAs within each LSA group.

Format
```
show ipv6 ospf lsa-group
```
8.4.11. show ipv6 ospf max-metric

This command displays the configured maximum metrics for stub router mode.

Format show ipv6 ospf max-metric

Default None

Mode Privileged Exec

User Exec

8.4.12. show ipv6 ospf neighbor

This command displays information about OSPF neighbors. If you do not specify a neighbor IP address, the output displays summary information in a table. If you specify an interface or tunnel, only the information for that interface or tunnel displays. The <ipaddr> is the IP address of the neighbor, and when you specify this, detailed information about the neighbor displays. The information below only displays if OSPF is enabled and the interface has a neighbor.

Format show ipv6 ospf neighbor [{interface <slot/port> | tunnel <0-7> | vlan <vlan-id> | <ipaddr>}]
Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><slot/port></td>
<td>Interface number.</td>
</tr>
<tr>
<td><vlan-id></td>
<td>VLAN ID ranges from 1 to 4093.</td>
</tr>
</tbody>
</table>

Default None

Mode Privileged Exec

User Exec

Display Messages

If you do not specify an IP address, a table with the following columns displays for all neighbors or the neighbor associated with the interface that you specify:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router ID</td>
<td>Shows the 4-digit dotted-decimal number of the neighbor router.</td>
</tr>
<tr>
<td>Priority</td>
<td>Displays the OSPF priority for the specified interface. The priority of an interface is a priority integer from 0 to 255. A value of '0' indicates that the router is not eligible to become the designated router on this network.</td>
</tr>
<tr>
<td>Intf ID</td>
<td>Shows the interface ID of the neighbor.</td>
</tr>
<tr>
<td>Interface</td>
<td>Shows the interface of the local router.</td>
</tr>
</tbody>
</table>

State

Shows the state of the neighboring routers. Possible values are:

- Down - initial state of the neighbor conversation - no recent information has been received from the neighbor.
- Attempt - no recent information has been received from the neighbor but a more concerted effort should be made to contact the neighbor.
- Init - an Hello packet has recently been seen from the neighbor, but bidirectional communication has not yet been established.
- 2 way - communication between the two routers is bidirectional.
- Exchange start - the first step in creating an adjacency between the two neighboring routers, the goal is to decide which router is the master and to decide upon the initial DD sequence number.
- Exchange - the router is describing its entire link state database by sending Database Description packets to the neighbor.
If you specify an IP address for the neighbor router, the following fields display:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Shows the interface of the local router.</td>
</tr>
<tr>
<td>Area ID</td>
<td>The area ID associated with the interface.</td>
</tr>
<tr>
<td>Options</td>
<td>An integer value that indicates the optional OSPF capabilities supported by the neighbor. These are listed in its Hello packets. This enables received Hello Packets to be rejected (i.e., neighbor relationships will not even start to form) if there is a mismatch in certain crucial OSPF capabilities.</td>
</tr>
<tr>
<td>Router Priority</td>
<td>Displays the router priority for the specified interface.</td>
</tr>
<tr>
<td>Dead Timer Due</td>
<td>Shows the amount of time, in seconds, to wait before the router assumes the neighbor is unreachable.</td>
</tr>
<tr>
<td>State</td>
<td>Shows the state of the neighboring routers.</td>
</tr>
<tr>
<td>Events</td>
<td>The number of times this neighbor relationship has changed state, or an error has occurred.</td>
</tr>
<tr>
<td>Retransmission Queue Length</td>
<td>An integer representing the current length of the retransmission queue of the specified neighbor router Id of the specified interface.</td>
</tr>
</tbody>
</table>

8.4.1.13. show ipv6 ospf range

This command displays information about the area ranges for the specified <areaid>. The <areaid> identifies the OSPFv3 area whose ranges are being displayed.

Format show ipv6 ospf range <areaid>
8.4.1.14. **show ipv6 ospf statistics**

This command displays information about the 15 most recent Shortest Path First (SPF) calculations.

Format
show ipv6 ospf statistics

Default
None

Mode
Privileged Exec
User Exec

Display Messages

The command displays the following information with the most recent statistics displayed at the end of the table.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta T</td>
<td>The time since the routing table was computed. The time is in the format hours, minutes, and seconds (hh:mm:ss).</td>
</tr>
<tr>
<td>Intra</td>
<td>The time taken to compute intra-area routes, in milliseconds.</td>
</tr>
<tr>
<td>Summ</td>
<td>The time taken to compute inter-area routes, in milliseconds.</td>
</tr>
<tr>
<td>Ext</td>
<td>The time taken to compute external routes, in milliseconds.</td>
</tr>
</tbody>
</table>
8.4.1.15. show ipv6 ospf stub table

This command displays the OSPF stub table. The information below will only be displayed if OSPF is initialized on the switch.

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPF Total</td>
<td>The total time taken to compute routes, in milliseconds. The total may exceed the sum of Intra, Summ, and Ext times.</td>
</tr>
<tr>
<td>RIB Update</td>
<td>The time from the completion of the routing table calculation until all changes have been made in the common routing table (the Routing Information Base, RIB), in milliseconds.</td>
</tr>
<tr>
<td>Reason</td>
<td>The event or events that triggered the SPF. The reasons codes are as follows:</td>
</tr>
<tr>
<td></td>
<td>• R – New router LSA.</td>
</tr>
<tr>
<td></td>
<td>• N – New network LSA.</td>
</tr>
<tr>
<td></td>
<td>• SN – New network (inter-area prefix) summary LSA.</td>
</tr>
<tr>
<td></td>
<td>• SA – New ASBR (inter-area router) summary LSA.</td>
</tr>
<tr>
<td></td>
<td>• X – New external LSA.</td>
</tr>
<tr>
<td></td>
<td>• IP – New Intra-area prefix LSA.</td>
</tr>
<tr>
<td></td>
<td>• L – New Link LSA.</td>
</tr>
</tbody>
</table>

Format
show ipv6 ospf stub table

Default
None

Mode
Privileged Exec
User Exec

Display Messages

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area ID</td>
<td>A 32-bit identifier for the created stub area.</td>
</tr>
<tr>
<td>Type of Service</td>
<td>The type of service associated with the stub metric. Only supports Normal TOS.</td>
</tr>
<tr>
<td>Metric Val</td>
<td>The metric value is applied based on the TOS. It defaults to the least metric of the type of service among the interfaces to other areas. The OSPF cost for a route is a function of the metric value.</td>
</tr>
</tbody>
</table>
8.4.1.16. **show ipv6 ospf virtual-link**

This command displays the OSPF Virtual Interface information for a specific area and neighbor.

Format
show ipv6 ospf virtual-link <areaid> <neighbor>

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><areaid></td>
<td>Area ID.</td>
</tr>
<tr>
<td><neighbor></td>
<td>Neighbor's router ID.</td>
</tr>
</tbody>
</table>

Default
None

Mode
Privileged Exec
User Exec

Display Messages

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area ID</td>
<td>The area ID of the requested OSPFv3 area.</td>
</tr>
<tr>
<td>Neighbor Router ID</td>
<td>The input neighbor Router ID.</td>
</tr>
<tr>
<td>Hello Interval</td>
<td>The configured hello interval for the OSPFv3 virtual interface.</td>
</tr>
<tr>
<td>Dead Interval</td>
<td>The configured dead interval for the OSPFv3 virtual interface.</td>
</tr>
<tr>
<td>Interface Transmit Delay</td>
<td>The configured transit delay for the OSPFv3 virtual interface.</td>
</tr>
<tr>
<td>Retransmit Interval</td>
<td>The configured retransmit interval for the OSPFv3 virtual interface.</td>
</tr>
<tr>
<td>State</td>
<td>The OSPFv3 Interface States are: down, loopback, waiting, point-to-point, designated router, and backup designated router. This is the state of the OSPFv3 interface.</td>
</tr>
<tr>
<td>Metric</td>
<td>The OSPFv3 virtual interface metric.</td>
</tr>
<tr>
<td>Neighbor State</td>
<td>The neighbor state.</td>
</tr>
</tbody>
</table>
8.4.1.17. **show ipv6 ospf virtual-link brief**

This command displays the OSPFv3 Virtual Interface information for all areas in the system.

Format
show ipv6 ospf virtual-link brief

Default
None

Mode
Privileged Exec
User Exec

Display Messages

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area ID</td>
<td>The area ID of the requested OSPFv3 area.</td>
</tr>
<tr>
<td>Neighbor</td>
<td>The neighbor interface of the OSPFv3 virtual interface.</td>
</tr>
<tr>
<td>Hello Interval</td>
<td>The configured hello interval for the OSPFv3 virtual interface.</td>
</tr>
<tr>
<td>Dead Interval</td>
<td>The configured dead interval for the OSPFv3 virtual interface.</td>
</tr>
<tr>
<td>Retransmit Interval</td>
<td>The configured retransmit interval for the OSPFv3 virtual interface.</td>
</tr>
<tr>
<td>Transit Delay</td>
<td>The configured transit delay for the OSPFv3 virtual interface.</td>
</tr>
</tbody>
</table>

8.4.2. **Configuration commands**

8.4.2.1. **ipv6 ospf**

This command enables OSPF on a router interface or loopback interface.

To disable OSPF on a router interface or loopback interface, use the no form of this command.

Format
ipv6 ospf
 no ipv6 ospf

Default
Disable

Mode
Interface Config

8.4.2.2. **ipv6 ospf area**

This command sets the OSPF area to which the specified router interface belongs. The <areaid> is an 32-bit integer, formatted as a 4-digit dotted-decimal number or a decimal value in the range of <0-4294967295>. The
area uniquely identifies the area to which the interface connects. Assigning an area ID, which does not exist on an interface, causes the area to be created with default values.

Format ipv6 ospf area \{0-4294967295\} | \{areaid\}\}

Fields Definition

\{areaid\} An 32-bit integer, formatted as a 4-digit dotted-decimal number.

\{0-4294967295\} A decimal value for an area ID.

Default None
Mode Interface Config

8.4.2.3. ipv6 ospf bfd

This command enables BFD for OSPF on the specified interface.

To disable BFD for OSPF on the specified interface, use the no form of this command.

Format ipv6 ospf bfd
Default Disable
Mode Interface Config

8.4.2.4. ipv6 ospf cost

This command configures the cost on an OSPF interface. The <cost> parameter has a range of 1 to 65535.

To reset to the default cost on an OSPF interface, use the no form of this command.

Format ipv6 ospf cost <1-65535>
no ipv6 ospf cost
Default 10
Mode Interface Config

8.4.2.5. ipv6 ospf dead-interval

This command sets the OSPF dead interval for the specified interface. The value for <seconds> is a valid positive integer, which represents the length of time in seconds that a router’s Hello packets have not been seen before
its neighbor routers declare that the router is down. The value for the length of time must be the same for all routers attached to a common network. This value should be some multiple of the Hello Interval (i.e. 4).

To set the default OSPF dead interval for the specified interface, use the no form of this command.

Format

```
ipv6 ospf dead-interval <seconds>
no ipv6 ospf dead-interval
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><seconds></code></td>
<td>This value ranges from 1 to 65535.</td>
</tr>
</tbody>
</table>

Default 40

Mode Interface Config

8.4.2.6. ipv6 ospf hello-interval

This command sets the OSPF hello interval for the specified interface. The value for `<seconds>` is a valid positive integer, which represents the length of time in seconds. The value for the length of time must be the same for all routers attached to a network. Valid values for `<seconds>` range from 1 to 65535.

To set the default OSPF hello interval for the specified interface, use the no form of this command.

Format

```
ipv6 ospf hello-interval <seconds>
no ipv6 ospf hello-interval
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><seconds></code></td>
<td>This value ranges from 1 to 65535.</td>
</tr>
</tbody>
</table>

Default 10

Mode Interface Config

8.4.2.7. ipv6 ospf link-lsa-suppression

This command enables Link LSA Suppression on an interface. When Link LSA Suppression is enabled on a P2P interface, no Link LSA protocol packets are originated on the interface. This configuration does not apply to non-P2P interfaces.

To disables Link LSA Suppression on an interface, use the no form of this command. When Link LSA suppression is disabled, Link LSA protocol packets are originated on the P2P interfaces.

Format

```
ipv6 ospf link-lsa-suppression
```

NETGEAR M4500 Series Switches CLI Command Reference Manual 944
no ipv6 ospf link-lsa-suppresion

Default Disable
Mode Interface Config

8.4.2.8. ipv6 ospf mtu-ignore

This command disables OSPF maximum transmission unit (MTU) mismatch detection. OSPF Database Description packets specify the size of the largest IP packet that can be sent without fragmentation on the interface. When a router receives a Database Description packet, it examines the MTU advertised by the neighbor. By default, if the MTU is larger than the router can accept, the Database Description packet is rejected and the OSPF adjacency is not established.

To enable the OSPF MTU mismatch detection, use the no form of this command.

Format
ipv6 ospf mtu-ignore
no ipv6 ospf mtu-ignore

Default Enable
Mode Interface Config

8.4.2.9. ipv6 ospf network

This command changes the default OSPF network type for the interface. Normally, the network type is determined from the physical IP network type. By default all Ethernet networks are OSPF type broadcast. Similarly, tunnel interfaces default to point-to-point. When an Ethernet port is used as a single large bandwidth IP network between two routers, the network type can be point-to-point since there are only two routers. Using point-to-point as the network type eliminates the overhead of the OSPF designated router election. It is normally not useful to set a tunnel to OSPF network type broadcast.

To set the interface type to the default value, use the no form of this command.

Format
ipv6 ospf network {broadcast | point-to-point}
no ipv6 ospf network {broadcast | point-to-point}

Default Broadcast
Mode Interface Config
8.4.2.10. ipv6 ospf prefix-suppression

This command suppresses the advertisement of the IPv6 prefixes that are associated with an interface, except for those associated with secondary IPv6 addresses. This command takes precedence over the global configuration. If this configuration is not specified, the global prefix-suppression configuration applies.

To remove prefix-suppression configurations for the specified interface, use the no form of this command. When this no command is issued, global prefix-suppression applies to the interface.

Format ipv6 ospf prefix-suppression [disable]
 no ipv6 ospf prefix-suppression

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disable</td>
<td>This is for excluding specified interfaces from performing prefix-suppression when the feature is enabled globally.</td>
</tr>
</tbody>
</table>

Default None
Mode Interface Config

8.4.2.11. ipv6 ospf priority

This command sets the OSPF priority for the specified router interface. The priority of the interface is a priority integer from 0 to 255. A value of 0 indicates that the router is not eligible to become the designated router on this network.

To set the default OSPF priority for the specified router interface, use the no form of this command.

Format ipv6 ospf priority <0-255>
 no ipv6 ospf priority

Default 1, which is the highest router priority
Mode Interface Config

8.4.2.12. ipv6 ospf retransmit-interval

This command sets the OSPF retransmit Interval for the specified interface. The retransmit interval is specified in seconds. The value for <seconds> is the number of seconds between link-state advertisement retransmissions for adjacencies belonging to this router interface. This value is also used when retransmitting database description and link-state request packets.

To set the default OSPF retransmit Interval for the specified interface, use the no form of this command.

Format ipv6 ospf retransmit-interval <seconds>
8.4.2.13. **ipv6 ospf transmit-delay**

This command sets the OSPF Transit Delay for the specified interface. The transmit delay is specified in seconds. In addition, it sets the estimated number of seconds it takes to transmit a link state update packet over this interface.

To set the default OSPF Transit Delay for the specified interface, use the no form of this command.

Format

ipv6 ospf transmit-delay <seconds>

no ipv6 ospf transmit-delay

Fields

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><seconds></td>
<td>Valid value ranges from 1 to 3600 (1 hour).</td>
</tr>
</tbody>
</table>

Default 1

Mode Interface Config

8.4.2.14. **ipv6 router ospf**

Use this command to enter Router OSPFv3 Config mode.

Format

ipv6 router ospf

Default None

Mode Global Config
8.4.2.15. area default-cost

This command configures the monetary default cost for the stub area. The operator must specify the area id and an integer value between 1-16777214.

Format

```
area <areaid> default-cost <1-16777214>
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><areaid></td>
<td>Area ID.</td>
</tr>
</tbody>
</table>

Default None

Mode Router OSPFv3 Config

8.4.2.16. area nssa

This command configures the specified areaid to function as an NSSA.

To disable nssa from the specified area id, use the no form of this command.

Format

```
area <areaid> nssa
no area <areaid> nssa
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><areaid></td>
<td>Area ID.</td>
</tr>
</tbody>
</table>

Default None

Mode Router OSPFv3 Config

8.4.2.17. area nssa default-info-originate

This command configures the metric value and type for the default route advertised into the NSSA. The optional metric parameter specifies the metric of the default route and is to be in a range of 1-16777214. If no metric is specified, the default value is 10. The metric type can be comparable (nssa-external 1) or non-comparable (nssa-external 2).

To disable the default route advertised into the NSSA, use the no form of this command.

Format

```
area <areaid> nssa default-info-originate [<1-16777214>] [[comparable | non-comparable]]
no area <areaid> nssa default-info-originate [<1-16777214>] [[comparable | non-comparable]]
```
This command configures the NSSA ABR so that learned external routes will not be redistributed to the NSSA.

To disable the NSSA ABR so that learned external routes are redistributed to the NSSA, use the no form of this command.

Format

```
area <areaid> nssa no-redistribute
no area <areaid> nssa no-redistribute
```

Fields

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><areaid></td>
<td>Area ID.</td>
</tr>
</tbody>
</table>

Default Disable

Mode Router OSPFv3 Config

8.4.2.19. area nssa no-summary

This command configures the NSSA so that summary LSAs are not advertised into the NSSA.

To disable the NSSA from the summary LSAs, use the no form of this command.

Format

```
area <areaid> nssa no-summary
no area <areaid> nssa no-summary
```

Fields

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><areaid></td>
<td>Area ID.</td>
</tr>
</tbody>
</table>

Default Disable

Mode Router OSPFv3 Config
8.4.2.20. area nssa translator-role

This command configures the translator role of the NSSA. A value of \textit{always} causes the router to assume the role of the translator the instant it becomes a border router and a value of \textit{candidate} causes the router to participate in the translator election process when it attains border router status.

To disable the NSSA translator role from the specified area id, use the no form of this command.

\textbf{Format} \
area <areaid> nssa translator-role \{always | candidate\}
no area <areaid> nssa translator-role

\textbf{Fields} \
\begin{tabular}{|l|l|}
\hline
\textbf{<areaid>} & Area ID. \\
\hline
\textbf{always} & A value of \textit{always} will cause the router to assume the role of the translator when it becomes a border router. \\
\hline
\textbf{Candidate} & A value of \textit{candidate} will cause the router to participate in the translator election process when it attains border router status. \\
\hline
\end{tabular}

\textbf{Default} None
\textbf{Mode} Router OSPFv3 Config

8.4.2.21. area nssa translator-stab-intv

This command configures the translator stability interval of the NSSA. The \textit{<stabilityinterval>} is the period of time that an elected translator continues to perform its duties after it determines that its translator status has been deposed by another router.

To disable the NSSA translator stability interval from the specified area id, use the no form of this command.

\textbf{Format} \
area <areaid> nssa translator-stab-intv \textless 0-3600\textgreater
no area <areaid> nssa translator-stab-intv

\textbf{Fields} \
\begin{tabular}{|l|l|}
\hline
\textbf{<areaid>} & Area ID. \\
\hline
\textbf{<0-3600>} & The range is 0 to 3600. \\
\hline
\end{tabular}

\textbf{Default} None
\textbf{Mode} Router OSPFv3 Config
area range

This command creates a specified area range for a specified NSSA. The `<ipv6-prefix>` is a valid IPv6 address. The `<prefix-length>` is a valid subnet mask. The LSDB type must be specified by either summarylink or nssaexternallink, and the advertising of the area range can be allowed or suppressed.

To delete a specified area range, use the no form of this command.

Format

```
area <areaid> range <ipv6-prefix>/<prefix-length> {summarylink | nssaexternallink} [advertise | not-advertise]
no area <areaid> range <ipv6-prefix>/<prefix-length> {summarylink | nssaexternallink}
```

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><areaid></td>
<td>Area ID.</td>
</tr>
<tr>
<td><ipv6-prefix></td>
<td>IPv6 Address.</td>
</tr>
<tr>
<td><prefix-length></td>
<td>The subnetmask of the IPv6 address.</td>
</tr>
<tr>
<td>summarylink</td>
<td>The area range is used when summarizing prefixes advertised in type 3 summary LSAs.</td>
</tr>
<tr>
<td>nssaexternallink</td>
<td>The area range is used when translating type 7 LSAs to type 5 LSAs.</td>
</tr>
<tr>
<td>advertise</td>
<td>Allow advertising the specified area range. When this option is specified, the summary link is advertised when the area range is active. This is default.</td>
</tr>
<tr>
<td>not-advertise</td>
<td>Disallow advertising the specified area range. When this option is specified, neither the summary prefix nor the contained prefixes are advertised when the area range is active.</td>
</tr>
</tbody>
</table>

Default None

Mode Router OSPFv3 Config

area stub

This command creates a stub area for the specified area ID. A stub area is characterized by the fact that AS External LSAs are not propagated into the area. Removing AS External LSAs and Summary LSAs can significantly reduce the link state database of routers within the stub area.

To delete a stub area for the specified area ID, use the no form of this command.
Format

area <areaid> stub
no area <areaid> stub

Fields	Definition
<areaid> | Area ID.

Default | None
Mode | Router OSPFv3 Config

8.4.2.24. **area stub no-summary**

This command disables the import of Summary LSAs for the stub area identified by the specified area ID.

To sets the Summary LSA import mode to the default for the stub area identified by the specified area ID, use the no form of this command.

Format

area <areaid> stub no-summary
no area <areaid> stub no-summary

Fields	Definition
<areaid> | Area ID.

Default | Enable
Mode | Router OSPFv3 Config

8.4.2.25. **area virtual-link**

This command creates the OSPF virtual interface for the specified <areaid> and <neighbor>. The <neighborid> parameter is the Router ID of the neighbor.

To delete the OSPF virtual interface from the given interface identified by <areaid> and <neighborid>, use the no form of this command.

Format

area <areaid> virtual-link <neighborid>
no area <areaid> virtual-link <neighborid>

Fields	Definition
<areaid> | Area ID.
8.4.26. area virtual-link dead-interval

This command configures the dead interval for the OSPF virtual interface on the virtual interface identified by <areaid> and <neighborid>.

To configure the default dead interval for the OSPF virtual interface on the virtual interface identified by <areaid> and <neighbor>, use the no form of this command.

Format

area <areaid> virtual-link <neighborid> dead-interval <1-65535>
no area <areaid> virtual-link <neighborid> dead-interval

Fields Definition

<areaid> Area ID.

<neighborid> Router ID of the neighbor.

<1-65535> The range of the dead interval is 1 to 65535, in seconds.

Default 40 seconds

Mode Router OSPFv3 Config

8.4.27. area virtual-link hello-interval

This command configures the hello interval for the OSPF virtual interface on the interface identified by <areaid> and <neighborid>.

To configure the default hello interval for the OSPF virtual interface on the virtual interface identified by <areaid> and <neighbor>, use the no form of this command.

Format

area <areaid> virtual-link <neighborid> hello-interval <1-65535>
no area <areaid> virtual-link <neighborid> hello-interval

Fields Definition

<areaid> Area ID.
area virtual-link retransmit-interval

This command configures the retransmit interval for the OSPF virtual interface on the interface identified by `<areaid>` and `<neighborid>`.

To configure the default retransmit interval for the OSPF virtual interface on the virtual interface identified by `<areaid>` and `<neighbor>`, use the no form of this command.

Format

```
area <areaid> virtual-link <neighborid> retransmit-interval <0-3600>
no area <areaid> virtual-link <neighborid> retransmit-interval
```

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><areaid></code></td>
<td>Area ID.</td>
</tr>
<tr>
<td><code><neighborid></code></td>
<td>Router ID of the neighbor.</td>
</tr>
<tr>
<td><code><0-3600></code></td>
<td>The range of the retransmit interval is 0 to 3600, in seconds.</td>
</tr>
</tbody>
</table>

Default 5 seconds

Mode Router OSPFv3 Config

area virtual-link transmit-delay

This command configures the transmit delay for the OSPF virtual interface on the virtual interface identified by `<areaid>` and `<neighborid>`.

To configure the default transmit delay for the OSPF virtual interface on the virtual interface identified by `<areaid>` and `<neighbor>`, use the no form of this command.

Format

```
area <areaid> virtual-link <neighborid> transmit-delay <0-3600>
no area <areaid> virtual-link <neighborid> transmit-delay
```

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><areaid></code></td>
<td>Area ID.</td>
</tr>
<tr>
<td><code><neighborid></code></td>
<td>Router ID of the neighbor.</td>
</tr>
<tr>
<td><code><0-3600></code></td>
<td>The range of the transmit delay is 0 to 3600, in seconds.</td>
</tr>
</tbody>
</table>

Default 5 seconds

Mode Router OSPFv3 Config
By default, OSPF computes the link cost of each interface from the interface bandwidth. Faster links have lower metrics, making them more attractive in route selection. The configuration parameters in the `auto-cost reference bandwidth` and `bandwidth` commands give you control over the default link cost. You can configure for OSPF an interface bandwidth that is independent of the actual link speed. A second configuration parameter allows you to control the ratio of interface bandwidth to link cost. The link cost is computed as the ratio of a reference bandwidth to the interface bandwidth (ref_bw / interface bandwidth), where interface bandwidth is defined by the `bandwidth` command. Because the default reference bandwidth is 100 Mbps, OSPF uses the same default link cost for all interfaces whose bandwidth is 100 Mbps or greater. Use the `auto-cost` command to change the reference bandwidth, specifying the reference bandwidth in megabits per second (Mbps). The reference bandwidth range is 1–4294967 Mbps. The different reference bandwidth can be independently configured for OSPFv2 and OSPFv3.

To set the reference bandwidth to the default value, use the no form of this command.

Format

```
auto-cost reference-bandwidth <1-4294967>
no auto-cost reference-bandwidth
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><1-4294967></code></td>
<td>The range of reference bandwidth.</td>
</tr>
</tbody>
</table>

| Default | 100Mbps |

| Mode | Router OSPFv3 Config |

8.4.2.31. bfd

This command configures BFD for all interfaces.

To reset BFD for interfaces to default, use the no form of this command.
8.4.2.32. default-information originate

This command is used to control the advertisement of default routes.

To configure the default advertisement of default routes, use the no form of this command.

Format
```
default-information originate [always] [metric <1-16777214>] [metric-type {1 | 2}]
```

 no default-information originate

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>[always]</td>
<td>Specify this option to originate default route without depending on whether routing table has a default route.</td>
</tr>
<tr>
<td>metric</td>
<td>The range of the metric is 1 to 16777214.</td>
</tr>
<tr>
<td>metric type</td>
<td>The value of metric type is type 1 or type 2.</td>
</tr>
</tbody>
</table>

Default
Metric: unspecified
Type: 2

Mode
Router OSPFv3 Config

8.4.2.33. default-metric

This command is used to set a default for the metric of distributed routes.

To set a default for the metric of distributed routes, use the no form of this command.

Format
```
default-metric <1-16777214>
```

 no default-metric

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><1-16777214></td>
<td>The range of default metric is 1 to 16777214.</td>
</tr>
</tbody>
</table>

Default
None
8.4.2.34. **distance ospf**

This command sets the route preference value of OSPF in the router. Lower route preference values are preferred when determining the best route. The type of OSPF can be intra, inter, or external. All the external type routes are given the same preference value. The <preference> range is 1 to 255. A route with a preference of 255 cannot be used to forward traffic.

To set the default route preference value of OSPF in the router, use the no form of this command.

Format

```
distance ospf {intra-area <1-255> | inter-area <1-255> | external <1-255>}
no distance ospf {intra-area | inter-area | external }
```

Fields

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><1-255></td>
</tr>
</tbody>
</table>

Default

110

Mode **Router OSPFv3 Config**

8.4.2.35. **enable**

This command resets the default administrative mode of OSPF in the router (active).

To set the administrative mode of OSPF in the router to inactive, use the no form of this command.

Format

```
enable
no enable
```

Default

Enable

Mode **Router OSPFv3 Config**

8.4.2.36. **exit-overflow-interval**

This command configures the exit overflow interval for OSPF. It describes the number of seconds after entering Overflow state that a router will wait before attempting to leave the Overflow State. This allows the router to again originate non-default AS-external-LSAs. When set to 0, the router will not leave Overflow State until restarted.

To configure the default exit overflow interval for OSPF, use the no form of this command.
8.4.2.37. **external-isdb-limit**

This command configures the external LSDB limit for OSPF. If the value is -1, then there is no limit. When the number of non-default AS-external-LSAs in a router's link-state database reaches the external LSDB limit, the router enters overflow state. The router never holds more than the external LSDB limit non-default AS-external-LSAs in its database. The external LSDB limit MUST be set identically in all routers attached to the OSPF backbone and/or any regular OSPF area.

To configure the default external LSDB limit for OSPF, use the no form of this command.

Format

```
external-isdb-limit <0-2147483647>
no external-isdb-limit
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><0-2147483647></td>
<td>The range of external LSDB limit for OSPF is -1 to 2147483647.</td>
</tr>
</tbody>
</table>

Default -1

Mode Router OSPFv3 Config

8.4.2.38. **max-metric**

This command sets the number of paths that OSPF can report for a given destination where <maxpaths> is platform dependent.

To disable stub router mode, use the no form of this command. The command clears either type of stub router mode (always or on-startup) and resets all LSA options.

Format

```
max-metric router-lsa [on-startup <5-86400>] [summary-lsa [<1-16777215>]] [external-lsa [<1-16777215>]] [inter-area-lsas [<1-16777215>]]
no max-metric router-lsa [on-startup] [summary-lsa] [external-lsa] [inter-area-lsas]
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><0-2147483647></td>
<td>The range of exit overflow interval for OSPF, in seconds.</td>
</tr>
</tbody>
</table>
on-startup

<table>
<thead>
<tr>
<th>Default</th>
<th>OSPF is not in stub router mode by default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>Router OSPFv3 Config</td>
</tr>
</tbody>
</table>

8.4.2.39. maximum-paths

This command sets the number of paths that OSPF can report for a given destination where `<maxpaths>` is platform dependent.

To reset the number of paths that OSPF can report for a given destination back to its default value, use the no form of this command.

Format

```
maximum-paths <1-48>
no maximum-paths
```

Fields

| `<1-48>` | The maximum number of paths that OSPF can report for a given destination. The range of the value is 1 to 48. |

Default

1

Mode

Router OSPFv3 Config

8.4.2.40. passive-interface default

Use this command to enable global passive mode by default for all interfaces. It overrides any interface level passive mode. OSPF shall not form adjacencies over a passive interface.

To disable the global passive mode by default for all interfaces, use the no form of this command. Any interface previously configured to be passive reverts to non-passive mode.

Format

```
passive-interface default
no passive-interface default
```
8.4.2.41. passive-interface

Use this command to set the interface or tunnel as passive. It overrides the global passive mode that is currently effective on the interface or tunnel.

To set the interface or tunnel as non-passive, use the no form of this command. It overrides the global passive mode that is currently effective on the interface or tunnel.

Format

```
passive-interface {<slot/port> | tunnel <tunnel-id> | vlan <vlan-id>}
no passive-interface {<slot/port> | tunnel <tunnel-id> | vlan <vlan-id>}
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><slot/port></td>
<td>Specify the interface.</td>
</tr>
<tr>
<td><tunnel-id></td>
<td>Specify the Tunnel ID. Range 0-7.</td>
</tr>
<tr>
<td><vlan-id></td>
<td>Specifies the VLAN interface. The range of the VLAN ID is 1 to 4093.</td>
</tr>
</tbody>
</table>

8.4.2.42. prefix-suppression

This command enables the global prefix suppression for OSPFv3.

To disable the global prefix suppression for OSPFv3, use the no form of this command.

Format

```
prefix-suppression
```

Default Disable

Mode Router OSPFv3 Config
8.4.2.43. redistribute

This command configures the OSPFv3 protocol to allow redistribution of routes from the specified source protocol/roUTERS.

To configure OSPF to prohibit redistribution of routes from the specified source protocol/roUTERS, use the no form of this command.

Format

```
redistribute {static | connected | bgp} [metric <0-16777214>] [metric-type {1 | 2}] [tag <0-4294967295>]
no redistribute { static | connected | bgp} [metric] [metric-type] [tag]
```

Fields

<table>
<thead>
<tr>
<th>Definition</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><0-16777214></td>
<td>The range of metric is 0 to 16777214.</td>
</tr>
<tr>
<td><0-4294967295></td>
<td>The range of tag is 0 to 4294967295.</td>
</tr>
</tbody>
</table>

Default

Metric is unspecified
Type is 2
Tag is 0

Mode

Router OSPFv3 Config

8.4.2.44. router-id

This command sets a 4-digit dotted-decimal number uniquely identifying the router ospf id.

Format

```
router-id <ipaddress>
```

Fields

<table>
<thead>
<tr>
<th>Definition</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><ipaddress></td>
<td>IP Address.</td>
</tr>
</tbody>
</table>

Default

None

Mode

Router OSPFv3 Config

8.4.2.45. clear ipv6 ospf

This command disable and reenable OSPF.

Format

```
clear ipv6 ospf
```
8.4.2.46. clear ipv6 ospf configuration

This command resets the OSPF configuration to factory defaults.

Format clear ipv6 ospf configuration
Default None
Mode Privileged Exec

8.4.2.47. clear ipv6 ospf counters

This command reset global and interface statistics.

Format clear ipv6 ospf counters
Default None
Mode Privileged Exec

8.4.2.48. clear ipv6 ospf neighbor

This command drops the adjacency with all OSPF neighbors. On each neighbor’s interface, send a oneway hello. Adjacencies may then be established. To drop all adjacencies with a specific router ID, specify the neighbor’s Router ID using the optional parameter <ipaddr>

Format clear ipv6 ospf neighbor [<ipaddr>]

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><ipaddr></td>
<td>Neighbor’s Router ID.</td>
</tr>
</tbody>
</table>

Default None
Mode Privileged Exec
8.4.2.49. clear ipv6 ospf neighbor interface

This command drops the adjacency with all OSPF neighbors on a specific interface. To drop adjacency with a specific router ID on a specific interface, specify the neighbor’s Router ID using the optional parameter <ipaddr>.

Format clear ipv6 ospf neighbor interface {<slot/port> | vlan <1-4093>} [ipaddr]

Fields Definition

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><slot/port></td>
<td>Specify the interface.</td>
</tr>
<tr>
<td><1-4093></td>
<td>Specifies the VLAN interface. The range of the VLAN ID is 1 to 4093.</td>
</tr>
<tr>
<td><ipaddr></td>
<td>Neighbor’s Router ID.</td>
</tr>
</tbody>
</table>

Default None
Mode Privileged Exec

8.4.2.50. clear ipv6 ospf redistribution

This command flushes all self-originated external LSAs. Reapply the redistribution configuration and reoriginate prefixes as necessary.

Format clear ipv6 ospf redistribution

Default None
Mode Privileged Exec

8.4.2.51. clear ipv6 ospf stub-router

This command forces OSPF to exit stub router mode when it has automatically entered stub router mode because of a resource limitation. OSPF only exits stub router mode if it entered stub router mode because of a resource limitation or if it is in stub router mode at startup. This command has no effect if OSPF is configured to be in stub router mode permanently.

Format clear ipv6 ospf stub-router

Default None
Mode Privileged Exec
8.5. Routing Policy Commands

8.5.1. Show commands

8.5.1.1. show ipv6 prefix-list

This command displays configuration and status for a selected prefix list.

Format
```
show ipv6 prefix-list [detail | summary] listname [ipv6-prefix/prefix-length] [seq sequencenumber] [longer] [first-match]
```

Default
None

Mode
Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>detail</td>
<td>summary</td>
</tr>
<tr>
<td>listname</td>
<td>(Optional) The name of a specific prefix list.</td>
</tr>
<tr>
<td>ipv6-prefix/prefixlength</td>
<td>(Optional) The network number and length (in bits) of the network mask.</td>
</tr>
<tr>
<td>seq</td>
<td>(Optional) Applies the sequence number to the prefix list entry.</td>
</tr>
<tr>
<td>sequence-number</td>
<td>(Optional) The sequence number of the prefix list entry.</td>
</tr>
<tr>
<td>Longer</td>
<td>(Optional) Displays all entries of a prefix list that are more specific than the given network/length.</td>
</tr>
<tr>
<td>first-match</td>
<td>(Optional) Displays the entry of a prefix list that matches the given network/length.</td>
</tr>
</tbody>
</table>

The command outputs the following information:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>Number of entries in the prefix list.</td>
</tr>
<tr>
<td>range entries</td>
<td>Number of entries that match the input range.</td>
</tr>
<tr>
<td>ref count</td>
<td>Number of entries referencing the given prefix list.</td>
</tr>
<tr>
<td>seq</td>
<td>Sequence number of the entry in the list.</td>
</tr>
</tbody>
</table>
8.5.2. Configuration commands

8.5.2.1. ipv6 prefix-list

To create a IPv6 prefix list or add a prefix list entry, use the `ipv6 prefix-list` command in Global Configuration mode. An IPv6 prefix list can contain only IPv6 addresses.

Prefix lists allow matching of route prefixes with those specified in the prefix list. Each prefix list includes a sequence of prefix list entries ordered by their sequence numbers. A router sequentially examines each prefix list entry to determine if the route's prefix matches that of the entry. For IPv6 routes, only IPv6 prefix lists are matched. An empty or nonexistent prefix list permits all prefixes. An implicit deny is assume if a given prefix does not match any entries of a prefix list. Once a match or deny occurs the router does not go through the rest of the list.

An IPv6 prefix list may be used within a route map to match a route's prefix using the command "match ipv6 address". A route map may contain both IPv4 and IPv6 prefix lists. If a route being matched is an IPv6 route, only the IPv6 prefix lists are matched.

Up to 128 prefix lists may be configured. The maximum number of statements allowed in prefix list is 64. These numbers indicate only IPv6 prefix lists. IPv4 prefix lists may be configured in appropriate numbers independently.

To delete a IPv6 prefix list or a statement in a prefix list, use the `no` form of this command. The command `no ipv6 prefix-list list-name` deletes the entire prefix list. To remove an individual statement from a prefix list, you must specify the statement exactly, with all its options.

Format

```
ipv6 prefix-list <list-name> {{seq <seq number>} {permit | deny} ip6-prefix/prefix-length [ge <length>] [le <length>] | description <text> | renumber [renumber-interval] [first-statement-number]}
```

```
no ipv6 prefix-list <list-name> {{seq <seq number>} {permit | deny} ip6-prefix/prefix-length [ge <length>] [le <length>] | description}
```

Fields

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>list-name</td>
<td>The text name of the prefix list. Up to 32 characters.</td>
</tr>
<tr>
<td>seq number</td>
<td>(Optional) The sequence number for this prefix list statement. Prefix list states are ordered from lowest sequence number to highest and applied in that order. If you do not specify a sequence number, the system will automatically select a sequence number five larger than the last sequence number in the list. Two statements may not be configured with the same sequence number. The value ranges from 1 to 4,294,967,294.</td>
</tr>
<tr>
<td>permit</td>
<td>Permit routes whose destination prefix matches the statement.</td>
</tr>
<tr>
<td>deny</td>
<td>Deny routes whose destination prefix matches the statement.</td>
</tr>
</tbody>
</table>
8.5.2.2. match ipv6 address

Use this command to configure a route map to match based on a destination prefix. `prefix-list prefix-listname` identifies the name of an IPv6 prefix list used to identify the set of matching routes. Up to eight prefix lists may be specified. If multiple prefix lists are specified, a match occurs if a prefix matches any one of the prefix lists. If you configure a match ipv6 address statement within a route map section that already has a match ipv6 address statement, the new prefix lists are added to the existing set of prefix lists, and a match occurs if any prefix list in the combined set matches the prefix.

To delete a match statement from a route map, use the `no` form of this command.
8.5.2.3. set ipv6 next-hop

To set the IPv6 next hop of a route, use the `set ipv6 next-hop` command in Route Map Configuration mode. When used in a route map applied to UPDATE messages received from a neighbor, the command sets the next hop address for matching IPv6 routes received from the neighbor.

When used in a route map applied to UPDATE messages sent to a neighbor, the command sets the next hop address for matching IPv6 routes sent to the neighbor. If the address is a link local address, the address is assumed to be on the interface where the UPDATE is sent or received. If the command specifies a global IPv6 address, the address is not required to be on a local subnet.

To remove a set command from a route map, use the `no` form of this command.

Format

```
set ipv6 next-hop <next-hop-ipv6-address>
no set ipv6 next-hop
```

Default

None

Mode

Route Map Config

Display Messages

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>next-hop-ipv6-address</td>
<td>The IPv6 address set as the Network Address of Next Hop field in the MP_NLRI attribute of an UPDATE message.</td>
</tr>
</tbody>
</table>

8.5.2.4. clear ipv6 prefix-list

Use this command to reset and clear IPv6 prefix-list hit counters. The hit count is a value indicating the number of matches to a specific prefix list entry.

Format

```
clear ipv6 prefix-list [list-name] [ipv6-prefix/prefix-length]
```

Mode

Privileged Exec

Display Messages

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>list-name</td>
<td>(Optional) Name of the prefix list from which the hit count is to be cleared.</td>
</tr>
<tr>
<td>ipv6-prefix/prefix-length</td>
<td>(Optional) IPv6 prefix number and length (in bits) of the network mask. If this option is specified, hit counters are only cleared for the matching statement.</td>
</tr>
</tbody>
</table>
8.6. DHCPv6 Snooping Commands

DHCPv6 snooping is a security feature that monitors DHCPv6 messages between a DHCPv6 client and DHCPv6 servers to filter harmful DHCPv6 messages and to build a bindings database of {MAC address, IPv6 address, VLAN ID, port} tuples that are considered authorized. You can enable DHCPv6 snooping globally and on specific VLANs, and configure ports within the VLAN to be trusted or untrusted. DHCPv6 servers must be reached through trusted ports.

DHCPv6 snooping enforces the following security rules:

DHCPv6 packets from a DHCPv6 server (Advertise and Reply) are dropped if received on an untrusted port.

DHCPv6 Release and DHCPv6 Decline messages are dropped if for a MAC address in the snooping database, but the binding’s interface is other than the interface where the message was received.

DHCPv6 Snooping does not support the DHCPv6 relay function, and other behaviors are the same as DHCP Snooping. For more information, refer to the DHCP Snooping Commands section.

8.6.1. show ipv6 dhcp snooping

This command displays the DHCPv6 snooping global configurations and summaries of port configurations.

Format show ipv6 dhcp snooping

Default None

Mode Privileged Exec

Example:

(M4500-32C) #show ipv6 dhcp snooping

DHCP snooping is Enabled
DHCP snooping source MAC verification is enabled
DHCP snooping is enabled on the following VLANs:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Trusted</th>
<th>Log Invalid Pkts</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>0/2</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>0/3</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>0/4</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>0/5</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>0/6</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>0/7</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>0/8</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>0/9</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>0/10</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>0/11</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>0/12</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>0/13</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>0/14</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>0/15</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
8.6.2. show ipv6 dhcp snooping per interface

This command displays the DHCPv6 snooping detail configurations for all interfaces or for a specific interface.

Format
`show ipv6 dhcp snooping interfaces [<slot/port> | port-channel <portchannel-id>]`

Default
None

Mode
Privileged Exec

Example:

```
(M4500-32C) #show ipv6 dhcp snooping interfaces
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Trust State</th>
<th>Rate Limit (pps)</th>
<th>Burst Interval (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1</td>
<td>Yes</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>0/2</td>
<td>No</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>0/3</td>
<td>No</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>0/4</td>
<td>No</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>0/5</td>
<td>No</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>0/6</td>
<td>No</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>0/7</td>
<td>No</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>0/8</td>
<td>No</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>0/9</td>
<td>No</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>0/10</td>
<td>No</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>0/11</td>
<td>No</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>0/12</td>
<td>No</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>0/13</td>
<td>No</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>0/14</td>
<td>No</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>0/15</td>
<td>No</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>0/16</td>
<td>No</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>0/17</td>
<td>No</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>0/18</td>
<td>No</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>0/19</td>
<td>No</td>
<td>None</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(M4500-32C) #

8.6.3. show ipv6 dhcp snooping binding

This command displays the DHCP Snooping binding entries.

The parameter “static” means to restrict the output based on static entries which are added by user manually.

The parameter “static” means to restrict the output based on dynamic entries which are added by DHCPv6 Snooping automatically.
Format show ipv6 dhcp snooping binding [{static | dynamic}] [interface {<slot/port> | port-channel <portchannel-id>}] [vlan <vlan-id>]

Default None

Mode Privileged Exec

Example:
(M4500-32C) #show ipv6 dhcp snooping binding

Total number of bindings: 363
Total number of Tentative bindings: 61

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>IPv6 Address</th>
<th>VLAN</th>
<th>Interface</th>
<th>Type</th>
<th>Lease (Secs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>44:0A:A7:8A:00:00</td>
<td>2001::100</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
<tr>
<td>44:0A:A7:8A:00:01</td>
<td>2001::101</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
<tr>
<td>44:0A:A7:8A:00:02</td>
<td>2001::102</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
<tr>
<td>44:0A:A7:8A:00:03</td>
<td>2001::103</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
<tr>
<td>44:0A:A7:8A:00:04</td>
<td>2001::104</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
<tr>
<td>44:0A:A7:8A:00:05</td>
<td>2001::105</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
<tr>
<td>44:0A:A7:8A:01:00</td>
<td>2001::106</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
<tr>
<td>44:0A:A7:8A:01:01</td>
<td>2001::107</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
<tr>
<td>44:0A:A7:8A:01:02</td>
<td>2001::108</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
<tr>
<td>44:0A:A7:8A:01:03</td>
<td>2001::109</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
<tr>
<td>44:0A:A7:8A:01:04</td>
<td>2001::111</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
<tr>
<td>44:0A:A7:8A:01:05</td>
<td>2001::112</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
<tr>
<td>44:0A:A7:8A:02:00</td>
<td>2001::113</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
<tr>
<td>44:0A:A7:8A:02:01</td>
<td>2001::114</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
<tr>
<td>44:0A:A7:8A:02:02</td>
<td>2001::115</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
<tr>
<td>44:0A:A7:8A:02:03</td>
<td>2001::116</td>
<td>1</td>
<td>0/10</td>
<td>DYNAMIC</td>
<td>86383</td>
</tr>
</tbody>
</table>

(M4500-32C) #

8.6.4. show ipv6 dhcp snooping database

This command displays the DHCPv6 Snooping configuration related to the database persistency.

Format show ipv6 dhcp snooping database

Default None

Mode Privileged Exec

Example:
(M4500-32C) #show ipv6 dhcp snooping database

agent url: local
write-delay: 300

(M4500-32C) #
8.6.5. **ipv6 dhcp snooping**

This command enables or disables the DHCPv6 Snooping globally.

Format
[no] ipv6 dhcp snooping

Default
Disabled

Mode
Global Config

8.6.6. **ipv6 dhcp snooping vlan**

This command enables or disables the DHCPv6 Snooping to the specific VLAN.

Format
[no] ipv6 dhcp snooping vlan <vlan-list>

Default
Disabled

Mode
Global Config

8.6.7. **ipv6 dhcp snooping verify mac-address**

This command enables or disables the verification of the source MAC address with the client hardware address in the received DHCPv6 message.

Format
[no] ipv6 dhcp snooping verify mac-address

Default
Disabled

Mode
Global Config

8.6.8. **ipv6 dhcp snooping database**

This command configures the persistent location of the DHCPv6 Snooping database. This can be local or a remote file on a given IP machine.

The parameter “local” means to set database access inside device.

The parameter “tftp://hostIP/filename” means to set database access on remote TFTP Server.

Format
ipv6 dhcp snooping database {local | <url>}

Default
local
8.6.9. ipv6 dhcp snooping database write-delay

This command configures the interval in seconds at which the DHCPv6 Snooping database will be persisted, and this database stores the results of DHCPv6 snooping bindings. Use keyword “no” to restore the default value of this command.

The parameter “<interval>” value ranges is from 15 to 86400 seconds.

Format ipv6 dhcp snooping database write-delay <interval>
 no ipv6 dhcp snooping database write-delay

Default 300

Mode Global Config

8.6.10. ipv6 dhcp snooping binding

This command configures the static DHCPv6 Snooping binding which binds a MAC address to assigned IPv6 address on a specific VLAN ID and interface. Use keyword “no” to remove an existing entry of DHCPv6 Snooping binding.

Format ipv6 dhcp snooping binding <mac-address> vlan <vlan id> <ipv6 address> interface {<slot/port> | port-channel < portchannel-id>}
 no ipv6 dhcp snooping binding <mac-address>

Default None

Mode Global Config

Example: To add a static entry of DHCPv6 snooping binding which binds MAC address 00:11:22:33:44:55 to IPv6 address 2001::1 on vlan 1 and port interface 0/1.

(M4500-32C) #configure
(M4500-32C) (Config)#ipv6 dhcp snooping binding 00:11:22:33:44:55 vlan 1 2001::1 interface 0/1
(M4500-32C) (Config)#

8.6.11. ipv6 dhcp snooping limit

This command controls the rate at which the DHCPv6 Snooping messages come. If packet rate exceeds limitation over burst interval, the assigned port will shut down automatically. User could use interface command “shutdown” and then “no shutdown” to recover it. Use keyword “no” to restore the default value of this command.
The parameter “rate” means to the limitation of packet rate. Its range is from 0 to 300 packets per second.

The parameter “burst interval” means the time interval of packet burst could be over rate limitation. Its range is from 1 to 15 seconds.

Format

```
ipv6 dhcp snooping limit {rate <pps> [burst interval <seconds>]} | none
no ipv6 dhcp snooping limit rate
```

Default

“rate” is None
“burst interval” is 1 second.

Mode

Interface Config

Example: While the packet rate of DHCPv6 message received from port 0/1 exceeds 100 pps and consecutive time interval is over 10 seconds, the port 0/1 will be shutdown automatically.

```
(M4500-32C) #configure
(M4500-32C) (Config)#interface 0/1
(M4500-32C) (Interface 0/1)# ipv6 dhcp snooping limit rate 100 burst interval 10
(M4500-32C) (Interface 0/1)#
```

8.6.12. ipv6 dhcp snooping log-invalid

This command controls logging the illegal DHCPv6 messages to logging buffer.

Format

```
[no] ipv6 dhcp snooping log-invalid
```

Default

Disabled

Mode

Interface Config

8.6.13. ipv6 dhcp snooping trust

This command enables or disables a port as DHCPv6 Snooping trust port.

Format

```
[no] ipv6 dhcp snooping trust
```

Default

Disabled

Mode

Interface Config
8.6.14. clear ipv6 dhcp snooping binding

This command is used to clear all DHCPv6 Snooping bindings on all interfaces or on a specific interface.

Format
```
clear ipv6 dhcp snooping binding [interface <slot/port>]
```

Default
None

Mode
Privileged EXEC

8.6.15. clear ipv6 dhcp snooping statistics

This command is used to clear all DHCPv6 Snooping statistics.

Format
```
clear ipv6 dhcp snooping statistics
```

Default
None

Mode
Privileged EXEC

8.6.16. show ipv6 dhcp snooping statistics

This command displays the statistics of DHCPv6 snooping.

Format
```
show ipv6 dhcp snooping statistics
```

Mode
Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The IPv6 address of the interface.</td>
</tr>
<tr>
<td>MAC Verify Failures</td>
<td>Represents the number of DHCP messages that were filtered on an untrusted</td>
</tr>
<tr>
<td></td>
<td>interface because of source MAC address and client hardware address</td>
</tr>
<tr>
<td></td>
<td>mismatch.</td>
</tr>
<tr>
<td>Client Ifc Mismatch</td>
<td>Represents the number of DHCP release and Deny messages received on the</td>
</tr>
<tr>
<td></td>
<td>different ports than learned previously.</td>
</tr>
<tr>
<td>DHCP Server Msgs Rec’d</td>
<td>Represents the number of DHCP server messages received on untrusted ports.</td>
</tr>
</tbody>
</table>
8.6.17. show ipv6 dhcp binding

This command displays the DHCPv6 binding information.

Format show ipv6 dhcp binding [<ipv6-address>]

Mode Privileged Exec

8.6.18. clear ipv6 dhcp binding

This command clears ipv6 dhcp bindings.

Format clear ipv6 dhcp binding [<ipv6-address>]

Default None

Mode Privileged Exec
8.7. DHCPv6 Commands

8.7.1. show ipv6 dhcp interface

This command displays the DHCPv6 information for the specific interface.

Format
show ipv6 dhcp interface {<slot/port> | vlan <vlan-id>} [statistics]

Default
None

Mode
Privileged Exec

Example:

(M4500-32C) #show ipv6 dhcp interface 0/1

IPv6 Interface................................. 0/1
Mode... Relay
Relay Address.................................. ::
Relay Interface Number......................... 0/2
Relay Remote ID...............................
Option Flags...................................

8.7.2. show ipv6 dhcp statistics

This command displays the DHCPv6 statistics for all interfaces.

Format
show ipv6 dhcp statistics

Default
None

Mode
Privileged Exec

Example:

DHCPv6 Interface Global Statistics

DHCPv6 Solicit Packets Received......... 0
DHCPv6 Request Packets Received......... 0
DHCPv6 Confirm Packets Received......... 0
DHCPv6 Renew Packets Received........... 0
DHCPv6 Rebind Packets Received......... 0
DHCPv6 Release Packets Received......... 0
DHCPv6 Decline Packets Received......... 0
DHCPv6 Inform Packets Received.......... 0
DHCPv6 Relay-forward Packets Received... 0
DHCPv6 Relay-reply Packets Received..... 0
DHCPv6 Malformed Packets Received...... 0
Received DHCPv6 Packets Discarded...... 0
Total DHCPv6 Packets Received........... 0
DHCPv6 Advertisement Packets Transmitted... 0
8.7.3. **ipv6 dhcp relay destination**

This command configures an interface for DHCPv6 relay functionality on an interface or range of interfaces. Use the *destination* keyword to set the relay server IPv6 address. Use the *interface* keyword to set the relay server interface. Use the *remote-id* keyword to add the Relay Agent Information Option “remote ID”suboption to relayed messages. It can either be DUID plus IFID or a user-defined string.

If *relay-address* is an IPv6 global address, *relay-interface* is not required. If *relay-address* is a link-local address, *relay-interface* is required.

Format

```
ipv6 dhcp relay destination <relay-address> { [interface <relay-interface>] | [remote-id {<user-defined-string> | duid-ifid}]}
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>relay-address</td>
<td>IPv6 address of a DHCPv6 relay server</td>
</tr>
<tr>
<td>relay-interface</td>
<td>The interface to reach a relay server</td>
</tr>
<tr>
<td>duid-ifid</td>
<td>Specify that the remote ID is derived from the DHCPv6 server DUID and the relay interface</td>
</tr>
</tbody>
</table>

Default None

Mode Interface Config

8.7.4. **ipv6 dhcp relay interface**

This command configures the relay interface to reach a relay server. Use the *remote-id* keyword to add the Relay Agent Information Option “remote ID”suboption to relayed messages. It can either be DUID plus IFID or a user-defined string.

Format

```
ipv6 dhcp relay interface <relay-interface> [remote-id {<user-defined-string> | duid-ifid}] 
```

Default None

Mode Interface Config
8.7.5. service dhcpv6

This command enables the DHCPV6 relay. Use the no form of this command to disable the DHCPV6 relay.

Format

service dhcpv6

no service dhcpv6

Default

Disabled

Mode

Global Config
9. Data Center Bridging Commands

9.1. FIP Snooping

9.1.1. show fip-snooping

This command displays information about the global FIP snooping configuration and status.

Format

```
show fip-snooping
```

Default None

Mode Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Mode</td>
<td>FIP snooping configuration status on the switch. It displays Enable when FIP snooping is enabled on the switch and Disable when FIP snooping is disabled on the switch.</td>
</tr>
<tr>
<td>FCoE VLAN List</td>
<td>List of VLAN IDs on which FIP snooping is enabled.</td>
</tr>
<tr>
<td>FCFs</td>
<td>Number of FCFs discovered on the switch.</td>
</tr>
<tr>
<td>ENodes</td>
<td>Number of ENodes discovered on the switch.</td>
</tr>
<tr>
<td>Sessions</td>
<td>Total virtual sessions on the switch.</td>
</tr>
<tr>
<td>Max VLANs</td>
<td>Maximum number of VLANs that can be enabled for FIP snooping on the switch.</td>
</tr>
<tr>
<td>Max FCFs in VLAN</td>
<td>Maximum number of FCFs supported in a VLAN.</td>
</tr>
<tr>
<td>Max ENodes</td>
<td>Maximum number of ENodes supported in the switch.</td>
</tr>
<tr>
<td>Max Sessions</td>
<td>Maximum number of Sessions supported in the switch.</td>
</tr>
</tbody>
</table>

9.1.2. show fip-snooping enode

This command displays the information about the interfaces connected to ENodes.

This command can only be entered after FIP snooping is enabled using the `feature fip-snooping` command. Otherwise, it does not appear in the CLI.

Format

```
show fip-snooping enode <enode-mac>
```
The command displays the following additional information when the optional argument is supplied.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sessions Waiting</td>
<td>Number of virtual connections waiting for FCF acceptance.</td>
</tr>
<tr>
<td>Session Failed</td>
<td>Number of virtual sessions failed.</td>
</tr>
<tr>
<td>Max-FCoE-PDU</td>
<td>Maximum FCoE PDU size the ENode MAC intends to use for FCoE traffic. This is equivalent to the maximum Ethernet frame payload the ENode intends to send.</td>
</tr>
<tr>
<td>Time elapsed</td>
<td>Time elapsed since first successful login session snooped from ENode.</td>
</tr>
</tbody>
</table>

9.1.3. show fip-snooping sessions

This command displays information about the active FIP snooping sessions.

This command can only be entered after FIP snooping is enabled using the `feature fip-snooping` command. Otherwise, it does not appear in the CLI.

Format

`show fip-snooping sessions [[[vlan <1-4093> | [interface <slot/port>]) | [fcf <fcf-mac> [enode <enode-mac>]]] [detail]]`
Default
None

Mode
Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface-id</td>
<td>ID of an interface on which FIP snooping has been enabled.</td>
</tr>
<tr>
<td>FCF-MAC</td>
<td>MAC address of the FCF that is part of the session.</td>
</tr>
<tr>
<td>ENode-MAC</td>
<td>MAC address of the ENode that is part of the session.</td>
</tr>
<tr>
<td>VLAN</td>
<td>ID number of the VLAN that contains the session.</td>
</tr>
<tr>
<td>FCoE MAC</td>
<td>Source MAC address of the FCoE packets that are originated by the ENode as part of the session.</td>
</tr>
<tr>
<td>FCID</td>
<td>Fiber channel ID number of the virtual port that was created by FCF when the ENode VN_Port did a FLOGI/NPIV/FDISC request.</td>
</tr>
</tbody>
</table>

The command output format is different when the detail option is used. The information below is displayed.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN</td>
<td>VLAN to which the session belongs.</td>
</tr>
<tr>
<td>FC-MAP</td>
<td>FCMAP value used by the FCF.</td>
</tr>
<tr>
<td>FCFs</td>
<td>Number of FCFs discovered.</td>
</tr>
<tr>
<td>ENodes</td>
<td>Number of ENodes discovered.</td>
</tr>
<tr>
<td>Sessions</td>
<td>Total virtual sessions in FCoE VLAN.</td>
</tr>
</tbody>
</table>

FCF Information:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The interface on which the FCF is discovered.</td>
</tr>
<tr>
<td>MAC</td>
<td>MAC address of the FCF.</td>
</tr>
<tr>
<td>ENodes</td>
<td>Total number of ENodes that are connected to the FCF.</td>
</tr>
<tr>
<td>Sessions</td>
<td>Total number of virtual sessions accepted by FCF in the associated VLAN.</td>
</tr>
</tbody>
</table>
ENode Information:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The interface to which the ENode is connected.</td>
</tr>
<tr>
<td>MAC</td>
<td>MAC address of the ENode</td>
</tr>
<tr>
<td>Sessions</td>
<td>Total number of virtual sessions originated from ENodes to FCF in the associated VLAN.</td>
</tr>
<tr>
<td>Waiting</td>
<td>Total number of virtual connections waiting for FCF acceptance in the associated VLAN.</td>
</tr>
</tbody>
</table>

Session Information:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCoE-MAC</td>
<td>Source MAC address of the FCoE packets that are originated by the ENode as part of the session.</td>
</tr>
<tr>
<td>Request (FP, SP)</td>
<td>FIP session request type sent by ENode. This can be FLOGI or FDESC (NPIV FDISC). Whereas FP and SP values are the FP bit and the SP bit values in the FLOGI or NPIV FDISC request respectively.</td>
</tr>
<tr>
<td>Expiry Time</td>
<td>This is virtual connection/session expiry interval. This is used to monitor the status of the session. Session entry is removed when the value reaches 0. This value is reset to 450 secs (5*90 secs) every time an associated VN_Port FKA is received from the ENode. This is ignored (marked as NA) if the D-bit is set to one in the FCF Discovery Advertisements.</td>
</tr>
<tr>
<td>Mode</td>
<td>This is the addressing mode in use by the VN_Port at ENode. In other words, this is the type of MAC address granted (selected and returned) by FCF. This can be one of the addressing modes, i.e. FPMA or SPMA.</td>
</tr>
<tr>
<td>State</td>
<td>This is the state of the virtual session. The state is displayed as Tentative during the process of ENode login to FCF (using FLOGI or FDESC). It displays Active after ENode and FCF establish a successful virtual connection.</td>
</tr>
<tr>
<td>Session Time</td>
<td>Time elapsed after this successful virtual session is established by ENode with FCF. The value is displayed in xd, yh, zm format where x represents number of days, y represents number of hours, and z represents minutes elapsed following this successful virtual session. This field has no useful information for waiting sessions.</td>
</tr>
</tbody>
</table>
9.1.4. `show fip-snooping fcf`

This command displays information about the interfaces connected to FCFs.

This command can only be entered after FIP snooping is enabled using the `feature fip-snooping` command. Otherwise, it does not appear in the CLI.

<table>
<thead>
<tr>
<th>Format</th>
<th><code>show fip-snooping fcf [fcf-mac]</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>None</td>
</tr>
<tr>
<td>Mode</td>
<td>Privileged EXEC</td>
</tr>
</tbody>
</table>

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Interface to which the FCF is connected.</td>
</tr>
<tr>
<td>VLAN</td>
<td>ID number of the VLAN to which the FCF belongs.</td>
</tr>
<tr>
<td>No. of ENodes</td>
<td>Total number of ENodes that are connected to the FCF.</td>
</tr>
<tr>
<td>FPMA/SPMA</td>
<td>Type of the MAC address for ENode as negotiated by the FCF.</td>
</tr>
<tr>
<td>FCMAP</td>
<td>FCMAP value used by the FCF.</td>
</tr>
<tr>
<td>FCF-MAC</td>
<td>MAC address of the FCF.</td>
</tr>
<tr>
<td>Fabric Name</td>
<td>Name of the FCF.</td>
</tr>
</tbody>
</table>

Below is additional information regarding the FCF that is displayed when the optional FCF MAC address argument is provided.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sessions</td>
<td>Total number of virtual sessions accepted by FCF in the associated VLAN.</td>
</tr>
<tr>
<td>D-bit</td>
<td>This reflects the value of the D-bit provided by the most recently received Discovery Advertisements from the FCF. When D-bit value is zero then FIP snooping bridge verifies the periodic VN_Port FIP Keep Alive frames associated with FCF and Discovery Advertisement sent by FCF. When D-bit is set to 1, switch discards snopped VN_Port FIP Keep Alive frames associated with FCF and does not timeout the FCoE sessions established with the FCF based on FKA_VN_PERIOD*5 interval.</td>
</tr>
<tr>
<td>Available for Login</td>
<td>This reflects the value of the A bit provided by the most recently received Discovery Advertisements from the FCF. This provides the information that the...</td>
</tr>
</tbody>
</table>
9.1.5. show fip-snooping vlan

This command displays the FCoE VLANs information, and additionally, the FIP snooping port status when optional argument is specified.

This command can only be entered after FIP snooping is enabled using the `feature fip-snooping` command. Otherwise, it does not appear in the CLI.

Format

```
show fip-snooping vlan [<1-4093>]
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><1 - 4093></td>
<td>VLAN ID.</td>
</tr>
</tbody>
</table>

Default None

Mode Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan-id</td>
<td>A VLAN enabled for FIP snooping.</td>
</tr>
<tr>
<td>Vlan</td>
<td>VLAN in which FIP snooping is enabled/operational.</td>
</tr>
<tr>
<td>FC-MAP</td>
<td>FCoE mapped address prefix of the FCoE forwarder for the FCoE VLAN.</td>
</tr>
<tr>
<td>FCFs</td>
<td>Number of FCFs discovered.</td>
</tr>
</tbody>
</table>
9.1.6. show fip-snooping statistics

This command displays the statistics of the FIP packets snooped in the VLAN or on an interface. If the optional (VLAN or interface) argument is not given, this command displays the statistics for all of the FIP snooping enabled VLANs. When an interface is provided as an argument, interface applicable statistics are only displayed.

This command can only be entered after FIP snooping is enabled using the `feature fip-snooping` command. Otherwise, it does not appear in the CLI.

Format

```
show fip-snooping statistics [interface <slot/port> | vlan <1-4093>]
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><slot/port></code></td>
<td>Specify the interface.</td>
</tr>
<tr>
<td><code><1-4093></code></td>
<td>Specifies the VLAN interface. The range of the VLAN ID is 1 to 4093.</td>
</tr>
</tbody>
</table>

Default

None

Mode

Privileged EXEC

Display Message

The following table describes the packet counters per FIP operation.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR</td>
<td>Number of VLAN Request messages received on the VLAN.</td>
</tr>
<tr>
<td>VN</td>
<td>Number of VLAN Notification messages received on the VLAN.</td>
</tr>
<tr>
<td>MDS</td>
<td>Number of Multicast Discovery Solicitation messages snooped on the VLAN.</td>
</tr>
<tr>
<td>UDS</td>
<td>Number of Unicast Discovery Solicitation messages snooped on the VLAN.</td>
</tr>
<tr>
<td>FLOGI</td>
<td>Number of Fabric Logins snooped on the VLAN.</td>
</tr>
<tr>
<td>FDISC</td>
<td>Number of Fabric Discovery Logins snooped on the VLAN.</td>
</tr>
<tr>
<td>LOGO</td>
<td>Number of Fabric Logouts on the VLAN.</td>
</tr>
<tr>
<td>VNPort-keep-alive</td>
<td>Number of VN_Port keepalive messages snooped on the VLAN.</td>
</tr>
</tbody>
</table>
The following table describes the other interface or session-related counters.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Virtual Session Timeouts</td>
<td>Number of Virtual sessions removed due to session timer expiry.</td>
</tr>
<tr>
<td>Number of FCF Session Timeouts</td>
<td>Number of Active sessions time out due to Discovery Advertisements expiry from FCFs in the VLAN.</td>
</tr>
<tr>
<td>Number of Session configuration failures</td>
<td>Number of sessions in the VLAN that failed to be configured in the hardware.</td>
</tr>
<tr>
<td>Number of Session denied with FCF limit</td>
<td>Number of sessions that are denied to be created for the new FCF as the number of FCFs reached the maximum allowed in the VLAN.</td>
</tr>
<tr>
<td>Number of Session denied with ENode limit</td>
<td>Number of session create requests that are denied for the new ENode as the number of ENodes reached the maximum allowed in the system.</td>
</tr>
<tr>
<td>Number of Session denied with System limit</td>
<td>Number of sessions that are denied to be created as the number of sessions reached the maximum allowed in the system.</td>
</tr>
</tbody>
</table>

9.1.7. feature fip-snooping

This command globally enables Fiber Channel over Ethernet Initialization Protocol (FIP) snooping on the switch. When FIP snooping is globally enabled, FC-BB-5 Annex D ACLs are installed on the switch and FIP frames are snooped. FIP snooping will not allow FIP or Fiber Channel over Ethernet (FCoE) frames to be forwarded over a...
port until the port is operationally enabled for PFC. VLAN tagging must be enabled on the interface in order to carry the dot1p values through the network.

To return the settings to the default values and globally disable FIP snooping, use the no form of this command. When FIP snooping is globally disabled, received FIP frames are forwarded or flooded using the normal multicast rules. In addition, other FIP snooping commands are not available until the FIP snooping feature is enabled.

Format

```
feature fip-snooping
no feature fip-snooping
```

Default

Disable

Mode

Global Config

9.1.8. fip-snooping enable

This command enables FIP snooping on the configured VLAN. Priority Flow Control (PFC) must be operationally enabled before FIP snooping can operate on an interface. VLAN tagging must be enabled on the interface in order to carry the dot1p value through the network.

This command can only be entered after FIP snooping is enabled using the `feature fip-snooping` command. Otherwise, it does not appear in the CLI.

To return the mode to the default (disabled), use the no form of this command.

Format

```
fip-snooping enable
no fip-snooping enable
```

Default

Disable

Mode

VLAN Config

9.1.9. fip-snooping fc-map

This command configures the FP-MAP value on a VLAN. The FC map value is used to help in securing the switch against misconfiguration. When configured using fabric-provided MAC addresses, FCoE devices transmit frames containing the FC map value in the upper 24 bits. Only frames that match the configured FC map values are passed across the VLAN. Frames with MAC addresses that do not match the FC map value are discarded.

This command can only be entered after FIP snooping is enabled using the `feature fip-snooping` command. Otherwise, it does not appear in the CLI.

To set the FC-MAP value for the VLAN to the default value, use the no form of this command.

Format

```
fip-snooping fc-map <0x0-0xffffffff>
no fip-snooping fc-map
```
9.1.10. **fip-snooping port-mode fcf**

This command configures the interface that is connected towards FCF. To relay the FIP packets received from the hosts toward the FCF, the switch needs to know the interfaces to which the FCFs are connected. By default, an interface is configured to be a host-facing interface if it is not configured to be an FCF-facing interface.

It is recommended that FCF-facing ports be placed into auto-upstream mode in order to receive DCBX information and propagate it to the CNAs on the downstream (host-facing) ports. Interfaces enabled for PFC should be configured in trunk or general mode and must be PFC-operationally enabled before FCoE traffic can pass over the port.

This command can only be entered after FIP snooping is enabled using the `feature fip-snooping` command. Otherwise, it does not appear in the CLI.

To set the interface to be connected towards the host, use the **no** form of this command.

Format

```
fip-snooping port-mode fcf
no fip-snooping port-mode fcf
```

Default

Configuration as a host-facing interface

Mode

Interface Config

9.1.11. **clear fip-snooping statistics**

This command clears the FIP snooping statistics in the supplied VLAN or on a supplied interface. If the optional (VLAN or interface) argument is not given, this command clears the statistics on all FIP snooping-enabled VLANs.

This command can only be entered after FIP snooping is enabled using the `feature fip-snooping` command. Otherwise, it does not appear in the CLI.

Format

```
clear fip-snooping statistics [interface <slot/port> | vlan <1-4093>]
```

Fields

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><0x0-0xffffffff></td>
</tr>
<tr>
<td>Valid FC map values are in the range of 0x0 to 0xffffffff.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><slot/port></td>
</tr>
<tr>
<td>Specifies the interface.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><1-4093></td>
</tr>
<tr>
<td>Specifies the VLAN interface. The range of the VLAN ID is 1 to 4093.</td>
</tr>
<tr>
<td>Default</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Mode</td>
</tr>
</tbody>
</table>
9.2. Priority-based Flow Control

9.2.1. show interface priority-flow-control

This command displays the PFC information of a given interface or all interfaces.

Format
show interface [<slot/port>] priority-flow-control

Fields
- `<slot/port>`: Interface number.

Default
None

Mode
Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Detail</td>
<td>The port for which data is displayed.</td>
</tr>
<tr>
<td>Operational State</td>
<td>The operational status of the interface.</td>
</tr>
<tr>
<td>Configured State</td>
<td>The administrative mode of PFC on the interface.</td>
</tr>
<tr>
<td>Configured Drop Priorities</td>
<td>The 802.1p priority values that are configured with a drop priority on the interface. Drop priorities do not participate in pause.</td>
</tr>
<tr>
<td>Configured No-Drop Priorities</td>
<td>The 802.1p priority values that are configured with a no-drop priority on the interface. If an 802.1p priority that is designated as no-drop is congested, the priority is pause.</td>
</tr>
<tr>
<td>Operational Drop Priorities</td>
<td>The 802.1p priority values that the switch is using with a drop priority. The operational drop priorities might not be the same as the configured priorities if the interface has accepted different priorities from a peer device.</td>
</tr>
<tr>
<td>Operational No-Drop Priorities</td>
<td>The 802.1p priority values that the switch is using with a no-drop priority. The operational drop priorities might not be the same as the configured priorities if the interface has accepted different priorities from a peer device.</td>
</tr>
<tr>
<td>Delay Allowance</td>
<td>The allowed delay on the interface.</td>
</tr>
<tr>
<td>Peer Configuration Compatible</td>
<td>Indicates whether the local switch has accepted a compatible configuration from a peer switch.</td>
</tr>
<tr>
<td>Compatible Configuration Count</td>
<td>The number of received configurations accepted and processed as valid. This number does not include duplicated configurations.</td>
</tr>
</tbody>
</table>
Example: The following example shows the CLI display output for the command `show interface priority-flow-control`.

```
(M4500-32C) #show interface priority-flow-control

<table>
<thead>
<tr>
<th>Port</th>
<th>Drop Priorities</th>
<th>No-Drop Priorities</th>
<th>Operational Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1</td>
<td>0-7</td>
<td></td>
<td>Inactive</td>
</tr>
<tr>
<td>0/2</td>
<td>0-7</td>
<td></td>
<td>Inactive</td>
</tr>
<tr>
<td>0/3</td>
<td>0-7</td>
<td></td>
<td>Inactive</td>
</tr>
<tr>
<td>0/4</td>
<td>0-7</td>
<td></td>
<td>Inactive</td>
</tr>
<tr>
<td>0/5</td>
<td>0-7</td>
<td></td>
<td>Inactive</td>
</tr>
<tr>
<td>0/6</td>
<td>0-7</td>
<td></td>
<td>Inactive</td>
</tr>
<tr>
<td>0/7</td>
<td>0-7</td>
<td></td>
<td>Inactive</td>
</tr>
</tbody>
</table>

Port: all physical interfaces
Operational Status: Active/Inactive
```

9.2.2. priority-flow-control mode

This command enables or disables Priority-Flow-Control (PFC) on the given interface.

To return the mode to the default, use the `no` form of this command. VLAN tagging must be enabled on the interface in order to carry the dot1p value through the network. Additionally, the dot1p mapping to class-of-service must be set to one-to-one.

When PFC is enabled on an interface, the normal PAUSE control mechanism is operationally disabled.

Format

```
priority-flow-control mode { on | off }
no priority-flow-control mode
```

Default

Off

Mode

DCB (Data Center Bridging) interface mode
9.2.3. priority-flow-control priority

This command enables or disables the priority group for lossless (no-drop) or lossy (drop) behavior on the selected interface. Up to two lossless priorities can be enabled on an interface. The users must configure the same no-drop priorities across the network in order to ensure end-to-end lossless behavior.

This command has no effect on interfaces not enabled of PFC. VLAN tagging needs to be turned on in order to carry the dot1p value through the network. Additionally, the dot1p mapping to class-of-service must be set to one-to-one.

To enable lossy behavior on all priorities on the interface, use the no form of this command. This has no effect on interfaces not enabled for PFC or with no lossless priorities configured.

Format

```
priority-flow-control priority <0-7> { drop | no-drop }  
no priority-flow-control priority
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><drop></td>
<td>Disable lossless behavior on the selected priorities.</td>
</tr>
<tr>
<td><no-drop></td>
<td>Enable lossless behavior on the selected priorities.</td>
</tr>
</tbody>
</table>

Default The default behavior for all priorities is drop

Mode DCB (Data Center Bridging) interface mode

9.2.4. clear priority-flow-control statistics

This command clears all global and interface PFC statistics

Format clear priority-flow-control statistics

Mode Privileged Exec
9.3. OpenFlow

9.3.1. show openflow

This command displays the OpenFlow feature status and configuration information.

Format show openflow

Default None

Mode Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative Mode</td>
<td>The OpenFlow feature administrative mode set by the command "openflow enable".</td>
</tr>
<tr>
<td>Administrative Status</td>
<td>The operational status of the OpenFlow feature. Although the feature may be administratively enabled, it could be operationally disabled due to various reasons</td>
</tr>
<tr>
<td>Disable Reason</td>
<td>If the OpenFlow feature is operationally disabled, then this status shows the reason for the feature to be disabled.</td>
</tr>
<tr>
<td>IP Address</td>
<td>IPv4 Address assigned to the feature. If the IP address is not assigned, then the status is None.</td>
</tr>
<tr>
<td>IP Mode</td>
<td>IP mode assigned by the command "openflow ip-mode". The IP mode can be Auto, Static, or ServicePort IP.</td>
</tr>
<tr>
<td>Static IP Address</td>
<td>Static IP address assigned by the command "openflow static-ip".</td>
</tr>
<tr>
<td>OpenFlow Variant</td>
<td>OpenFlow Protocol Variant. The OpenFlow protocol can be OpenFlow 1.3.</td>
</tr>
<tr>
<td>Default Table</td>
<td>The Hardware Table used as the target for flows installed by an OpenFlow 1.0 controller which is not enhanced to handle multiple hardware tables.</td>
</tr>
<tr>
<td>Passive Mode</td>
<td>The OpenFlow passive mode set by the command "openflow passive-mode".</td>
</tr>
</tbody>
</table>

9.3.2. show openflow configured controller

This command displays a list of configured OpenFlow controllers.

Format show openflow configured controller

Default None

Mode Privileged EXEC
Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>IPv4 address of the controller.</td>
</tr>
<tr>
<td>IP Port</td>
<td>IPv4 port number for the controller connection.</td>
</tr>
<tr>
<td>Connection Mode</td>
<td>SSL or TCP Controller Connection mode.</td>
</tr>
<tr>
<td>Role</td>
<td>The role of the controller: Master, Equal, Slave</td>
</tr>
</tbody>
</table>

9.3.3. `show openflow installed flows`

This command displays the list of configured flows on the switch.

Format

```
show openflow installed flows [dest_ip <ip-address> | dest_ip_port <1-65535> | dest_mac <macaddr> | dscp <0-63> | ether_type <0-0xFFFF> | ingress_port <slot/port> | ip_proto <0-255> | priority <1-65535> | source_ip <ip-address> | source_ip_port <1-65535> | source_mac <macaddr> | table <10,60> | vlan <1-4093> | vlan_prio <0-7> ]
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>dest_ip</td>
<td>The IP address of the destination.</td>
</tr>
<tr>
<td>dest_ip_port</td>
<td>The port number of the destination.</td>
</tr>
<tr>
<td>dest_mac</td>
<td>The MAC address of the destination.</td>
</tr>
<tr>
<td>dscp</td>
<td>The DSCP value.</td>
</tr>
<tr>
<td>ether_type</td>
<td>The ethertype value.</td>
</tr>
<tr>
<td>ingress_port</td>
<td>The slot and port for the ingress.</td>
</tr>
<tr>
<td>ip_proto</td>
<td>The IP protocol.</td>
</tr>
<tr>
<td>priority</td>
<td>The priority of the flow.</td>
</tr>
<tr>
<td>source_ip</td>
<td>The IP address of the source.</td>
</tr>
<tr>
<td>source_ip_port</td>
<td>The port number of the source.</td>
</tr>
<tr>
<td>source_mac</td>
<td>The MAC address of the source.</td>
</tr>
</tbody>
</table>
9.3.4. show openflow installed groups

This command displays the list of configured groups on the switch.

Format: show openflow installed groups

Default: None

Mode: Privileged EXEC

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow type</td>
<td>The type of flow. (For example, 1DOT3)</td>
</tr>
<tr>
<td>Match criteria</td>
<td>The match criteria specified by the flow.</td>
</tr>
<tr>
<td>Flow table</td>
<td>The hardware table in which the flow is installed.</td>
</tr>
<tr>
<td>Flow priority</td>
<td>The priority of the flow versus other flows.</td>
</tr>
<tr>
<td>Ingress port</td>
<td>The port on which the flow is active.</td>
</tr>
<tr>
<td>Actions</td>
<td>The action specified by the flow.</td>
</tr>
<tr>
<td>Hard timeout</td>
<td>The number of seconds after which the flow is expired regardless of whether or not packets are hitting the entry.</td>
</tr>
<tr>
<td>Idle timeout</td>
<td>The number of seconds after which the flow is expired with no received traffic.</td>
</tr>
<tr>
<td>Idle</td>
<td>The time since the flow was hit.</td>
</tr>
</tbody>
</table>
| Installed in hardware | If the flow could be added to the hardware.
| | • 0 is displayed if the flow cannot be added.
| | • 1 is displayed if the flow was added. |
9.3.5. **show openflow table-status**

This command displays the supported OpenFlow tables and report usage information for the tables.

Format
show openflow table-status openflow13

Default
None

Mode
Privileged EXEC

<table>
<thead>
<tr>
<th>Display Message</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fields</td>
<td>Definition</td>
</tr>
<tr>
<td>Flow Table</td>
<td>OpenFlow table identifier. The range is 0 to 255.</td>
</tr>
<tr>
<td>Flow Table Name</td>
<td>The name of this table.</td>
</tr>
<tr>
<td>Maximum Size</td>
<td>Platform-defined maximum size for this flow table.</td>
</tr>
<tr>
<td>Number of Entries</td>
<td>Total number of entries in this table. The count includes delete-pending entries.</td>
</tr>
<tr>
<td>Hardware Entries</td>
<td>Number of entries currently inserted into the hardware.</td>
</tr>
<tr>
<td>Software-Only Entries</td>
<td>Number of entries that are not installed in the hardware for any reason. This includes entries pending for insertion, entries that cannot be inserted due to missing interfaces and entries that cannot be inserted due to table-full condition.</td>
</tr>
<tr>
<td>Waiting for Space Entries</td>
<td>Number of entries that are not currently in the hardware because the attempt to insert the entry failed.</td>
</tr>
<tr>
<td>Flow Insertion Count</td>
<td>Total number of flows that were added to this table since the switch powered up.</td>
</tr>
</tbody>
</table>
9.3.6. openflow enable

This command enables or disables the OpenFlow feature. If the OpenFlow feature is not in disabled state, then enabling has no effect on the OpenFlow feature.

To return the mode to the default, use the no form of this command. If the OpenFlow feature is not in enabled state, then issuing this command has no effect on the OpenFlow feature. The OpenFlow feature can be administratively disabled at any time.

Format
openflow enable	no openflow enable

Default Disabled
Mode Global Config

9.3.7. openflow static-ip

This command sets the IP address to be used for the OpenFlow feature. The static IP is applied only when the static IP mode is enabled. The switch must have an operational IP interface with the specified address in order for the static IP address to be used for the OpenFlow feature. If the system does not have an interface with a matching IP address then the OpenFlow feature is operationally disabled.

If the OpenFlow feature is enabled when this command is issued and the specified static IP address is not the same as the IP address already in use by the OpenFlow feature then the feature is automatically disabled and re-enabled.

To set the OpenFlow Static IP address to 0.0.0.0, use the no form of this command. Issuing this command when OpenFlow is enabled and using a static IP causes the OpenFlow feature to become operationally disabled.

Format
openflow static-ip <ip-address>	no openflow static-ip

Default 0.0.0.0
Mode Global Config
9.3.8. openflow controller

Specify up to twenty IP addresses to which the switch should establish an OpenFlow Controllers connection. Each command invocation specifies one IP address and connection mode (TCP or SSL). If the IP Port is omitted then the default IP port number 6633 is used. The default connection mode is SSL. The controller table configured by this command is used by the switch in OpenFlow 1.3 modes.

To delete the specified OpenFlow Controller IP address or delete all Controller addresses, use the no form of this command. If the IP Port number is omitted then all entries for the specified IP address are deleted.

Format
openflow controller <ip-address> [ip-port][connection mode]

no openflow controller { ip-address [ip-port] | all}

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>Specify up to five IP addresses to which the switch should establish an OpenFlow Management connection.</td>
</tr>
<tr>
<td>ip-port</td>
<td>IP port to use for an OpenFlow Management connection. If the IP Port is omitted, then the default IP port number 6632 is used.</td>
</tr>
<tr>
<td>connection mode</td>
<td>TCP or SSL. The default is SSL.</td>
</tr>
</tbody>
</table>

Mode Global Config

9.3.9. openflow ip-mode

This command directs the OpenFlow feature to use the configured IP address. Issuing this command when OpenFlow is already enabled causes the feature to be disabled and re-enabled with the new IP address.

To direct the OpenFlow feature to automatically assign the IP address to itself, use the no form of this command.

Format openflow ip-mode {auto | static | serviceport}

no openflow ip-mode

Default Disabled

Mode Global Config

9.3.10. openflow passive-mode

This command enables OpenFlow passive-mode.

To disable OpenFlow passive-mode, use the no form of this command.
9.3.11. openflow failmode

This command configures the OpenFlow fail mode of connection interruption. It can choose the Fail-Secure or Fail-Standalone mode.

In the case that a switch loses contact with all controllers, the switch should immediately enter either “fail secure mode” or “fail standalone mode”. In “fail secure mode”, the only change to switch behavior is that packets and messages destined to the controllers are dropped. Flow entries should continue to expire according to their timeouts. In “fail standalone mode”, the switch processes all packets using the OFPP_NORMAL reserved port; in other words, the switch acts as a legacy Ethernet switch or router.

To reset to the default failmode, use the no form of this command.

Format openflow failmode {secure | standalone}
 no openflow failmode

Default Secure

Mode Global Config

9.3.12. clear openflow ca-cert

This command erases the Certificate Authority certificates used for validating the OpenFlow Controllers from the switch. Issuing this command automatically disables and re-enables the OpenFlow feature. The new SSL certificates are reloaded from the OpenFlow Controller on the first connection to the controller or can be manually loaded with a copy command.

Format clear openflow ca-cert

Mode Privileged Exec
10. Fluentd Commands

10.1. Show Commands

10.1.1. show fluentd

This command is used to display fluentd status and configuration settings.

Format: show fluentd [<fluentd-entry>]

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><fluentd-entry></td>
<td>The fluentd entry name (up to 31 alphanumeric characters).</td>
</tr>
</tbody>
</table>

Default: None

Mode: Privileged EXEC

Display Message

Example #1:

(M4500-32C) #show fluentd

Fluentd mode: Disable

Current number of fluentd entries: 1

Current number of enabled fluentd entries: 1

Maximum number of fluentd entries: 20

Fluentd Entry : fluent
Fluentd Entry Status : Enable
Source Status : Enable
Source Tag : syslog.switch
Source Type : syslog
Match Pattern : syslog.**
Match Type : forward
Example #2:

(M4500-32C) #show fluentd fluent

Fluentd Entry : fluent
Fluentd Entry Status : Enable
Source Status : Enable
Source Tag : syslog.switch
Source Type : syslog
Port : 5140
Bind : 0.0.0.0
Protocol Type : udp
Match Pattern : flu.**
Match Type : forward
Host Type : ipv4
Host : 172.16.2.101
Port : 24224
Heartbeat Interval : 1s
Heartbeat Type : UDP
Phi Failure Detector : Enable
Phi Threshold : 16
Send Timeout : 60s
Buffer Type : Memory
Buffer Queue Limit : 16
Buffer Chunk Limit : 8m
Buffer Flush Interval : 60s
10.2. Configuration Commands

10.2.1. fluentd

This command enables or disables FluentD service.

Format
fluentd
 no fluentd

Default Disabled
Mode Global Config

10.2.2. fluentd <fluentd-entry>

This command creates or deletes FluentD entry.

Format
fluentd <fluentd-entry>
 no fluentd <fluentd-entry>

Fields
Definition

<table>
<thead>
<tr>
<th><fluentd-entry></th>
<th>The fluentd entry name (up to 31 alphanumeric characters).</th>
</tr>
</thead>
</table>

Default None
Mode Global Config

10.2.3. enable

This command enables FluentD entry.

Format
enable
 no enable

Default Disabled
Mode Fluentd Configuration
10.2.4. sourcetag

This command configures the tag of the FluentD source.

Format
```
sourcetag <tag> type {syslog | localsyslog | dstat | exec}
no sourcetag <tag>
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><tag></td>
<td>The sourcetag (up to 31 alphanumeric characters).</td>
</tr>
</tbody>
</table>

Default None

Mode Fluentd Configuration

10.2.5. syslog

This command configures syslog settings.

Format
```
[enable | advance [port <1-65534> | bind <bind> | protocol-type {tcp | udp}]]
no enable
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><1-65534></td>
<td>The port to listen to.</td>
</tr>
<tr>
<td><bind></td>
<td>The bind address to listen to.</td>
</tr>
</tbody>
</table>

Default
- Port: 5140
- Bind: 0.0.0.0 (all address)
- Protocol-type: udp

Mode Syslog configuration

10.2.6. localsyslog

This command configures localsyslog settings.

Format
```
[enable | severity <0-7>]
no enable
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><0-7></td>
<td>The logging severity level.</td>
</tr>
</tbody>
</table>
Default Severity: 5
Mode Localsyslog configuration

10.2.7. dstat

This command configures dstat settings.

Format [enable | advance [option <option> | delay <1-86400>]
 no enable

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><option></td>
<td>The dstat option.</td>
</tr>
<tr>
<td><1-86400></td>
<td>The delay time (seconds).</td>
</tr>
</tbody>
</table>

Default Option: -fcdnm
 Delay: 1
Mode Dstat configuration

10.2.8. exec

This command configures exec settings.

Format enable | command <command> | format {tsv <keys> | json | msgpack} | advance {tag-key <tag-key>|
 time-key <time-key> [time-format] | run-interval <run-interval>}
 no enable

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><command></td>
<td>The command (program) to execute.</td>
</tr>
<tr>
<td><keys></td>
<td>The comma-separated (,) keys parameter (contains alphanumeric characters,</td>
</tr>
<tr>
<td></td>
<td>dots (.), dashes (-), and underscores (_)).</td>
</tr>
<tr>
<td><tag-key></td>
<td>The key to use as the event tag instead of the value in the event record (up to 31</td>
</tr>
<tr>
<td></td>
<td>alphanumeric characters including “.”).</td>
</tr>
<tr>
<td><time-key></td>
<td>The key to use as the event time instead of the value in the event record.</td>
</tr>
<tr>
<td><time-format></td>
<td>The format of the event time used for the time_key parameter.</td>
</tr>
<tr>
<td><run-interval></td>
<td>The interval time between periodic program runs (the value in the range <1 - 60>,</td>
</tr>
<tr>
<td></td>
<td>and suffix s (seconds), m (minutes), or h (hours)).</td>
</tr>
</tbody>
</table>
Default Time-key: current time
Time-format: %Y-%m-%d %H:%M:%S

Mode Exec configuration

10.2.9. matchpattern

This command configures fluentd match.

Format matchpattern <pattern> type {forward | webhdfs | elasticsearch}
no matchpattern <pattern>

Fields Definition

<pattern> The pattern (up to 31 alphanumeric characters).

Default None

Mode Fluentd configuration

10.2.10. forward

This command configures forward settings.

Fields Definition

<ipaddr> The ipv4 address of server.

<hostname> The host name of server.

<1-65535> The host port number.

<send-timeout> The timeout time when sending event logs (the value in the range <1 - 60>, and suffix s(seconds), m(minutes), or h(hours)).

<heartbeat-interval> The interval of the heartbeat packer (the value in the range <1 - 60>, and suffix s(seconds), m(minutes), or h(hours)).

<1-60> The interval time between periodic program runs (the value in the range <1 - 60>, and suffix s (seconds), m (minutes), or h (hours)).
10.2.11. webhdfs

This command configures webhdfs settings.

Format

```
host-name <hostname> | port <1-65535> | path <path> | advance {buffer [buffer-type {memory | file <buffer-path>}] | buffer-queue-limit <1-16> | buffer-chunk-limit <chunk> | flush-interval <flush-interval>} | localtime {disable | enable}
```

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><host></td>
<td>The namenode hostname.</td>
</tr>
<tr>
<td><1-65535></td>
<td>The namenode port number.</td>
</tr>
<tr>
<td><path></td>
<td>The path on HDFS.</td>
</tr>
<tr>
<td><buffer-path></td>
<td>The path where buffer chunks are stored.</td>
</tr>
<tr>
<td><1-16></td>
<td>The length limit of the chunk queue.</td>
</tr>
<tr>
<td><chunk></td>
<td>The size of each buffer chunk (the value in the range <1 - 8>, and suffix k(KB) or m(MB)).</td>
</tr>
</tbody>
</table>
Default
- Localtime: enable
- Buffer-type: memory
- Buffer-queue-limit: 16
- Buffer-chunk-limit: 8m
- Flush-interval: 60s

Mode
- Webhdfs configuration

10.2.12. elasticsearch

This command configures elasticsearch settings.

Format
host {ipv4 <ipaddr> | hostname <hostname>} [1-65535] | hosts <host:port> | user <user> <password> <path> | advance {logstash-format {disable | enable <prefix>} | scheme <scheme> | utc-index {disable | enable} | index-name <index-name> | type-name <type-name> | request-timeout <request-timeout> | reload-connections {disable | enable} | reload-on-failure {disable | enable} | buffer {buffer-type {memory | file <buffer-path>} | buffer-queue-limit <1-16> | buffer-chunk-limit <chunk> | flush-interval <flush-interval>}}

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><ipaddr></td>
<td>The ipv4 address of server.</td>
</tr>
<tr>
<td><hostname></td>
<td>The host name of server.</td>
</tr>
<tr>
<td><1-65535></td>
<td>The host port number.</td>
</tr>
<tr>
<td>host:port</td>
<td>Multiple elasticsearch hosts with separator ",,",</td>
</tr>
<tr>
<td><user></td>
<td>The elasticsearch cluster host user info.</td>
</tr>
<tr>
<td><password></td>
<td>The elasticsearch cluster host user password.</td>
</tr>
<tr>
<td><path></td>
<td>The elasticsearch cluster host path.</td>
</tr>
<tr>
<td><prefix></td>
<td>The logstash-prefix (up to 31 alphanumeric characters).</td>
</tr>
<tr>
<td><index-name></td>
<td>Store in a document the index it belongs to (up to 31 alphanumeric characters).</td>
</tr>
<tr>
<td><type-name></td>
<td>Each type has a list of fields that can be specified for documents of that type (up to 31 alphanumeric characters).</td>
</tr>
<tr>
<td><tag-key></td>
<td>The tag-key (up to 31 alphanumeric characters, include dashes(-), and underscores(_)).</td>
</tr>
</tbody>
</table>
<request-timeout>
HTTP request timeout (the value in the range <1 - 60>, and suffix s(seconds), m(minutes), or h(hours)).

<buffer-path>
The path where buffer chunks are stored.

<1-16>
The length limit of the chunk queue.

<chunk>
The size of each buffer chunk (the value in the range <1 - 8>, and suffix k(KB) or m(MB)).

<flush-interval>
The interval between data flushes (the value in the range <1 - 60>, and suffix s(seconds), m(minutes), or h(hours)).

<table>
<thead>
<tr>
<th>Default</th>
<th>Port: 9200</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Logstash-format: disable</td>
</tr>
<tr>
<td></td>
<td>Prefix: logstash</td>
</tr>
<tr>
<td></td>
<td>Utc-index: enable</td>
</tr>
<tr>
<td></td>
<td>Index-name: fluentd</td>
</tr>
<tr>
<td></td>
<td>Type-name: fluentd</td>
</tr>
<tr>
<td></td>
<td>Tag-key: tag</td>
</tr>
<tr>
<td></td>
<td>Request-timeout: 5s</td>
</tr>
<tr>
<td></td>
<td>Reload-connections: enable</td>
</tr>
<tr>
<td></td>
<td>Reload-on-failure: disable</td>
</tr>
<tr>
<td></td>
<td>Buffer-type: memory</td>
</tr>
<tr>
<td></td>
<td>Buffer-queue-limit: 16</td>
</tr>
<tr>
<td></td>
<td>Buffer-chunk-limit: 8m</td>
</tr>
<tr>
<td></td>
<td>Flush-interval: 60s</td>
</tr>
</tbody>
</table>

| Mode | Elasticsearch configuration |
11. SDVoE Commands

SDVoE (Software Defined Video-over-Ethernet) is the latest high-performance, software-based AV-over-IP platform for control and distribution of audio and video over Ethernet & Fiber networks.

In an SDVoE environment, L2 multicast is used by default. All these enhancements are applicable for L2 multicast only. If the user configures L3 multicast then L3 multicast should behave as per the standard. In addition, the enhancement is applicable only to IGMP version 1 and version 2. Version 3 works very differently and is not part of this enhancement.

11.1. Show Commands for an SDVoE Environment

11.1.1. show igmpsnooping group

This command is used to display the information of the IGMP groups. When no VLAN or interface is provided, the entire table is listed. When the interface or port-channel parameter is specified, only the hosts detected on that port or LAG are displayed.

Format
```plaintext
show igmpsnooping group [ <vlan-id> | interface <intf-id> | port-channel <lag-id> ]
```

Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><vlan-id></td>
<td>1 to maximal VLAN ID</td>
</tr>
<tr>
<td><intf-id></td>
<td>The physical port</td>
</tr>
<tr>
<td><lag-id></td>
<td>The ID of the port channel</td>
</tr>
</tbody>
</table>

Default
None

Mode
Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>VLAN ID</td>
</tr>
<tr>
<td>Subscriber</td>
<td>The IP and MAC address of the IGMP host</td>
</tr>
<tr>
<td>MC Group</td>
<td>The multicast group this entry belongs to.</td>
</tr>
<tr>
<td>Interface</td>
<td>The interface number via which the host joins the multicast group</td>
</tr>
<tr>
<td>Type</td>
<td>IGMPv1 or IGMPv2</td>
</tr>
<tr>
<td>Timeout (sec)</td>
<td>The number of seconds after which the multicast entry is expired</td>
</tr>
</tbody>
</table>
Example:

(M4500-32C) #show igmpsnooping group

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Subscriber</th>
<th>MC Group</th>
<th>Interface Type</th>
<th>Timeout</th>
<th>Type</th>
<th>Timeout</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>192.85.1.3/00:10:26:00:00:01</td>
<td>225.0.0.63/01:00:5e:00:00:3f</td>
<td>0/2</td>
<td>IGMPv2 244</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>192.85.1.3/00:10:26:00:00:01</td>
<td>225.0.0.64/01:00:5e:00:00:40</td>
<td>0/2</td>
<td>IGMPv2 244</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>192.85.1.4/00:10:27:00:00:01</td>
<td>225.0.0.1/01:00:5e:00:00:01</td>
<td>0/30</td>
<td>IGMPv2 238</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>192.85.1.4/00:10:27:00:00:01</td>
<td>225.0.0.2/01:00:5e:00:00:02</td>
<td>0/30</td>
<td>IGMPv2 229</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11.1.2. show igmpsnooping fast-leave

This command is used to display the operational status of the Fast leave for each interface.

Format
```
show igmpsnooping fast-leave
```

Default
None

Mode
Privileged EXEC

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The specific interface</td>
</tr>
<tr>
<td>Fast-leave operation mode</td>
<td>The operational mode of the Fast-leave on the specific interface</td>
</tr>
</tbody>
</table>

Example:

(M4500-32C) #show igmpsnooping fast-leave

<table>
<thead>
<tr>
<th>Interface</th>
<th>Fast-Leave Operational Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1</td>
<td>Enable</td>
</tr>
<tr>
<td>0/2</td>
<td>Enable</td>
</tr>
<tr>
<td>0/3</td>
<td>Enable</td>
</tr>
<tr>
<td>0/4</td>
<td>Disable</td>
</tr>
<tr>
<td>0/5</td>
<td>Disable</td>
</tr>
<tr>
<td>0/6</td>
<td>Disable</td>
</tr>
</tbody>
</table>
11.2. Configuration Commands for an SDVoE Environment

11.2.1. igmp-plus <vlan-id>

This command enables IGMP plus to support SDVoE on the specific VLAN. That is, this command enables IGMP enhancements for the specified VLAN to support audio and video devices in an SDVoE environment.

Format igmp-plus <vlan-id>
 no igmp-plus <vlan-id>
Default igmp-plus 1
Mode Global Config

11.2.2. set igmp flood-report <vlan-id>

This command enables the flooding of the IGMP Join/Leave PDUs received on a downstream port (from a host) to all other ports for the specific VLAN.

Format set igmp flood-report <vlan-id>
 no set igmp flood-report <vlan-id>
Default Enable
Mode VLAN Config

11.2.3. set igmp exclude-mrouter-intf <vlan-id>

This command enables the blocking of all known and unknown multicast streams to mrouter port for the specific VLAN. The multicast data stream are forwarded only if an IGMP membership (v1/v2) has been received through this mrouter port.

Format set igmp exclude-mrouter-intf <vlan-id>
 no set igmp exclude-mrouter-intf <vlan-id>
Default Enable
Mode VLAN Config
11.2.4. set igmp fast-leave auto-assignment

Use this command to configure automatic assignment of fast-leave in system level (to all ports and LAGs). Use the no form to restore to default mode.

Format

set igmp fast-leave auto-assignment

no set igmp fast-leave auto-assignment

Default

Enable

Mode

Global Config
12. Serviceability Packet Tracing Commands

12.1. CPU Traffic Commands

12.1.1. show cpu-traffic

Use this command to display the current configuration parameters.

Format show cpu-traffic

Mode Privileged EXEC

12.1.2. show cpu-traffic interface

Use this command to display per-interface statistics for configured filters. The statistics can be displayed for a specific filter such as stp, udld, arp, and so on. If no filter is specified, statistics are displayed for all configured filters. Similarly, source IP, destination IP, TCP, UDP, or MAC, along with a custom filter can be used as a command option to get statistics.

Format show cpu-traffic interface {all | <intf-range> | cpu} [<filter>]

Mode Privileged EXEC

12.1.3. show cpu-traffic summary

Use this command to display summary statistics for the configured filters for all interfaces.

Format show cpu-traffic summary

Mode Privileged EXEC

12.1.4. show cpu-traffic trace

Use this command to display traffic trace information. The trace information can be displayed either for all available packets or for a specific filter such as stp, udld, arp, and so on. Similarly, source IP, destination IP, or MAC, along with a custom filter can be used as a command option to get specific traces from the history. If enabled, packet dump information is displayed along with packet trace statistics. By default, the packet dump buffer size is set to store the first 64 bytes of a packet.
Format show cpu-traffic trace [<filter>]

Mode Privileged EXEC

12.1.5. cpu-traffic direction interface

Use this command to associate CPU filters to an interface or list of interfaces. The interfaces can be a physical or logical LAG. The statistics counters are updated only for the configured interfaces. The traces can also be obtained for the configured interfaces.

NOTE: The offset must consider the VLAN tag headers because the packet to the CPU is always a tagged packet.

Format cpu-traffic direction {tx | rx | both} interface {<intf-range> [cpu] | cpu [<intf-range>]}

no cpu-traffic direction {tx|rx|both} interface

Default None

Mode Global Config

12.1.6. cpu-traffic direction match cust-filter

Use this command to configure a custom filter. The statistics, traces, or both for configured filters are obtained for the packet matching the configured data at the specific offset. If the mask is not specified, the default mask is 0xFF. You can specify three different offsets as match conditions. Each time a custom filter is configured, the switch overrides the previous configuration.

NOTE: The offset must consider the VLAN tag headers because the packet to the CPU is always a tagged packet.

Format cpu-traffic direction {tx | rx | both} match cust-filter <offset1> <data1> [mask1 <mask1>] <offset2> <data2> [mask2 <mask2>] <offset3> <data3> [mask3 <mask3>]

no cpu-traffic direction {tx|rx|both} match cust-filter

Default None

Mode Global Config

12.1.7. cpu-traffic direction match srcip

Use this command to configure the source IP address-specific filter. The statistics, traces, or both for configured filters are obtained for the packet matching the configured source IP/mask.
Format cpu-traffic direction {tx | rx | both} match srcip <ipaddress> [mask <mask>]

no cpu-traffic direction {tx | rx | both} match srcip

Default None

Mode Global Config

12.1.8. cpu-traffic direction match dstip

Use this command to configure the destination IP address-specific filter. The statistics, traces, or both for configured filters are obtained for the packet matching the configured destination IP/mask.

Format cpu-traffic direction {tx | rx | both} match dstip <ipaddress> [mask <mask>]

no cpu-traffic direction {tx | rx | both} match dstip

Default None

Mode Global Config

12.1.9. cpu-traffic direction match tcp

Use this command to configure the source or destination TCP port-specific filter. The statistics, traces, or both for configured filters are obtained for the packet matching the configured source or destination TCP port.

Format cpu-traffic direction {tx | rx | both} match {srctcp | dsttcp} <0-65535> [mask <0-65535>]

no cpu-traffic direction {tx | rx | both} match {srctcp | dsttcp}

Default None

Mode Global Config

12.1.10. cpu-traffic direction match udp

Use this command to configure the source or destination UDP port-specific filter. The statistics, traces, or both for configured filters are obtained for the packet matching the configured source or destination UDP port.

Format cpu-traffic direction {tx | rx | both} match {srcudp | dstudp} <0-65535> [mask <0-65535>]

no cpu-traffic direction {tx | rx | both} match {srcudp | dstudp}

Default None
12.1.11. cpu-traffic direction match mac

Use this command to configure the source or destination MAC filter. The statistics, traces, or both for configured filters are obtained for the packet matching the configured source or destination MAC address.

Format cpu-traffic direction \{tx | rx | both\} match \{srcmac | dstmac\} \(<0-65535> \) [mask <mask>]

no cpu-traffic direction \{tx | rx | both\} match \{srcmac | dstmac\}

Default None

Mode Global Config

12.1.12. cpu-traffic direction match filter

Use this command to configure the filter. The statistics, traces, or both for configured filters are obtained for the packet matching the configured filter item.

Format cpu-traffic direction \{tx | rx | both\} match filter \{all | arp | bcast | bgp | custom | dhcp | dstip | dstmac | dsttcp | dstudp | ip | lacpdu | lldp | mcast | ospf | srcip | srcmac | srctcp | srcudp | stp | ucast | udld\} [arp | bcast | bgp | custom | dhcp | dstip | dstmac | dsttcp | dstudp | ip | lacpdu | lldp | mcast | ospf | srcip | srcmac | srctcp | srcudp | stp | ucast | udld]

no cpu-traffic direction \{tx | rx | both\} match filter \{all | arp | bcast | bgp | custom | dhcp | dstip | dstmac | dsttcp | dstudp | ip | lacpdu | lldp | mcast | ospf | srcip | srcmac | srctcp | srcudp | stp | ucast | udld\}

Default None

Mode Global Config

12.1.13. cpu-traffic mode

Use this command to configure the CPU traffic mode. The packets in the RX/TX direction are matched when the mode is enabled.

Format cpu-traffic mode

no cpu-traffic mode
Default Disabled

Mode Global Config

12.1.14. cpu-traffic trace

Use this command to configure CPU packet tracing. The packet can be received by multiple components. If the feature is enabled and tracing configured, the packets are traced per the defined filter. If the dump-pkt keyword is enabled, the first 64 bytes of the packet are displayed along with the trace statistics.

Format
```
cpu-traffic trace [dump-pkt]   no cpu-traffic trace
```

Default Disabled

Mode Global Config

12.1.15. clear cpu-traffic

Use this command to clear CPU traffic statistics or trace information on all interfaces.

Format
```
clear cpu-traffic {counters | traces}
```

Default None

Mode Global Config
12.2. Exception Kernel Dump Commands

12.2.1. show exception kernel-dump

Use this command to display the current kernel dump settings and slots available to view.

Format show exception kernel-dump
Mode Privileged Exec

12.2.2. show exception kernel-dump list

Use this command to display the currently captured dumps.

Format show exception kernel-dump list
Mode Privileged Exec

12.2.3. show exception kernel-dump log

Use this command to display the dmesg log from a specified kernel crash core dump (kdump) slot.

Format show exception kernel-dump log <crashlog-number>
Mode Privileged Exec

12.2.4. exception kernel-dump

Use this command to enable the kernel crash core dump (kdump) functionality. If the command was not enabled since the last reboot, enabling this command requires a reboot.

Format exception kernel-dump
 no exception kernel-dump <0-2>
Default Disabled
Mode Global Config
12.2.5. exception kernel-dump path

Use this command to set the path where the kernel crash core dump (kdump) entries are stored.

Format

```
exception kernel-dump path <directory>
```

Default

None

Mode

Global Config
12.3. Memory Buffer Commands

12.3.1. show mbuf

Use this command to display the memory buffer (MBUF) utilization monitoring parameters.

Format show mbuf

Mode Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rising Threshold</td>
<td>The percentage of the memory buffer resources that, when exceeded for the configured rising interval, triggers a notification. The range is 1 to 100. The default is 0 (disabled).</td>
</tr>
<tr>
<td>Falling Threshold</td>
<td>The percentage of memory buffer resources that, when usage falls below this level for the configured interval, triggers a notification. The range is 1 to 100. The default is 0 (disabled).</td>
</tr>
<tr>
<td>Severity</td>
<td>The severity level.</td>
</tr>
</tbody>
</table>

12.3.2. show mbuf total

Use this command to display the memory buffer (MBUF) information.

Format show mbuf total

Mode Privileged Exec

Display Message

<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mbufs Total</td>
<td>Total number of message buffers in the system.</td>
</tr>
<tr>
<td>Mbufs Free</td>
<td>Number of message buffers currently available.</td>
</tr>
<tr>
<td>Mbufs Rx Used</td>
<td>Number of message buffers of class RX currently in use.</td>
</tr>
<tr>
<td>Mbufs Rx Norm Used</td>
<td>Number of message buffers of class RX Norm currently in use.</td>
</tr>
<tr>
<td>Mbufs Rx Mid2 Used</td>
<td>Number of message buffers of class RX Mid2 currently in use.</td>
</tr>
<tr>
<td>Mbufs Rx Mid1 Used</td>
<td>Number of message buffers of class RX Mid1 currently in use.</td>
</tr>
<tr>
<td>Mbufs Rx Mid0 Used</td>
<td>Number of message buffers of class RX Mid0 currently in use.</td>
</tr>
</tbody>
</table>
12.3.3. mbuf

Use this command to configure the memory buffer (MBUF) threshold limits and generate notifications when MBUF limits have been reached.

Format

```plaintext
mbuf {falling-threshold | rising threshold | severity}
```

```plaintext
no mbuf {falling-threshold | rising threshold | severity}
```

Mode

Global Config
<table>
<thead>
<tr>
<th>Fields</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rising Threshold</td>
<td>The percentage of the memory buffer resources that, when exceeded for the configured rising interval, triggers a notification. The range is 1 to 100. The default is 0 (disabled).</td>
</tr>
<tr>
<td>Falling Threshold</td>
<td>The percentage of memory buffer resources that, when usage falls below this level for the configured interval, triggers a notification. The range is 1 to 100. The default is 0 (disabled).</td>
</tr>
<tr>
<td>Severity</td>
<td>The severity level at which Mbuf logs messages. The range is 1 to 7. The default is 5 (L7_LOG_SEVERITY_NOTICE).</td>
</tr>
</tbody>
</table>